Probability Theory 2 : Solution Sheet 7

Exercice 1

Let $\left\{t_{n}\right\}_{n \in \mathbb{N}^{*}}$ an enumeration of $[0, \infty) \cap \mathbb{Q}$. Set $D_{n}=\left\{t_{1}, \ldots, t_{n}\right\}$ and $D=\bigcup_{n \in \mathbb{N}^{*}} D_{n}$.

1. By Doob inequality on D_{n}, we have

$$
\lambda^{p} \mathbb{P}\left\{\sup _{1 \leq k \leq n}\left|X_{t_{k}}\right| \geq \lambda\right\} \leq \sup _{1 \leq k \leq n} \mathbb{E}\left[\left|X_{t_{k}}\right|^{p}\right] .
$$

Since

$$
\sup _{1 \leq k \leq n}\left|X_{t_{k}}\right| \nearrow \sup _{t \in D}\left|X_{t}\right| \quad \text { a.s. }
$$

using monotone convergence theorem and

$$
\sup _{1 \leq k \leq n} \mathbb{E}\left[\left|X_{t_{k}}\right|^{p}\right] \nearrow \sup _{t \in D} \mathbb{E}\left|X_{t}\right|
$$

gives

$$
\lambda^{p} \mathbb{P}\left\{\sup _{t \in D}\left|X_{t}\right| \geq \lambda\right\} \leq \sup _{t \in D} \mathbb{E}\left[\left|X_{t}\right|^{p}\right] .
$$

Since $\left(X_{t}\right)$ is right continuous, we have

$$
\sup _{t \in D}\left|X_{t}\right|=\sup _{t \geq 0}\left|X_{t}\right|
$$

what prove the claim.
2. The proof is similar and is left to the reader.

Exercice 2

1. Let X a \mathcal{A}-measurable r.v. We have to prove that

$$
\mathbb{E}\left[e^{t_{1} X+t_{2} Y}\right]=\mathbb{E}\left[e^{t_{1} X}\right] \mathbb{E}\left[e^{t_{2} Y}\right]
$$

But this is rather clear since

$$
\mathbb{E}\left[e^{t_{1} X} e^{t_{2} Y}\right]=\mathbb{E}\left[e^{t_{1} X} \mathbb{E}\left[e^{t_{2} Y} \mid \mathcal{A}\right]\right]=\mathbb{E}\left[e^{t_{1} X}\right] \mathbb{E}\left[e^{t_{2} Y}\right]
$$

where the first equality come from the fact that $e^{t_{1} X}$ is \mathcal{A}-measurable.
2.Suppose $\left(M_{t}^{\alpha}\right)$ is a Martingale for all $\alpha \in \mathbb{R}$. Let $0 \leq s<t$. Then

$$
\begin{aligned}
\mathbb{E}\left[e^{\alpha\left(X_{t}-X_{s}\right)}\right] & =\mathbb{E}\left[e^{\alpha\left(X_{t}-X_{s}\right)-\frac{\alpha^{2}}{2}(t-s)}\right] \\
& =e^{\frac{\alpha^{2}}{2}(t-s)} \mathbb{E}\left[e^{\alpha\left(X_{t}-X_{s}\right)-\frac{\alpha^{2}}{2}(t-s)}\right] \\
& =e^{\frac{\alpha^{2}}{2}(t-s)} \mathbb{E}\left[e^{-\alpha X_{s}+\frac{\alpha^{2}}{2} s} \mathbb{E}\left[\left.e^{\alpha X_{t}-\frac{\alpha^{2}}{2} t} \right\rvert\, \mathcal{F}_{s}\right]\right] \\
& =\left(e^{\frac{\alpha^{2}}{2}(t-s)}\right.
\end{aligned}
$$

where we used the fact that $e^{\alpha X_{s}+\frac{\alpha^{2}}{2} s}$ is \mathcal{F}_{s} measurable in (1), and the martingale property in (2). Therefore $X_{t}-X_{s} \sim \mathcal{N}(0, t-s)$. Moreover, for all $\alpha \in \mathbb{R}$,

$$
\mathbb{E}\left[e^{\alpha\left(X_{t}-X_{s}\right)} \mid \mathcal{F}_{s}\right]=e^{-\alpha X_{s}+\frac{\alpha^{2}}{2} t} \mathbb{E}\left[\left.e^{\alpha X_{t}-\frac{\alpha^{2}}{2} t} \right\rvert\, \mathcal{F}_{s}\right]=e^{\frac{\alpha^{2}}{2}(t-s)}=\mathbb{E}\left[e^{\alpha\left(X_{t}-X_{s}\right)}\right]
$$

and thus, by question 1., $X_{t}-X_{s}$ and \mathcal{F}_{s} are independents. Since $X_{0}=0$ a.s. and is continuous, we conclude that $\left(X_{t}\right)$ is a Brownian motion.
\Leftarrow Suppose $\left(X_{t}\right)$ is a Brownian motion. The fact that $\mathbb{E}\left[\left|e^{\alpha X_{t}-\frac{\alpha^{2}}{2} t}\right|\right]<\infty$ for all $t \geq 0$ and that $e^{\alpha X_{t}-\frac{\alpha^{2}}{2} t}$ is $\mathcal{F}_{t}:=\sigma\left(X_{s} \mid s \leq t\right)$ adapted for all $t \geq 0$ are clear. Let $\alpha \in \mathbb{R}$ and $0 \leq s<t$.

$$
\begin{aligned}
\mathbb{E}\left[\left.e^{\alpha X_{t}-\frac{\alpha^{2}}{2} t} \right\rvert\, \mathcal{F}_{s}\right] & \underset{(3)}{=} e^{\alpha X_{s}-\frac{\alpha^{2}}{2} t} \mathbb{E}\left[e^{\alpha\left(X_{t}-X_{s}\right)} \mid \mathcal{F}_{s}\right] \\
& =e^{\alpha X_{s}-\frac{\alpha^{2}}{2} t} \mathbb{E}\left[e^{\alpha\left(X_{t}-X_{s}\right)}\right] \\
& ={ }_{(5)}^{=} e^{\alpha X_{s}-\frac{\alpha^{2}}{2} s}
\end{aligned}
$$

where we used the fact that $e^{\alpha X_{s}}$ is \mathcal{F}_{s} measurable in (3), that $X_{t}-X_{s}$ is independent of \mathcal{F}_{s} in (4) and that $X_{t}-X_{s} \sim \mathcal{N}(0, t-s)$ in (5). Therefore, $\left(e^{\alpha X_{t}-\frac{\alpha^{2}}{2} t}\right)$ is a martingale for all $\alpha \in \mathbb{R}$.

Exercice 3

1. Using reflexion principle yields

$$
\begin{aligned}
\mathbb{P}\{\tau \geq T\} & =\mathbb{P}\left\{\sup _{t \in[0, T]} B_{t} \leq a\right\} \\
& =1-2 \mathbb{P}\left\{B_{T}>a\right\} \\
& =1-\frac{2}{\sqrt{2 \pi T}} \int_{-\infty}^{-a} e^{-\frac{x^{2}}{2 T}} \mathrm{~d} x \\
& =\frac{1}{\sqrt{2 \pi T}} \int_{-a}^{a} e^{-\frac{x^{2}}{2 T}} \mathrm{~d} x .
\end{aligned}
$$

Since

$$
\int_{-a}^{a} e^{-\frac{x^{2}}{2 T}} \mathrm{~d} x=\frac{1}{2} \int_{0}^{a} e^{\frac{-x^{2}}{2 T}} \mathrm{~d} x \geq \frac{a}{2} e^{-\frac{a^{2}}{2 T}}
$$

we get

$$
\mathbb{E}[\tau]=\int_{0}^{\infty} \mathbb{P}\{\tau \geq T\} \mathrm{d} T=\infty
$$

2. Set

$$
M_{t}=e^{\sqrt{2 \lambda} B_{t}-\lambda t}
$$

By the previous exercise, $\left(M_{t}\right)$ is a martingale. Then so is $\left(M_{\tau \wedge n}\right)_{n \in \mathbb{N}}$. By the optional stopping theorem,

$$
\mathbb{E}\left[M_{\tau \wedge n}\right]=\mathbb{E}\left[M_{0}\right]=1
$$

Since

$$
\left|M_{\tau \wedge n}\right|=e^{\sqrt{2 \lambda} B_{\tau \wedge n}-\lambda(\tau \wedge n)} \leq e^{\sqrt{2 \lambda} a}
$$

we have by DCT (dominated convergence theorem) that

$$
\mathbb{E}\left[M_{\tau}\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[M_{\tau \wedge n}\right]=1
$$

Therefore

$$
\mathbb{E}\left[e^{\sqrt{2 \lambda} a-\lambda \tau}\right]=1
$$

and thus

$$
\mathbb{E}\left[e^{-\lambda \tau}\right]=e^{-2 \lambda a}
$$

