Probability Theory 2 : Solution Sheet 8

Exercice 1

Let t > s > 0 and ®(x,y) = = + y. Then, ® is measurable. Since B; — B, and F; are independents,
using the hint yields

P{B,€ A|F.,} =P{B,— B,+ B, € A| F,}
— P{®(B, — B, B.) € A| F.)
=P{®(B, — B,, B,) € A| B}
—P{B, € A| B,}.

Denote
Qt*S(imA) = P{Bt S A | _BS = ;C}

Notice that this notation make sense because
P{Bt €A|Bs :{E}:P{Bt_s €A|BQZI},

i.e. this probability depend only on ¢ — s. It represent the probability that B; reach A in time ¢t — s given
that B; = x. We have to prove that (Q;) is a transition kernel family, i.e. that Kolmogorov-Chapmann
equation hold. Let € R and A measurable.

Qttu(r,A) =P{Btruss € A| Bs =z}
= / ]P){Bt+u+s S A | Bu+s = y,BS = IE}]P){BU+S S dy ‘ BS = .’E}
R

(T) /RP{BtJru+s €A | Buis = y}P{Bqus € dy | B, = x}

:/RQt(y,A)Qu(% dy),

where we used Markov property in (1). Therefore, (Q;) is a transition kernel family.

We have that

1 (z—y)?
m,A:]P’BeAB::c:/ :xdzi/e—mm
Qi(z, A) = P{B; | Bo =z} Ath|Bo (y) dy T ) Yy
as wished.
Exercice 2
We use the following theorem :
r—[Théoréme 0.1.] N

Let o : I x J — R where p = @(x,t) a measurable function s.t.
1. The function x +— f(x,t) is L' for allt € J,
2. For a.e. x € I, the function t — @(z,t) is differentiable on J,
3. There is a function k : J — R that is L' s.t. |0yp(z,t)| < k(x) for a.e. x € I. Then

t— /(p(.',b‘7t) dz, is differentiable and
I

8t/ap(ac,t) dz = /8t<p(a:,t) dz,
I I

forallt € J.




22

Set p(z,t) = \/%e*ﬁ and let M > 0 s.t. |f(z)] < M for all z € R.

e We have that

u? _ (== u>2
x,t) 2t du = du.
g \/27r / J V27t /
Let 0 < 61 <t < 3. Then
1 (z—y)? | _w
Of(x+u)——=| =|flz+u + e 2t
tf( U) Qﬂ-te*% |f( | ‘2 /27Tt3/2 2 /27Tt5/2
1 —y)? _u?
<M 53+ (z y5)/2 e 2% ¢ L'(R).
2v27oy 2v27o;
Therefore, by Theorem 0.1,
0ug(w.t) = [ Fla+ wdrotust)du= [ Fu)ople —u,t)du &
R R

for all ¢ € [01,d2]. Since d; and do are unspecified, (1) hold for all ¢ > 0. We follow that same
strategy for 0,g(z,t). Let 1 < x < J2. We can suppose WLOG that « > 0 and §; > 0 (the strategy
when §; < < d3 when §; < 0 and 2 > 0 is exactly the same)

(z—u)?

83;67 2t

_e=w)? ,ﬁ —u? —ud 1
=z —ylem 2 < (Jy|+d2)e” ezt et € L' (R).

and thus, by Theorem 0.1,

Opg(z,t) = /Rf(u)axap(x —u,t)du = Af(u)axmw(x — u, t) du, (2)

for « € [01, d2]. Since 41,02 € R are unspecified, (2) holds for all z € R. The proof that

aawg(xat) = / f(u)awz@(x - uvt) du = / f(u)amcso(x - uat) du7
R R
goes through the same. One can easily prove that

1
Opo(x —u,t) — éamgo(x —u,t) =0,

and thus, by has been made before, g solve the Heat equation.

e Since f is bounded, we can use DCT what gives

Jim g(z.0) = Bllin (2 + B)] = Elf(o -+ Bo)) = f(z),
where (1) comes from continuity of f and ¢ — B;.

Exercice 3

1. Suppose x > 0.

2 [T .2
P{r, >t} = P< sup B; <z, =1-—2P{B; >$}—1/—/ e” 2 du,
1) | sefo, @ V7t Jg

where we used reflection principle in (1) and in (2), we made the calculation in exercise 3 of sheet
7. If x <0, then

P{Trzt}ﬁ”{ inf Bsm}lﬂm{ sup <Bs>zx},

s€[0,t] s€[0,t]

and the proof claim follow as previously.



2. Let 0 < s <t < o0.
P{Vu € (5,4), By # 0} = /R]P’{Vu € (5,4), By £ 0 | By = 2)P{B, € da}
= /RIP{Vu € (0,t —s),Byt+s 0| Bs = }P{B; € dz}
5 /RIP’{VU € (0,t —s),B, # —x | Bp = 0}P{B; € dz}

= / P{r_, >t—s| By =0}P{B; € dz},
R

We have to justify (3) properly. Let {¢,}nen an enumeration of (0,¢ — s) N Q.

P{Yu € (0,t — 5), Byys #0 | By =2} = P (| {Burs#0}|Bi=2
“ u€(0,t—s)NQ

= lim P (ﬂ{BHS #0} | B, :m> :

n—00
=0
n
5t P (VB -1 1 0=

5 P{Vu € (0,t —s),B, # —x | By =0} .

(4) follow from the continuity of Brownian motion. For (5), remark that if t; < t5 < t3, using
Markov property (a), time homogeneity (b), invariance by translation (c) yields

Z2

P{B;, < x3,Bi, <zo| By, =21} (:) / P{B;, <3| B, = a}P{By, € da | By, = x1}

T2
_ / P{By, 1, <as | By 1, = a}P{Bu, 1, € da | Bo = 1}

() J-co

T2
= / P{Bt3_t1 < I3 | Btz—tl = a}P{Bt2_t1 € da— I | BO = 0}

(c) —o0
ro2—I1
Pl / P{Bi,—+, <3| Bty—t, = B+ x1}P{By,—+, € df | Bo =0}
To2—T1
- / P{By,—1, < 5 — 11 | Byt = BYP{Bry—y, € dB | By = 0}

=P{B,—+, < a3 —21,Bt,—1, < a9 — 11 | Bo =0}.

Then, (5) follow by induction. Finally, (6) follow by the continuity of the probability and the
continuity of the the Brownian motion.

3. Combine 1. and 2. yields

ns) =2 [ 2 e de— e £ @b
s) = e 20t-s dx e 2s
(®) /0 m(t — s) /0 V27s

2 ° bV (= z2 b2
= f/ / e~ 2 dxe” 7 db.
™ Jo 0

Let§1,52>08.t.0<61<S<52<t.1f




then

t b b2s t 1 %y 2 1
= . e t—s S e t—hi1e 2 € L .
t—s S(t*S) t_62 51(t752)

Therefore, using Theorem 0.1 yield

2 [ ¢ 1 2 _s b2 1 1
h'(s :—/ : R T O G | R — 3
) TJo t—s s(t—s) ™ \/s(t—s) (3)

for all s € (41,d2). Since 61,2 > 0 are unspecified, (3) hold for all 0 < s < ¢. Since h(0) = 0,

integrating yields
2
h(s) = — arcsin (\/E) ,
T t

as wished.

Exercice 4

1. We have . . .
Z Bti+1 (Bti+1 - Bti) = Z Bti (BtH»l - Bti) + Z(Bti+1 - Bti)Q'
i=0 i=0 i=0
By the lecture, we know that
n—1 P + n—1 P
;Bti(Bml = Bi,) — /0 B,dB, and ;(Btm — B,,)? 1,
where Y,, 2. ¥ mean that (Y,,) convergence to Y in probability. Therefore
n—oo
n—1 P t
> Bi(Bi,, — B) — | BidB, +t.
i=0 neeJo
2. As previously
n—1 n—1 n—1
Z Xti+1 (Bti+1 - Btl) = Z Xti (Bti+1 - Btz) + Z(Xti+1 - Xti)(Btz‘+1 - Btz)
i=0 i=0 i=0

Since X has a.s. finite variation path,

n—1 n—1
Z(Xti+1 - Xti)(Bti+l - Btz) < . Osup 1 ‘Bti+1 - Bti Z |Xti+1 - th‘
o 1=0,...,n— i=0

<C suwp |By,—By| — 0 as
; 1 n— o0

1=0,...,n—
Therefore

i

n—oo 0

n—1 t

P
E :XtH»l (Bti+1 - Bt') ? X,dB,.
=0

3. When X has a.s. finite variation path, then

n—1 n—1
ZXtH—l(BtH—l _Bti) and ZXti(BtH—l - Bti)?
=0 =0

has the same limit (in probability), which fails when X has not a.s. finite variation path.



