Probability Theory 2 : Solution Sheet 4

Exercice 1

1. Since

$$
\liminf _{t \rightarrow 0^{+}} \frac{B_{t}}{\sqrt{2 t \log \left(\log \left(\frac{1}{t}\right)\right)}}=-\limsup _{t \rightarrow 0^{+}} \frac{-B_{t}}{\sqrt{2 t \log \left(\log \left(\frac{1}{t}\right)\right)}}
$$

and that $\left(-B_{t}\right)$ is a BM, the claim follow from iterated logarithm law.
2. Also,

$$
\begin{aligned}
\liminf _{s \rightarrow+\infty} \frac{B_{s}}{\sqrt{2 s \log (\log (s))}} & =\liminf _{s=\frac{1}{t}} \frac{\sqrt{t} B_{\frac{1}{t}}}{\sqrt{2 \log \left(\log \left(\frac{1}{t}\right)\right)}} \\
& =-\limsup _{t \rightarrow 0^{+}} \frac{-\sqrt{t} B_{\frac{1}{t}}}{\sqrt{2 \log \left(\log \left(\frac{1}{t}\right)\right)}} \\
& =-\limsup _{t \rightarrow 0^{+}} \frac{-t B_{\frac{1}{t}}}{\sqrt{2 t \log \left(\log \left(\frac{1}{t}\right)\right)}}
\end{aligned}
$$

Since $\left(-t B_{\frac{1}{t}}\right)$ is a BM, the claim follow from iterated logarithm theorem.

Exercice 2

In this exercise we'll use the following property of normal random variable without justification : $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then for all $a>0$ and all $b \in \mathbb{R}$,

$$
X \sim \mathcal{N}\left(a \mu+b, b^{2} \sigma^{2}\right)
$$

The proof is left to the reader as an elementary exercise.

1. X_{t} is the sum of two a.s. continuous process. Therefore it's continuous. Let $0 \leq t_{1}<t_{2}<\ldots<$ $t_{n}<\infty$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$.

$$
\alpha_{1} X_{t_{1}}+\ldots+\alpha_{n} X_{t_{n}}=\sigma \underbrace{\alpha_{1} B_{t_{1}}+\ldots+\alpha_{n} B_{t_{n}}}_{:=Y}+\mu \underbrace{\left(\alpha_{1} t_{1}+\ldots+\alpha_{n} t_{n}\right)}_{:=\beta}
$$

Since $\left(B_{t}\right)$ is a Gaussian process, Y is a normal random variable and thus so is $\sigma Y+\mu \beta$.
2. Let $t>s$. We have that

$$
X_{t}-X_{s}=\mu(t-s)+\sigma\left(B_{t}-B_{s}\right) \sim \mathcal{N}\left(\mu(t-s), \sigma^{2}(t-s)\right)
$$

We denote \bar{z} the conjugate of z. The characteristic function is defined as

$$
\varphi(\xi):=\mathbb{E}\left[e^{i \xi\left(X_{t}-X_{s}\right)}\right]
$$

$$
\begin{aligned}
\overline{\varphi(\xi)} & =\frac{1}{\sigma \sqrt{2 \pi(t-s)}} \int_{\mathbb{R}} e^{i \xi x} e^{-\frac{[x-\mu(t-s)]^{2}}{2 \sigma^{2}(t-s)}} \mathrm{d} x \\
& =\frac{1}{\sigma \sqrt{2 \pi(t-s)}} \int_{\mathbb{R}} e^{-i \xi x} e^{-\frac{[x-\mu(t-s)]^{2}}{2 \sigma^{2}(t-s)}} \mathrm{d} x \\
& =\frac{1}{\sigma \sqrt{2 \pi(t-s)}} \mathcal{F}\left(x \mapsto e^{-\frac{[x-\mu(t-s)]^{2}}{2 \sigma^{2}(t-s)}}\right)(\xi) .
\end{aligned}
$$

Where

$$
\mathcal{F}(f)(\xi):=\int_{\mathbb{R}} e^{-i \xi x} f(x) \mathrm{d} x
$$

denote the Fourier transform of the function g. By properties of Fourier transform,

$$
\mathcal{F}(x \mapsto f(x+h))=e^{i h \xi} \mathcal{F}(f)(\xi) \quad \text { and } \quad \mathcal{F}(x \mapsto f(a x))=\frac{1}{a} \mathcal{F}(f)\left(\frac{\xi}{a}\right), \quad a>0
$$

Therefore,

$$
\overline{\varphi(\xi)}=\frac{1}{\sqrt{\pi}} e^{i \mu(t-s) \sigma} \mathcal{F}\left(x \mapsto e^{-x^{2}}\right)(\sigma \sqrt{2(t-s)})
$$

The fact that

$$
\mathcal{F}\left(x \mapsto e^{-x^{2}}\right)(\xi)=\sqrt{\pi} e^{-\frac{\xi^{2}}{4}},
$$

is a standard exercise. Combine all these results yields

$$
\varphi(\xi)=e^{i \mu(t-s) \xi-\frac{\sigma^{2}(t-s) \xi^{2}}{2}}
$$

3. Let $t>s$. Remark that

$$
\mathbb{E}\left[e^{X_{t}-X_{s}}\right]=\varphi(-i),
$$

and thus, we immediately get

$$
\mathbb{E}\left[e^{X_{t}-X_{s}}\right]=e^{\mu(t-s)+\frac{\sigma^{2}(t-s)}{2}}
$$

Exercice 3

Set $W_{t}:=U B_{t}$ where U is s.t. $U U^{T}=\mathbf{1}_{m \times m}$. The fact that $W_{0}=0$ and that $t \mapsto W_{t}$ is continuous is clear. Let $t>s$.

The fact that increments are independents is also clear since if two randoms variables X and Y are independents, then so are $f(X)$ and $f(Y)$ for any measurable function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$. Set $f(x)=U x$ where $x \in \mathbb{R}^{m}$. Since $W_{t}-W_{s}=f\left(B_{t}-B_{s}\right)$ for all $t>s$ and that increaments of $\left(B_{t}\right)$ are independents, then so are of increments of $\left(W_{t}\right)$.

Claim : If $t>s$, then $W_{t}-W_{s} \sim \mathcal{N}\left(0,(t-s) \mathbf{1}_{n \times n}\right)$.
To prove this statement, we just need to show that

$$
\begin{gathered}
\mathbb{E}\left[e^{i \xi^{T}\left(W_{t}-W_{s}\right)}\right]=e^{-\frac{1}{2}(t-s)|\xi|^{2}} \\
\mathbb{E}\left[e^{i \xi^{T}\left(W_{t}-W_{s}\right)}\right]=\mathbb{E}\left[e^{i \xi^{T} U\left(B_{t}-B_{s}\right)}\right]=\mathbb{E}\left[e^{i\left(U^{T} \xi\right)^{T}\left(B_{t}-B_{s}\right)}\right]=e^{-\frac{1}{2}(t-s)\left|U^{T} \xi\right|^{2}},
\end{gathered}
$$

where the last equality come from the fact that $B_{t}-B_{s} \sim \mathcal{N}\left(0,(t-s) \mathbf{1}_{n \times n}\right)$. Since

$$
\left|U^{T} \xi\right|^{2}=\left\langle U^{T} \xi, U^{T} \xi\right\rangle=\xi^{T} U U^{T} \xi=\xi^{T} \xi=|\xi|^{2}
$$

we finally get

$$
\mathbb{E}\left[e^{i \xi^{T}\left(W_{t}-W_{s}\right)}\right]=e^{-\frac{1}{2}(t-s)|\xi|^{2}}
$$

as wished.
Therefore, $\left(W_{t}\right)$ is a Brownian motion.

Exercice 4

1. Let $0 \leq t_{0}<t_{1}<\ldots<t_{n}<\infty$. Obviously,

$$
\mathbb{P}\left\{Y_{t_{1}}=0, \ldots, Y_{t_{n}}=0\right\}=1
$$

Moreover,

$$
\mathbb{P}\left\{X_{t_{0}}=0, \ldots, X_{t_{n}}=0\right\}=\mathbb{P}\left([0, \infty) \backslash\left\{t_{0}, \ldots, t_{n}\right\}\right)=1
$$

since $\mathbb{P}\left\{t_{i}\right\}=0$ for all i (because there is no atom).
2. Fix $t \geq 0$.

$$
X_{t}(\omega)=Y_{t}(\omega) \Longleftrightarrow \omega \in[0, \infty) \backslash\{t\}
$$

Therefore,

$$
\mathbb{P}\left\{X_{t}=Y_{t}\right\}=\mathbb{P}([0, \infty) \backslash\{t\})=1
$$

Remark nevertheless that $\mathbb{P}\left\{\forall t \geq 0, X_{t}=Y_{t}\right\}=0$, and thus they are not indistinguishable.

