Probability Theory 2 : Solution Sheet 5

We recall that

$$
a \wedge b:=\min \{a, b\} \quad \text { and } \quad a \vee b=\max \{a, b\} .
$$

Exercice 1

Recall that

$$
\mathcal{F}_{\tau}=\left\{A \in \mathcal{F}_{\infty} \mid \forall t \geq 0, A \cap\{\tau \leq t\} \in \mathcal{F}_{t}\right\}
$$

where $\mathcal{F}_{\infty}=\bigvee_{t \geq 0} \mathcal{F}_{t}:=\sigma\left(\bigcup_{t \geq 0} \mathcal{F}_{t}\right)$.

1. Since for all $s \geq 0$,

$$
\{\tau \leq s\} \cap\{\tau \leq t\}=\{\tau \leq t \wedge s\} \in \mathcal{F}_{t \wedge s} \subset \mathcal{F}_{t}
$$

τ is \mathcal{F}_{τ}-measurable.
2. Let $t \geq 0$. Then,

$$
\{\sigma \wedge \tau>t\}=\{\sigma>t\} \cap\{\tau>t\}=\{\sigma \leq t\}^{c} \cap\{\tau \leq t\}^{c} \in \mathcal{F}_{t} .
$$

Therefore $\sigma \wedge \tau$ is a stopping time. Also,

$$
\{\sigma \vee \tau \leq t\}=\{\sigma \leq t\} \cap\{\tau \leq t\} \in \mathcal{F}_{t}
$$

and thus, $\sigma \vee \tau$ is a stopping time.
3. Let $F \in \mathcal{F}_{\sigma}$. Since $\sigma \leq \tau$ a.s., we have $\{\tau \leq t\} \subset\{\sigma \leq t\}$. Therefore,

$$
F \cap\{\tau \leq t\}=\underbrace{(F \cap\{\sigma \leq t\})}_{\in \mathcal{F}_{t}} \cap \underbrace{\{\tau \leq t\}}_{\in \mathcal{F}_{t}} \in \mathcal{F}_{t},
$$

and thus $F \in \mathcal{F}_{\tau}$.
4. The inclusion $\mathcal{F}_{\tau \wedge \sigma} \subset \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$ directly follow from 2. and 3. For the other inclusion, let $F \in \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$. Then,

$$
F \cap\{\tau \wedge \sigma \leq t\}=F \cap(\{\tau \leq t\} \cup\{\sigma \leq t\})=(F \cap\{\sigma \leq t\}) \cup(F \cap\{\tau \leq t\}) \in \mathcal{F}_{t}
$$

since $F \in \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$, what prove the claim.

Exercice 2

Suppose $X=\left(X_{t}\right)$ is \mathcal{F}-adapted where $X_{t}=\xi \boldsymbol{1}_{\{\tau \leq t\}}$. Let $t \geq 0$. In particular, for all $B \in \mathcal{B}(\mathbb{R})$,

$$
X_{t}^{-1}(B) \in \mathcal{F}_{t}
$$

Since $\xi \neq 0$, we have that

$$
X_{t}(\omega)=0 \Longleftrightarrow \tau(\omega)>t
$$

and thus

$$
\{\tau>t\}=X_{t}^{-1}(\{0\}) \in \mathcal{F}_{t} .
$$

Therefore, τ is a stopping time.
Let $B \in \mathcal{B}(\mathbb{R})$. Write $B=A \cup\{0\}$ where $A=B \backslash\{0\}$. Since $\xi^{-1}\{0\}=\emptyset$ and $A \in \mathcal{B}(\mathbb{R})$,

$$
\xi^{-1}(B) \cap\{\tau \leq t\}=\xi^{-1}(A) \cap\{\tau \leq t\}=X_{t}^{-1}(A) \in \mathcal{F}_{t}
$$

Therefore ξ is \mathcal{F}_{τ} measurable.

Suppose that τ is a stopping time and ξ is \mathcal{F}_{τ}-measurable. Let $B \in \mathcal{B}(\mathbb{R})$ and write $B=A \cup\{0\}$ where A is defined as previously. Then,

$$
X_{t}^{-1}(B)=\underbrace{\left(\xi^{-1}(A) \cap\{\tau \leq t\}\right)}_{\in \mathcal{F}_{t}} \cup \underbrace{\{\tau>t\}}_{\in \mathcal{F}_{t}} \in \mathcal{F}_{t} .
$$

Therefore X_{t} is \mathcal{F}_{t}-measurable and thus X is \mathcal{F}-adapted.

Exercice 3

If $\pi_{n}: 0=t_{0}<\ldots<t_{k_{n}}^{n}=t$ is a partition of $[0, t]$, we denote $\left|\pi_{n}\right|:=\max _{i=0, \ldots, k_{n}-1}\left|t_{i+1}^{n}-t_{i}^{n}\right|$.

1. Let $\pi_{n}: 0 \leq t_{1}^{n}<\ldots<t_{k_{n}}^{n}=t$ a partition of $[0, t]$ s.t. $\left|\pi_{n}\right| \rightarrow 0$. Set $Y_{i}^{n}=\left(B_{t_{i+1}^{n}}-B_{t_{i}^{n}}\right)^{2}$. Let $\varepsilon>0$ and remark that since $\mathbb{E}\left[Y_{i}^{n}\right]=t_{i+1}^{n}-t_{i}^{n}$, we have

$$
t=\sum_{i=0}^{k_{n}-1} \mathbb{E}\left[Y_{i}^{n}\right] .
$$

Therefore

$$
\begin{aligned}
\mathbb{P}\left\{\left|Q_{\pi_{n}}(B)-t\right|>\varepsilon\right\} & =\mathbb{P}\left\{\left|\sum_{i=0}^{k_{n}-1}\left(Y_{i}^{n}-\mathbb{E}\left[Y_{i}^{n}\right]\right)\right|>\varepsilon\right\} \\
& \leq \frac{1}{(1)} \operatorname{Var}\left(\sum_{i=0}^{\varepsilon_{n}-1} Y_{i}^{n}\right) \\
& =\frac{1}{(2)} \bar{\varepsilon}^{2} \sum_{i=0}^{k_{n}-1} \operatorname{Var}\left(Y_{i}^{n}\right) \\
& =\frac{2}{\left.\bar{\beta}^{2}\right)} \sum_{i=0}^{k_{n}-1}\left(t_{i+1}^{n}-t_{i}^{n}\right)^{2} \\
& \leq \frac{2}{\varepsilon} \cdot\left|\pi_{n}\right| \sum_{i=0}^{k_{n}-1}\left(t_{i+1}^{n}-t_{i}^{n}\right) \\
& =\frac{2 t}{\varepsilon} \cdot\left|\pi_{n}\right| \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0,
\end{aligned}
$$

where (1) follow from Tchebychev inequality, (2) follow from independence of the Y_{i}^{n} for $i \in$ $\left\{0, \ldots, k_{n}-1\right\}$ and (3) come from the fact that $Y_{i}^{n} \sim\left(X_{i}^{n}\right)^{2}$ where $X_{i}^{n} \sim \mathcal{N}\left(0, t_{i+1}^{n}-t_{i}^{n}\right)$, and thus

$$
\mathbb{E}\left[Y_{i}^{n}\right]=\mathbb{E}\left[\left(X_{i}^{n}\right)^{2}\right]=t_{i+1}^{n}-t_{i} \quad \text { and } \quad \mathbb{E}\left[\left(Y_{i}^{n}\right)^{2}\right]=\mathbb{E}\left[\left(X_{i}^{n}\right)^{4}\right]=3\left(t_{i+1}^{n}-t_{i}^{n}\right)^{2} .
$$

2. Let $\pi_{n}: 0=t_{0}^{n}<\ldots<t_{k_{n}}^{n}=t$ a partition of $[0, t]$ s.t. $\left|\pi_{n}\right| \rightarrow 0$. Since f is continuously differentiable,

$$
f(y)-f(x)=\int_{x}^{y} f^{\prime},
$$

and thus

$$
\sum_{i=0}^{k_{n}-1}\left(f\left(t_{i+1}^{n}\right)-f\left(t_{i}^{n}\right)\right)^{2} \underset{(4)}{\leq} \sum_{i=0}^{k_{n}-1}\left(t_{i+1}^{n}-t_{i}^{n}\right) \int_{t_{i}^{n}}^{t_{i+1}^{n}} f^{\prime}(u)^{2} \mathrm{~d} u \leq\left|\pi_{n}\right| \int_{0}^{t} f^{\prime}(u)^{2} \mathrm{~d} u \underset{n \rightarrow \infty}{\stackrel{(5)}{\rightarrow}} 0,
$$

where we used Cauchy-Schwarz in (4), and (5) follow form the fact that $u \mapsto f^{\prime}(u)^{2}$ is continuous on $[0, t]$, and thus integrable on $[0, t]$.
3. By a theorem of the lecture, Brownian motion has quadratic variation $t \neq 0$ on $[0, t]$. Therefore, by question 2., it's not continuously differentiable.

