
Probability Theory 2 : Solution Sheet 8

Exercice 1
Let t > s ≥ 0 and Φ(x, y) = x + y. Then, Φ is measurable. Since Bt − Bs and Fs are independents,

using the hint yields

P{Bt ∈ A | Fs} = P{Bt −Bs +Bs ∈ A | Fs}
= P{Φ(Bt −Bs, Bs) ∈ A | Fs}
= P{Φ(Bt −Bs, Bs) ∈ A | Bs}
= P{Bt ∈ A | Bs}.

Denote
Qt−s(x,A) := P{Bt ∈ A | Bs = x}.

Notice that this notation make sense because

P{Bt ∈ A | Bs = x} = P{Bt−s ∈ A | B0 = x},

i.e. this probability depend only on t− s. It represent the probability that Bt reach A in time t− s given
that Bs = x. We have to prove that (Qt) is a transition kernel family, i.e. that Kolmogorov-Chapmann
equation hold. Let x ∈ R and A measurable.

Qt+u(x,A) = P{Bt+u+s ∈ A | Bs = x}

=

∫
R
P{Bt+u+s ∈ A | Bu+s = y,Bs = x}P{Bu+s ∈ dy | Bs = x}

=
(1)

∫
R
P{Bt+u+s ∈ A | Bu+s = y}P{Bu+s ∈ dy | Bs = x}

=

∫
R
Qt(y,A)Qu(x, dy),

where we used Markov property in (1). Therefore, (Qt) is a transition kernel family.

We have that

Qt(x,A) = P{Bt ∈ A | B0 = x} =

∫
A

fBt|B0=x(y) dy =
1√
2πt

∫
A

e−
(x−y)2

2t dy,

as wished.

Exercice 2
We use the following theorem :

Let ϕ : I × J → R where ϕ = ϕ(x, t) a measurable function s.t.
1. The function x 7→ f(x, t) is L1 for all t ∈ J ,
2. For a.e. x ∈ I, the function t 7→ ϕ(x, t) is differentiable on J ,
3. There is a function κ : J → R that is L1 s.t. |∂tϕ(x, t)| ≤ κ(x) for a.e. x ∈ I. Then

t 7→
∫
I

ϕ(x, t) dx, is differentiable and

∂t

∫
I

ϕ(x, t) dx =

∫
I

∂tϕ(x, t) dx,

for all t ∈ J .

Théorème 0.1.
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Set ϕ(x, t) = 1√
2πt

e−
x2

2t and let M > 0 s.t. |f(x)| ≤M for all x ∈ R.

• We have that

g(x, t) =
1√
2πt

∫
R
f(x+ u)e−

u2

2t du =
1√
2πt

∫
R
f(u)e−

(x−u)2
2t du.

Let 0 < δ1 < t < δ2. Then∣∣∣∣∣∂tf(x+ u)
1

√
2πte−

u2

2t

∣∣∣∣∣ = |f(x+ u)|
∣∣∣∣ −1

2
√

2πt3/2
+

(x− y)2

2
√

2πt5/2

∣∣∣∣ e−u22t
≤M

(
1

2
√

2πδ
3/2
1

+
(x− y)2

2
√

2πδ
5/2
1

)
e−

u2

2δ2 ∈ L1(R).

Therefore, by Theorem 0.1,

∂tg(x, t) =

∫
R
f(x+ u)∂tϕ(u, t) du =

∫
R
f(u)∂tϕ(x− u, t) du, (1)

for all t ∈ [δ1, δ2]. Since δ1 and δ2 are unspecified, (1) hold for all t > 0. We follow that same
strategy for ∂xg(x, t). Let δ1 < x < δ2. We can suppose WLOG that x > 0 and δ1 > 0 (the strategy
when δ1 < x < δ2 when δ1 < 0 and δ2 > 0 is exactly the same)∣∣∣∣∂xe− (x−u)2

2t

∣∣∣∣ = |x− y|e−
(x−u)2

2t ≤ (|y|+ δ2)e−
δ21
2t e

−u2
2t e−uδ1 ∈ L1(R).

and thus, by Theorem 0.1,

∂xg(x, t) =

∫
R
f(u)∂xϕ(x− u, t) du =

∫
R
f(u)∂xxϕ(x− u, t) du, (2)

for x ∈ [δ1, δ2]. Since δ1, δ2 ∈ R are unspecified, (2) holds for all x ∈ R. The proof that

∂xxg(x, t) =

∫
R
f(u)∂xxϕ(x− u, t) du =

∫
R
f(u)∂xxϕ(x− u, t) du,

goes through the same. One can easily prove that

∂tϕ(x− u, t)− 1

2
∂xxϕ(x− u, t) = 0,

and thus, by has been made before, g solve the Heat equation.
• Since f is bounded, we can use DCT what gives

lim
t→0+

g(x, t) = E[lim
t→0

f(x+Bt)] =
(1)

E[f(x+B0)] = f(x),

where (1) comes from continuity of f and t 7→ Bt.

Exercice 3
1. Suppose x > 0.

P{τx ≥ t} =
(1)

P

{
sup
s∈[0,t]

Bs ≤ x

}
= 1− 2P{Bs ≥ x} =

(2)

√
2

πt

∫ x

0

e−
x2

2t dx,

where we used reflection principle in (1) and in (2), we made the calculation in exercise 3 of sheet
7. If x < 0, then

P{τx ≥ t} = P
{

inf
s∈[0,t]

Bs ≥ x
}

= 1− P

{
sup
s∈[0,t]

(−Bs) ≥ −x

}
,

and the proof claim follow as previously.
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2. Let 0 < s < t <∞.

P{∀u ∈ (s, t), Bu 6= 0} =

∫
R
P{∀u ∈ (s, t), Bu 6= 0 | Bs = x}P{Bs ∈ dx}

=

∫
R
P{∀u ∈ (0, t− s), Bu+s 6= 0 | Bs = x}P{Bs ∈ dx}

=
(3)

∫
R
P{∀u ∈ (0, t− s), Bu 6= −x | B0 = 0}P{Bs ∈ dx}

=

∫
R
P{τ−x > t− s | B0 = 0}P{Bs ∈ dx},

We have to justify (3) properly. Let {tn}n∈N an enumeration of (0, t− s) ∩Q.

P{∀u ∈ (0, t− s), Bu+s 6= 0 | Bs = x} =
(4)

P

 ⋂
u∈(0,t−s)∩Q

{Bu+s 6= 0} | Bs = x


= lim
n→∞

P

(
n⋂
i=0

{Bti+s 6= 0} | Bs = x

)
.

=
(5)

lim
n→∞

P

(
n⋂
i=0

{Bti 6= −x} | B0 = 0

)
=
(6)

P {∀u ∈ (0, t− s), Bu 6= −x | B0 = 0} .

(4) follow from the continuity of Brownian motion. For (5), remark that if t1 < t2 < t3, using
Markov property (a), time homogeneity (b), invariance by translation (c) yields

P{Bt3 ≤ x3, Bt2 ≤ x2 | Bt1 = x1} =
(a)

∫ x2

−∞
P{Bt3 ≤ x3 | Bt2 = α}P{Bt2 ∈ dα | Bt1 = x1}

=
(b)

∫ x2

−∞
P{Bt3−t1 ≤ x3 | Bt2−t1 = α}P{Bt2−t1 ∈ dα | B0 = x1}

=
(c)

∫ x2

−∞
P{Bt3−t1 ≤ x3 | Bt2−t1 = α}P{Bt2−t1 ∈ dα− x1 | B0 = 0}

=
β=α−x1

∫ x2−x1

−∞
P{Bt3−t1 ≤ x3 | Bt2−t1 = β + x1}P{Bt2−t1 ∈ dβ | B0 = 0}

=
(c)

∫ x2−x1

−∞
P{Bt3−t1 ≤ x3 − x1 | Bt2−t1 = β}P{Bt2−t1 ∈ dβ | B0 = 0}

= P{Bt3−t1 ≤ x3 − x1, Bt2−t1 ≤ x2 − x1 | B0 = 0}.

Then, (5) follow by induction. Finally, (6) follow by the continuity of the probability and the
continuity of the the Brownian motion.

3. Combine 1. and 2. yields

h(s) = 2

∫ ∞
0

√
2

π(t− s)

∫ b

0

e−
x2

2(t−s) dx
1√
2πs

e−
b2

2s db

=
2

π

∫ ∞
0

∫ b
√

s
t−s

0

e−
x2

2 dxe−
b2

2 db.

Let δ1, δ2 > 0 s.t. 0 < δ1 < s < δ2 < t. If

g(s) =

∫ b
√

s
t−s

0

e−
x2

2 dx,
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then ∣∣∣g′(s)e− b22 ∣∣∣ =
t

t− s
· b√

s(t− s)
e−

b2s
t−s ≤ t

t− δ2
1√

δ1(t− δ2)
e−

b2δ2
t−δ1 e−

b2

2 ∈ L1.

Therefore, using Theorem 0.1 yield

h′(s) =
2

π

∫ ∞
0

t

t− s
· 1√

s(t− s)
e−−b

2· st−s e−
b2

2 db =
1

π
· 1√

s(t− s)
, (3)

for all s ∈ (δ1, δ2). Since δ1, δ2 > 0 are unspecified, (3) hold for all 0 < s < t. Since h(0) = 0,
integrating yields

h(s) =
2

π
arcsin

(√
s

t

)
,

as wished.

Exercice 4
1. We have

n−1∑
i=0

Bti+1
(Bti+1

−Bti) =

n−1∑
i=0

Bti(Bti+1
−Bti) +

n−1∑
i=0

(Bti+1
−Bti)2.

By the lecture, we know that

n−1∑
i=0

Bti(Bti+1
−Bti)

P−→
n→∞

∫ t

0

Bt dBt and
n−1∑
i=0

(Bti+1
−Bti)2

P−→
n→∞

t,

where Yn
P−→

n→∞
Y mean that (Yn) convergence to Y in probability. Therefore

n−1∑
i=0

Bti+1
(Bti+1

−Bti)
P−→

n→∞

∫ t

0

Bs dBs + t.

2. As previously

n−1∑
i=0

Xti+1
(Bti+1

−Bti) =

n−1∑
i=0

Xti(Bti+1
−Bti) +

n−1∑
i=0

(Xti+1
−Xti)(Bti+1

−Bti).

Since X has a.s. finite variation path,∣∣∣∣∣
n−1∑
i=0

(Xti+1
−Xti)(Bti+1

−Bti)

∣∣∣∣∣ ≤ sup
i=0,...,n−1

|Bti+1
−Bti |

n−1∑
i=0

|Xti+1
−Xti |

≤ C sup
i=0,...,n−1

|Bti+1 −Bti | −→
n→∞

0 a.s.

Therefore
n−1∑
i=0

Xti+1(Bti+1 −Bti)
P−→

n→∞

∫ t

0

Xs dBs.

3. When X has a.s. finite variation path, then

n−1∑
i=0

Xti+1(Bti+1 −Bti) and
n−1∑
i=0

Xti(Bti+1 −Bti),

has the same limit (in probability), which fails when X has not a.s. finite variation path.
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