Probability Theory 2 : Solution Sheet 8

Exercice 1

Let t > s > 0 and ®(x,y) = = + y. Then, ® is measurable. Since B; — B, and F; are independents,
using the hint yields

P{B,€ A|F.,} =P{B,— B,+ B, € A| F,}
— P{®(B, — B, B.) € A| F.)
=P{®(B, — B,, B,) € A| B}
—P{B, € A| B,}.

Denote
Qt*S(imA) = P{Bt S A | _BS = ;C}

Notice that this notation make sense because
P{Bt €A|Bs :{E}:P{Bt_s €A|BQZI},

i.e. this probability depend only on ¢ — s. It represent the probability that B; reach A in time ¢t — s given
that B; = x. We have to prove that (Q;) is a transition kernel family, i.e. that Kolmogorov-Chapmann
equation hold. Let € R and A measurable.

Qttu(r,A) =P{Btruss € A| Bs =z}
= / ]P){Bt+u+s S A | Bu+s = y,BS = IE}]P){BU+S S dy ‘ BS = .’E}
R

(T) /RP{BtJru+s €A | Buis = y}P{Bqus € dy | B, = x}

:/RQt(y,A)Qu(% dy),

where we used Markov property in (1). Therefore, (Q;) is a transition kernel family.

We have that

1 (z—y)?
m,A:]P’BeAB::c:/ :xdzi/e—mm
Qi(z, A) = P{B; | Bo =z} Ath|Bo (y) dy T ) Yy
as wished.
Exercice 2
We use the following theorem :
r—[Théoréme 0.1.] N

Let o : I x J — R where p = @(x,t) a measurable function s.t.
1. The function x +— f(x,t) is L' for allt € J,
2. For a.e. x € I, the function t — @(z,t) is differentiable on J,
3. There is a function k : J — R that is L' s.t. |0yp(z,t)| < k(x) for a.e. x € I. Then

t— /(p(.',b‘7t) dz, is differentiable and
I

8t/ap(ac,t) dz = /8t<p(a:,t) dz,
I I

forallt € J.




22

Set p(z,t) = \/%e*ﬁ and let M > 0 s.t. |f(z)] < M for all z € R.

e We have that

u? _(a— u)
x,t) 2t du = du.
o \/27T / f= V27t /
Let 0 < §; <t < d9. Then
(=9 | w2
O f(r+u r+u + e 5
tf( ) 2mte” 21 |f | ’2\/ 2mt3/2 thf’ﬂ

1 —y)? u2
<M o+ (@ y2/2 ¢ € L'(R).
2V/276; 2276

Therefore, by Theorem 0.1,

Og(z,t) = /Rf(ac + u)Orp(u, t) du = /Rf(u)atcp(x — u,t) du, (1)

for all t € [§1,02]. Since §; and d2 are unspecified, (1) hold for all ¢ > 0. We follow that same
strategy for 0,g(x,t). Let §1 < < §3. We can suppose WLOG that > 0 and §; > 0 (the strategy
when 01 < x < d2 when §; < 0 and d2 > 0 is exactly the same)

(1‘7’&)2

Oy 2t

_M _ﬁ —u? P 1
=lx—ylem 2 < (Jy|+d2)e ezt et € L (R).

and thus, by Theorem 0.1,
cg(at) = [ F)dple —ut)du= [ F@rele—u.t)du, 2
for « € [01, d2]. Since d1,d2 € R are unspecified, (2) holds for all z € R. The proof that
Orzg(x,t) = Af(u)6$m¢(x —u,t)du = Af(u)amww(x — u,t) du,
goes through the same. One can easily prove that

Oz —u,t) —

and thus g solve the Heat equation.
e Let £ > 0. Since f is continuous, there is 6 > 0 s.t. |f(u+ z) — f(z)| < € whenever |u] < 4.

1
53219(:3 —u,t) =0,

g(x,t) — f(x)] =
< [[1fu+a) = F@lento) du
S/u|§6|f($-‘ru)_f($)|%0t(U)du+/ 1f(z 4+ u) — f(2)]o(u) du

|u|>8

A (fu+2) = f(2))pe(u) du

=:1; =:J¢
Clearly, |I;| < ¢ for all ¢ > 0. Suppose [t| < 1. Since

1 2 V2t 2
| < X< = e LY (=00, —8) U (4, ,
= | < Y < S e Lm0, -9 U (6,)
using dominated convergence theorem yields
lim J;, =0
t—0+

Therefore,

for all € > 0 and thus, the claim follow.



Exercice 3

1. Suppose = > 0.

2 z 22
P{r, >t} =Pq sup Bs <z :172]P’{B52x}:\/—/ e~ = dux,
1) | sefo. 2 V7t Jg

where we used reflection principle in (1) and in (2), we made the calculation in exercise 3 of sheet
7. If x < 0, then

P{Tajzt}zp{ inf Bszx}zl—P{ sup (—BS)Z—x},

s€[0,1] s€[0,1]

and the proof claim follow as previously.
2. Let 0 < s <t < o0.

P{Vu € (s,t), By # 0} = / P{Yu € (s,4), By £ 0 | By = 2}P{B, € dz}
R
= / P{Vu € (0,t — 5), Byts # 0| Bs = 2}P{B; € da}
R

5 / P{Vu € (0,t — s), By, # —x | By = 0}P{B; € dz}
R

= / P{r_, >t—s| By =0}P{B, € dz},
R

We have to justify (3) properly. Let {¢,}nen an enumeration of (0,¢ — s) N Q.

P{Vu € (0,t — 5),Buys #0 | By =z} = P (| {Burs#0}|Bi =2
@ u€(0,t—s)NQ

= lim P (ﬂ{BtiH 40} | B, = x) :

n— 00 !
=0

(5) n—o0

= lim P (ﬂ{BHS + —x}| By = o)
=0
5 P{Vu € (0,t —s),By # —x | Bo =0}.

(4) follow from the continuity of Brownian motion. For (5), remark that if t; < to < t3, using
Markov property (a), time homogeneity (b), invariance by translation (c) yields

@2
IP){.Bt3 S $3,Bt2 S T2 | Btl = fEl} (f) / IP){.Bt3 S I3 | Bt2 = Q}P{Btz € da | Btl = 1'1}

— 00

T2
= / P{Bt3_t1 S T3 ‘ Btz—tl = Q}P{Btg—tl € da ‘ Bo = .131}

) J oo
T2
(:)/ P{Bi,—t, <3| Bt,—t, = a}P{B;,_+, € da —x1 | By = 0}
To—xTq
Pl / P{By, 1, <3| B,_t, = B+ 21 }P{By,_+, € dB | By = 0}
To—T1
(f) / P{Bt?,—tl <w3—11 | Btz—tl = B}P{Btz—tl c dﬁ | By = 0}

=P{B,—+, <x3—21,By,—, < a9 — 1 | Bo =0}.

Then, (5) follow by induction. Finally, (6) follow by the continuity of the probability and the
continuity of the the Brownian motion.



3. Combine 1. and 2. yields

s =2 [ = [ el B
S) = e 20t-s) dux e 2
@=2 [\ Vars
9 [ /s 22 b2
= f/ / e~ 2 dxe” 7 db.
™ Jo 0

Let 61,09 >0s8t. 0< 1 <s<dg <t.If

V=
g(s) = / e 7 da,
0

then
t b 25 t 1 _v%sy b2

= . e t—s < e ez e LY
t—s s(t—s) T t—02\/5,(t — 09)

Therefore, using Theorem 0.1 yield

2 [ ¢ 1 s 2 1 1
B(s)== : DA P | . S (3)
0 t

-5 s(t—s) T /s(t—s)

for all s € (d1,d2). Since 61,2 > 0 are unspecified, (3) hold for all 0 < s < ¢. Since h(0) = 0,

integrating yields
2
h(s) = — arcsin (\/E) ,
0 t

g(s)e” =

as wished.

Exercice 4

1. We have . . )
Z Bti+1(Bti+1 - Bti) = Z Bti (BtH»l - Btl) + Z(Bti+1 - Bti)Q'
=0 =0 =0
By the lecture, we know that
n—1 P t n—1 P
ZO Bti (Btwrl — Bti) n:))o . By dBt and Z;(Bti+1 — Bti)Q njgo t,
i= i

where Y,, L. ¥ mean that (Y,,) convergence to Y in probability. Therefore

n—oo

n—1 t
ZBti+1(Bti+1 _Bt') L B,;dBg +t.
=0

i
n— oo 0

2. As previously

n—1 n—1 n—1
Z Xti+1 (Bt'i+1 - Bti) = Z th‘ (Bti+1 - Bti) + Z(Xti+1 - Xti)(Bt'iJrl - Bti)'
=0 =0 1=0

Since X has a.s. finite variation path,

n—1 n—1
Z(Xti+1 - Xti)(Bti+l - Btz) < Sup ‘Bti+1 - Bti Z |Xti+1 - th‘
i—0 1=0,...,n—1 i—0
<C sup [By,, —By| — 0 as.
i=0,...,n—1 oo
Therefore

n—1 P t

z; Xty (Biisy = Br)) = i X, dB,.

7=



3. When X has a.s. finite variation path, then

n—1 n—1
Zthi+1 (Bti+1 - Btz) and Zth (Bti+1 - Bti)?
1=0 1=0

has the same limit (in probability), which fails when X has not a.s. finite variation path.



