Probability Theory 2: Solution Sheet 6

Recall that $a^+ := a \vee 0$ where $\alpha \vee \beta$ denotes the maximum between α and β . It's not used here, but we also define $a^- := -(a \wedge 0)$ where $\alpha \wedge \beta$ denotes the minimum between α and β . So, as you can see a^+ and a^- are always positives and

$$a = a^{+} - a^{-}$$
 and $|a| = a^{+} + a^{-}$.

These relations are not so important here, but they are often used in books, articles...

Exercice 1

I want to precise that this exercise is really not so easy, so don't panic if you didn't solve it properly.

Let $\{t_n\}_n$ an enumeration of $D:=[a,b)\cap\mathbb{Q}$. Set $D_n=\{t_1,\ldots,t_n\}$. We denote $U(D_n,[\alpha,\beta])$ the number of upcrossing through $[\alpha,\beta]$ of $(X_t)_{t\in D_n}$.

• Claim 1 : $U(D, [\alpha, \beta]) := \sup_{n \in \mathbb{N}^*} U(D_n, [\alpha, \beta])$ is a.s. finite. By the Doob's upcrossing estimate,

$$\mathbb{E}[U(D_n, [\alpha, \beta])] \le \frac{1}{\beta - \alpha} \mathbb{E}[(X_{t_n} - \alpha)^+].$$

Since $x \mapsto x^+$ is convex, $((X_t - \alpha)^+)$ is a submartingale, and thus,

$$\mathbb{E}[(X_{t_n} - \alpha)^+] \le \mathbb{E}[(X_t - \alpha)^+],$$

for all $t > t_n$. Moreover, since $(X - \alpha)^+ \le X^+ + |\alpha|$ we get

$$\mathbb{E}[U(D_n, [\alpha, \beta])] \le \frac{\sup_t \mathbb{E}[X_t^+] + |\alpha|}{\beta - \alpha} < \infty.$$

Since $D_n \nearrow D$ we have $U(D_n, [\alpha, \beta]) \nearrow U(D, [\alpha, \beta])$. Therefore MCT (monotone convergence theorem), yields to

$$\mathbb{E}[U(D, [\alpha, \beta])] \le \frac{\sup_t \mathbb{E}[X_t^+] + |\alpha|}{\beta - \alpha} < \infty,$$

what prove the claim.

• Claim 2: $\lim_{t\to\infty} X_t$ exist a.s. By the claim 1, there is a null set $N_{\alpha,\beta}$ s.t.

$$U(D, [\alpha, \beta])(\omega) < \infty$$
 for all $\omega \notin N_{\alpha, \beta}$.

Set $N:=\bigcup_{\alpha<\beta,\alpha,\beta\in\mathbb{Q}^+}N_{\alpha,\beta}$. Then, N is a null set. Set $\Omega_0:=\Omega\setminus N$. Then, $\mathbb{P}(\Omega_0)=1$. By Fatou's lemma, $\lim\inf_{t\to\infty}X_t$ is finite a.s. Suppose by contradiction that there is $\omega\in\Omega_0$ s.t.

$$\liminf_{t \to \infty} X_t(\omega) < \alpha < \beta < \limsup_{t \to \infty} X_t(\omega),$$

for some rational $0 \le \alpha < \beta < \infty$. Since (X_t) is right-continuous,

$$\liminf_{\substack{t\to\infty\\t\in\mathbb{Q}^+}}X_t=\liminf_{t\to\infty}X_t\quad\text{and}\quad \limsup_{\substack{t\to\infty\\t\in\mathbb{Q}^+}}X_t=\limsup_{\substack{t\to\infty\\t\in\mathbb{Q}^+}}X_t.$$

Therefore, $(X_t(\omega))_{t\in\mathbb{Q}^+}$ has infinitely many upcrossing, which contradict $U(\mathbb{Q}^+, [\alpha, \beta])(\omega) < \infty$. Therefore,

$$\lim\sup_{t\to\infty} X_t(\omega) = \lim\inf_{t\to\infty} X_t(\omega) < \infty$$

for all $\omega \in \Omega_0$. Set $X_{\infty}(\omega) = \lim_{t \to \infty} X_t \mathbf{1}_{\Omega_0}$. Then

$$\lim_{t \to \infty} X_t = X_{\infty} \quad \text{a.s.}$$

Exercice 2

• 1. \Rightarrow 2. : Since (X_t) is uniformly integrable, $\sup_t \mathbb{E}[|X_t|] < \infty$. Therefore, by exercise 1, there is X a.s. finite s.t.

$$\lim_{t \to \infty} X_t = X$$
 a.s.

Moreover, $X \in L^1$ since if (t_n) is a sequence s.t. $t_n \to \infty$, by Fatou's lemma

$$\mathbb{E}[|X|] \leq \liminf_{n \to \infty} \mathbb{E}[|X_{t_n}|] \leq \sup_{t > 0} \mathbb{E}[|X_t|] < \infty.$$

By exercise 3 of sheet 1, $X_{t_n} \to X$ in L^1 for all sequences (t_n) s.t. $t_n \to \infty$. Therefore, $X_t \xrightarrow[t \to \infty]{} X$ in L^1 .

• 2. \Rightarrow 3.: Let $X \in L^1$ and suppose $X_t \xrightarrow[t \to \infty]{} X$ in L^1 . In particular $\mathbb{E}[X_t] \xrightarrow[t \to \infty]{} \mathbb{E}[X]$. Therefore, if $F \in \mathcal{F}_t$ and $T \geq t$,

$$\mathbb{E}[X\mathbf{1}_F] = \lim_{T \to \infty} \mathbb{E}[X_T\mathbf{1}_F] = \lim_{T \to \infty} \mathbb{E}\left[\mathbb{E}[X_T\mathbf{1}_F \mid \mathcal{F}_t]\right] = \mathbb{E}[X_t\mathbf{1}_F],$$

where (1) follow from the fact that $F \in \mathcal{F}_t$ and the martingale property, i.e. $\mathbb{E}[X_T \mid \mathcal{F}_t] = X_t$. Since X_t is \mathcal{F}_t -measurable, we get $X_t = \mathbb{E}[X \mid \mathcal{F}_t]$, as wished.

• 3.⇒1.: We have made the proof in the first sheet, exercise 3. The proof is exactly the same. I write it anyway, so that you have a nice version (and don't have to guess from my terrible handwriting). Sorry for that by the way, but it shouldn't be a problem now :-).

Let $\varepsilon > 0$. By continuity of the probability measure, there is $\delta > 0$ s.t.

$$\mathbb{E}[|X|;A] := \int_{A} |X| \, \mathrm{d}\mathbb{P} \le \varepsilon,\tag{2}$$

whenever $\mathbb{P}(A) \leq \delta$. Take M big enough to have $\frac{\mathbb{E}[|X|]}{M} \leq \delta$. Then, by Jensen inequality and the fact that $\{|X_t| > M\} \subset \{\mathbb{E}[|Y| \mid \mathcal{F}_t] > M\}$, we have

$$\mathbb{E}[|X_t|; |X_t| > M] \le \mathbb{E}[\mathbb{E}[|Y| \mid \mathcal{F}_t]; \mathbb{E}[|Y| \mid \mathcal{F}_t] > M] = \mathbb{E}[|Y|; \mathbb{E}[|Y| \mid \mathcal{F}_t] > M],$$

where the last equality come from the fact that $\{\mathbb{E}[|Y| \mid \mathcal{F}_t] > M\} \in \mathcal{F}_t$. By Chebychev's inequality and recalling the definition of M yields

$$\mathbb{P}\left\{\mathbb{E}[|Y|\mid \mathcal{F}_t] > M\right\} \leq \frac{\mathbb{E}\left[\mathbb{E}[|Y|\mid \mathcal{F}_t]\right]}{M} = \frac{\mathbb{E}[|X|]}{M} \leq \delta,$$

and thus, by (2),

$$\mathbb{E}[|X_t| \mid |X_t| > M] \le \varepsilon,$$

for all t. This prove that

$$\lim_{M \to \infty} \sup_{t \ge 0} \mathbb{E}[|X_t|; |X_t| > M] = 0.$$