Probability Theory 2 : Solution Sheet 8

Exercice 1

Let $t>s \geq 0$ and $\Phi(x, y)=x+y$. Then, Φ is measurable. Since $B_{t}-B_{s}$ and \mathcal{F}_{s} are independents, using the hint yields

$$
\begin{aligned}
\mathbb{P}\left\{B_{t} \in A \mid \mathcal{F}_{s}\right\} & =\mathbb{P}\left\{B_{t}-B_{s}+B_{s} \in A \mid \mathcal{F}_{s}\right\} \\
& =\mathbb{P}\left\{\Phi\left(B_{t}-B_{s}, B_{s}\right) \in A \mid \mathcal{F}_{s}\right\} \\
& =\mathbb{P}\left\{\Phi\left(B_{t}-B_{s}, B_{s}\right) \in A \mid B_{s}\right\} \\
& =\mathbb{P}\left\{B_{t} \in A \mid B_{s}\right\} .
\end{aligned}
$$

Denote

$$
Q_{t-s}(x, A):=\mathbb{P}\left\{B_{t} \in A \mid B_{s}=x\right\}
$$

Notice that this notation make sense because

$$
\mathbb{P}\left\{B_{t} \in A \mid B_{s}=x\right\}=\mathbb{P}\left\{B_{t-s} \in A \mid B_{0}=x\right\}
$$

i.e. this probability depend only on $t-s$. It represent the probability that B_{t} reach A in time $t-s$ given that $B_{s}=x$. We have to prove that $\left(Q_{t}\right)$ is a transition kernel family, i.e. that Kolmogorov-Chapmann equation hold. Let $x \in \mathbb{R}$ and A measurable.

$$
\begin{aligned}
Q_{t+u}(x, A) & =\mathbb{P}\left\{B_{t+u+s} \in A \mid B_{s}=x\right\} \\
& =\int_{\mathbb{R}} \mathbb{P}\left\{B_{t+u+s} \in A \mid B_{u+s}=y, B_{s}=x\right\} \mathbb{P}\left\{B_{u+s} \in \mathrm{~d} y \mid B_{s}=x\right\} \\
& =\int_{\mathbb{R}} \mathbb{P}\left\{B_{t+u+s} \in A \mid B_{u+s}=y\right\} \mathbb{P}\left\{B_{u+s} \in \mathrm{~d} y \mid B_{s}=x\right\} \\
& =\int_{\mathbb{R}} Q_{t}(y, A) Q_{u}(x, \mathrm{~d} y),
\end{aligned}
$$

where we used Markov property in (1). Therefore, $\left(Q_{t}\right)$ is a transition kernel family.
We have that

$$
Q_{t}(x, A)=\mathbb{P}\left\{B_{t} \in A \mid B_{0}=x\right\}=\int_{A} f_{B_{t} \mid B_{0}=x}(y) \mathrm{d} y=\frac{1}{\sqrt{2 \pi t}} \int_{A} e^{-\frac{(x-y)^{2}}{2 t}} \mathrm{~d} y
$$

as wished.

Exercice 2

We use the following theorem :

Théorème 0.1

Let $\varphi: I \times J \rightarrow \mathbb{R}$ where $\varphi=\varphi(x, t)$ a measurable function s.t.

1. The function $x \mapsto f(x, t)$ is L^{1} for all $t \in J$,
2. For a.e. $x \in I$, the function $t \mapsto \varphi(x, t)$ is differentiable on J,
3. There is a function $\kappa: J \rightarrow \mathbb{R}$ that is L^{1} s.t. $\left|\partial_{t} \varphi(x, t)\right| \leq \kappa(x)$ for a.e. $x \in I$. Then $t \mapsto \int_{I} \varphi(x, t) \mathrm{d} x$, is differentiable and

$$
\partial_{t} \int_{I} \varphi(x, t) \mathrm{d} x=\int_{I} \partial_{t} \varphi(x, t) \mathrm{d} x
$$

for all $t \in J$.

Set $\varphi(x, t)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}$ and let $M>0$ s.t. $|f(x)| \leq M$ for all $x \in \mathbb{R}$.

- We have that

$$
g(x, t)=\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} f(x+u) e^{-\frac{u^{2}}{2 t}} \mathrm{~d} u=\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} f(u) e^{-\frac{(x-u)^{2}}{2 t}} \mathrm{~d} u
$$

Let $0<\delta_{1}<t<\delta_{2}$. Then

$$
\begin{aligned}
\left|\partial_{t} f(x+u) \frac{1}{\sqrt{2 \pi t} e^{-\frac{u^{2}}{2 t}}}\right| & =|f(x+u)|\left|\frac{-1}{2 \sqrt{2 \pi} t^{3 / 2}}+\frac{(x-y)^{2}}{2 \sqrt{2 \pi} t^{5 / 2}}\right| e^{-\frac{u^{2}}{2 t}} \\
& \leq M\left(\frac{1}{2 \sqrt{2 \pi} \delta_{1}^{3 / 2}}+\frac{(x-y)^{2}}{2 \sqrt{2 \pi} \delta_{1}^{5 / 2}}\right) e^{-\frac{u^{2}}{2 \delta_{2}}} \in L^{1}(\mathbb{R})
\end{aligned}
$$

Therefore, by Theorem 0.1,

$$
\begin{equation*}
\partial_{t} g(x, t)=\int_{\mathbb{R}} f(x+u) \partial_{t} \varphi(u, t) \mathrm{d} u=\int_{\mathbb{R}} f(u) \partial_{t} \varphi(x-u, t) \mathrm{d} u \tag{1}
\end{equation*}
$$

for all $t \in\left[\delta_{1}, \delta_{2}\right]$. Since δ_{1} and δ_{2} are unspecified, (1) hold for all $t>0$. We follow that same strategy for $\partial_{x} g(x, t)$. Let $\delta_{1}<x<\delta_{2}$. We can suppose WLOG that $x>0$ and $\delta_{1}>0$ (the strategy when $\delta_{1}<x<\delta_{2}$ when $\delta_{1}<0$ and $\delta_{2}>0$ is exactly the same)

$$
\left|\partial_{x} e^{-\frac{(x-u)^{2}}{2 t}}\right|=|x-y| e^{-\frac{(x-u)^{2}}{2 t}} \leq\left(|y|+\delta_{2}\right) e^{-\frac{\delta_{1}^{2}}{2 t}} e^{\frac{-u^{2}}{2 t}} e^{-u \delta_{1}} \in L^{1}(\mathbb{R})
$$

and thus, by Theorem 0.1,

$$
\begin{equation*}
\partial_{x} g(x, t)=\int_{\mathbb{R}} f(u) \partial_{x} \varphi(x-u, t) \mathrm{d} u=\int_{\mathbb{R}} f(u) \partial_{x x} \varphi(x-u, t) \mathrm{d} u \tag{2}
\end{equation*}
$$

for $x \in\left[\delta_{1}, \delta_{2}\right]$. Since $\delta_{1}, \delta_{2} \in \mathbb{R}$ are unspecified, (2) holds for all $x \in \mathbb{R}$. The proof that

$$
\partial_{x x} g(x, t)=\int_{\mathbb{R}} f(u) \partial_{x x} \varphi(x-u, t) \mathrm{d} u=\int_{\mathbb{R}} f(u) \partial_{x x} \varphi(x-u, t) \mathrm{d} u
$$

goes through the same. One can easily prove that

$$
\partial_{t} \varphi(x-u, t)-\frac{1}{2} \partial_{x x} g(x-u, t)=0
$$

and thus g solve the Heat equation.

- Let $\varepsilon>0$. Since f is continuous, there is $\delta>0$ s.t. $|f(u+x)-f(x)| \leq \varepsilon$ whenever $|u| \leq \delta$.

$$
\begin{aligned}
|g(x, t)-f(x)| & =\left|\int_{\mathbb{R}}(f(u+x)-f(x)) \varphi_{t}(u) \mathrm{d} u\right| \\
& \leq \int_{\mathbb{R}}|f(u+x)-f(x)| \varphi_{t}(u) \mathrm{d} u \\
& \leq \underbrace{\int_{|u| \leq \delta}|f(x+u)-f(x)| \varphi_{t}(u) \mathrm{d} u}_{=: I_{t}}+\underbrace{\int_{|u|>\delta}|f(x+u)-f(x)| \varphi_{t}(u) \mathrm{d} u}_{=: J_{t}}
\end{aligned}
$$

Clearly, $\left|I_{t}\right| \leq \varepsilon$ for all $t>0$. Suppose $|t| \leq 1$. Since

$$
\left|\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}\right| \leq \frac{\sqrt{2 t}}{x^{2}} \leq \frac{2}{x^{2}} \in L^{1}((-\infty,-\delta) \cup(\delta, \infty))
$$

using dominated convergence theorem yields

$$
\lim _{t \rightarrow 0^{+}} J_{t}=0
$$

Therefore,

$$
\lim _{t \rightarrow 0^{+}}|g(x, t)-f(x)| \leq \varepsilon
$$

for all $\varepsilon>0$ and thus, the claim follow.

Exercice 3

1. Suppose $x>0$.

$$
\mathbb{P}\left\{\tau_{x} \geq t\right\} \underset{(1)}{=} \mathbb{P}\left\{\sup _{s \in[0, t]} B_{s} \leq x\right\}=1-2 \mathbb{P}\left\{B_{s} \geq x\right\} \underset{(2)}{=} \sqrt{\frac{2}{\pi t}} \int_{0}^{x} e^{-\frac{x^{2}}{2 t}} \mathrm{~d} x
$$

where we used reflection principle in (1) and in (2), we made the calculation in exercise 3 of sheet 7. If $x<0$, then

$$
\mathbb{P}\left\{\tau_{x} \geq t\right\}=\mathbb{P}\left\{\inf _{s \in[0, t]} B_{s} \geq x\right\}=1-\mathbb{P}\left\{\sup _{s \in[0, t]}\left(-B_{s}\right) \geq-x\right\}
$$

and the proof claim follow as previously.
2. Let $0<s<t<\infty$.

$$
\begin{aligned}
\mathbb{P}\left\{\forall u \in(s, t), B_{u} \neq 0\right\} & =\int_{\mathbb{R}} \mathbb{P}\left\{\forall u \in(s, t), B_{u} \neq 0 \mid B_{s}=x\right\} \mathbb{P}\left\{B_{s} \in \mathrm{~d} x\right\} \\
& =\int_{\mathbb{R}} \mathbb{P}\left\{\forall u \in(0, t-s), B_{u+s} \neq 0 \mid B_{s}=x\right\} \mathbb{P}\left\{B_{s} \in \mathrm{~d} x\right\} \\
& =\int_{\mathbb{R}} \mathbb{P}\left\{\forall u \in(0, t-s), B_{u} \neq-x \mid B_{0}=0\right\} \mathbb{P}\left\{B_{s} \in \mathrm{~d} x\right\} \\
& =\int_{\mathbb{R}} \mathbb{P}\left\{\tau_{-x}>t-s \mid B_{0}=0\right\} \mathbb{P}\left\{B_{s} \in \mathrm{~d} x\right\}
\end{aligned}
$$

We have to justify (3) properly. Let $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ an enumeration of $(0, t-s) \cap \mathbb{Q}$.

$$
\begin{aligned}
\mathbb{P}\left\{\forall u \in(0, t-s), B_{u+s} \neq 0 \mid B_{s}=x\right\} & \underset{(4)}{=} \mathbb{P}\left(\bigcap_{u \in(0, t-s) \cap \mathbb{Q}}\left\{B_{u+s} \neq 0\right\} \mid B_{s}=x\right) \\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left(\bigcap_{i=0}^{n}\left\{B_{t_{i}+s} \neq 0\right\} \mid B_{s}=x\right) . \\
& =\lim _{n \rightarrow \infty} \mathbb{P}\left(\bigcap_{i=0}^{n}\left\{B_{t_{i}+s} \neq-x\right\} \mid B_{0}=0\right) \\
& =\mathbb{(5)}\left\{\forall u \in(0, t-s), B_{u} \neq-x \mid B_{0}=0\right\} .
\end{aligned}
$$

(4) follow from the continuity of Brownian motion. For (5), remark that if $t_{1}<t_{2}<t_{3}$, using Markov property (a), time homogeneity (b), invariance by translation (c) yields

$$
\begin{aligned}
& \mathbb{P}\left\{B_{t_{3}} \leq x_{3}, B_{t_{2}} \leq x_{2} \mid B_{t_{1}}=x_{1}\right\} \underset{(a)}{=} \int_{-\infty}^{x_{2}} \mathbb{P}\left\{B_{t_{3}} \leq x_{3} \mid B_{t_{2}}=\alpha\right\} \mathbb{P}\left\{B_{t_{2}} \in \mathrm{~d} \alpha \mid B_{t_{1}}=x_{1}\right\} \\
& \overline{(b)} \int_{-\infty}^{x_{2}} \mathbb{P}\left\{B_{t_{3}-t_{1}} \leq x_{3} \mid B_{t_{2}-t_{1}}=\alpha\right\} \mathbb{P}\left\{B_{t_{2}-t_{1}} \in \mathrm{~d} \alpha \mid B_{0}=x_{1}\right\} \\
& \underset{(c)}{=} \int_{-\infty}^{x_{2}} \mathbb{P}\left\{B_{t_{3}-t_{1}} \leq x_{3} \mid B_{t_{2}-t_{1}}=\alpha\right\} \mathbb{P}\left\{B_{t_{2}-t_{1}} \in \mathrm{~d} \alpha-x_{1} \mid B_{0}=0\right\} \\
& \underset{\beta=\alpha-x_{1}}{=} \int_{-\infty}^{x_{2}-x_{1}} \mathbb{P}\left\{B_{t_{3}-t_{1}} \leq x_{3} \mid B_{t_{2}-t_{1}}=\beta+x_{1}\right\} \mathbb{P}\left\{B_{t_{2}-t_{1}} \in \mathrm{~d} \beta \mid B_{0}=0\right\} \\
& \underset{(c)}{\bar{c}} \int_{-\infty}^{x_{2}-x_{1}} \mathbb{P}\left\{B_{t_{3}-t_{1}} \leq x_{3}-x_{1} \mid B_{t_{2}-t_{1}}=\beta\right\} \mathbb{P}\left\{B_{t_{2}-t_{1}} \in \mathrm{~d} \beta \mid B_{0}=0\right\} \\
& =\mathbb{P}\left\{B_{t_{3}-t_{1}} \leq x_{3}-x_{1}, B_{t_{2}-t_{1}} \leq x_{2}-x_{1} \mid B_{0}=0\right\} .
\end{aligned}
$$

Then, (5) follow by induction. Finally, (6) follow by the continuity of the probability and the continuity of the the Brownian motion.
3. Combine 1. and 2. yields

$$
\begin{aligned}
h(s) & =2 \int_{0}^{\infty} \sqrt{\frac{2}{\pi(t-s)}} \int_{0}^{b} e^{-\frac{x^{2}}{2(t-s)}} \mathrm{d} x \frac{1}{\sqrt{2 \pi s}} e^{-\frac{b^{2}}{2 s}} \mathrm{~d} b \\
& =\frac{2}{\pi} \int_{0}^{\infty} \int_{0}^{b \sqrt{\frac{s}{t-s}}} e^{-\frac{x^{2}}{2}} \mathrm{~d} x e^{-\frac{b^{2}}{2}} \mathrm{~d} b .
\end{aligned}
$$

Let $\delta_{1}, \delta_{2}>0$ s.t. $0<\delta_{1}<s<\delta_{2}<t$. If

$$
g(s)=\int_{0}^{b \sqrt{\frac{s}{t-s}}} e^{-\frac{x^{2}}{2}} \mathrm{~d} x
$$

then

$$
\left|g^{\prime}(s) e^{-\frac{b^{2}}{2}}\right|=\frac{t}{t-s} \cdot \frac{b}{\sqrt{s(t-s)}} e^{-\frac{b^{2} s}{t-s}} \leq \frac{t}{t-\delta_{2}} \frac{1}{\sqrt{\delta_{1}\left(t-\delta_{2}\right)}} e^{-\frac{b^{2} \delta_{2}}{t-\delta_{1}}} e^{-\frac{b^{2}}{2}} \in L^{1}
$$

Therefore, using Theorem 0.1 yield

$$
\begin{equation*}
h^{\prime}(s)=\frac{2}{\pi} \int_{0}^{\infty} \frac{t}{t-s} \cdot \frac{1}{\sqrt{s(t-s)}} e^{--b^{2} \cdot \frac{s}{t-s}} e^{-\frac{b^{2}}{2}} \mathrm{~d} b=\frac{1}{\pi} \cdot \frac{1}{\sqrt{s(t-s)}}, \tag{3}
\end{equation*}
$$

for all $s \in\left(\delta_{1}, \delta_{2}\right)$. Since $\delta_{1}, \delta_{2}>0$ are unspecified, (3) hold for all $0<s<t$. Since $h(0)=0$, integrating yields

$$
h(s)=\frac{2}{\pi} \arcsin \left(\sqrt{\frac{s}{t}}\right),
$$

as wished.

Exercice 4

1. We have

$$
\sum_{i=0}^{n-1} B_{t_{i+1}}\left(B_{t_{i+1}}-B_{t_{i}}\right)=\sum_{i=0}^{n-1} B_{t_{i}}\left(B_{t_{i+1}}-B_{t_{i}}\right)+\sum_{i=0}^{n-1}\left(B_{t_{i+1}}-B_{t_{i}}\right)^{2} .
$$

By the lecture, we know that

$$
\sum_{i=0}^{n-1} B_{t_{i}}\left(B_{t_{i+1}}-B_{t_{i}}\right) \underset{n \rightarrow \infty}{\stackrel{\mathbb{P}}{\longrightarrow}} \int_{0}^{t} B_{t} \mathrm{~d} B_{t} \quad \text { and } \quad \sum_{i=0}^{n-1}\left(B_{t_{i+1}}-B_{t_{i}}\right)^{2} \underset{n \rightarrow \infty}{\stackrel{\mathbb{P}}{\rightarrow}} t,
$$

where $Y_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} Y$ mean that $\left(Y_{n}\right)$ convergence to Y in probability. Therefore

$$
\sum_{i=0}^{n-1} B_{t_{i+1}}\left(B_{t_{i+1}}-B_{t_{i}}\right) \underset{n \rightarrow \infty}{\stackrel{\mathbb{P}}{\longrightarrow}} \int_{0}^{t} B_{s} \mathrm{~d} B_{s}+t
$$

2. As previously

$$
\sum_{i=0}^{n-1} X_{t_{i+1}}\left(B_{t_{i+1}}-B_{t_{i}}\right)=\sum_{i=0}^{n-1} X_{t_{i}}\left(B_{t_{i+1}}-B_{t_{i}}\right)+\sum_{i=0}^{n-1}\left(X_{t_{i+1}}-X_{\left.t_{i}\right)}\left(B_{t_{i+1}}-B_{t_{i}}\right)\right.
$$

Since X has a.s. finite variation path,

$$
\begin{aligned}
\left|\sum_{i=0}^{n-1}\left(X_{t_{i+1}}-X_{t_{i}}\right)\left(B_{t_{i+1}}-B_{t_{i}}\right)\right| & \leq \sup _{i=0, \ldots, n-1}\left|B_{t_{i+1}}-B_{t_{i}}\right| \sum_{i=0}^{n-1}\left|X_{t_{i+1}}-X_{t_{i}}\right| \\
& \leq C \sup _{i=0, \ldots, n-1}\left|B_{t_{i+1}}-B_{t_{i}}\right| \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0 \text { a.s. }
\end{aligned}
$$

Therefore

$$
\sum_{i=0}^{n-1} X_{t_{i+1}}\left(B_{t_{i+1}}-B_{t_{i}}\right) \xrightarrow[n \rightarrow \infty]{\stackrel{\mathbb{P}}{\longrightarrow}} \int_{0}^{t} X_{s} \mathrm{~d} B_{s} .
$$

3. When X has a.s. finite variation path, then

$$
\sum_{i=0}^{n-1} X_{t_{i+1}}\left(B_{t_{i+1}}-B_{t_{i}}\right) \quad \text { and } \quad \sum_{i=0}^{n-1} X_{t_{i}}\left(B_{t_{i+1}}-B_{t_{i}}\right)
$$

has the same limit (in probability), which fails when X has not a.s. finite variation path.

