Probability Theory 2 : Solution Sheet 3

Exercice 2

Suppose $\left(X_{t}\right)$ is a BM.

1. The fact that $X_{t} \in L^{1}$ for all t is clear. Moreover, if $t \geq s$

$$
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[X_{t}-X_{s} \mid \mathcal{F}_{s}\right]+\mathbb{E}\left[X_{s} \mid \mathcal{F}_{s}\right] \underset{(1)}{=} X_{s}+\mathbb{E}\left[X_{t}-X_{s}\right] \underset{(2)}{=} X_{s},
$$

where (1) come from the fact that X_{s} is \mathcal{F}_{s} measurable and $X_{t}-X_{s}$ is independent of \mathcal{F}_{s} and (2) come from the fact that $X_{t}-X_{s} \sim \mathcal{N}(0, t-s)$.
2. Since $\mathbb{E}\left[\left|X_{t}^{2}-t\right|\right] \leq \mathbb{E}\left[X_{t}^{2}\right]+t=2 t<\infty$, we have $X_{t}^{2}-t \in L^{1}$ for all t.Moreover, if $t \geq s$, $\mathbb{E}\left[X_{t}^{2}-t \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[\left(X_{t}-X_{s}\right)^{2}+2 X_{s}\left(X_{t}-X_{s}\right)+X_{s}^{2}-t \mid \mathcal{F}_{s}\right] \underset{(3)}{=} \mathbb{E}\left[\left(X_{t}-X_{s}\right)^{2}\right]+2 X_{s} \mathbb{E}\left[X_{t}-X_{s}\right]+X_{s}^{2}=X_{s}^{2}-s$, where we used in (3) the fact that X_{s} is \mathcal{F}_{s} measurable and $X_{t}-X_{s}$ is independent to \mathcal{F}_{s}.

Exercice 3

1. Set $Z:=\sup _{t \geq 0} W_{t}$.

Claim 1: If $c>0$, then $Z \sim c Z$.

Remark that

$$
Z>x \Longleftrightarrow \exists t \in(0, \infty) \cap \mathbb{Q}: W_{t}>x
$$

Let $\left(t_{k}\right)$ an enumeration of $(0, \infty) \cap \mathbb{Q}$. Then

$$
\mathbb{P}\{Z>x\}=\lim _{n \rightarrow \infty} \mathbb{P}\left(\bigcup_{k=1}^{\infty}\left\{W_{t_{k}}>x\right\}\right)
$$

Since $\left(c W_{\frac{t}{c^{2}}}\right)$ is a Brownian motion, we therefore have

$$
\mathbb{P}\{Z>x\}=\mathbb{P}\left\{\sup _{t \geq 0} c W_{\frac{t}{c^{2}}}>x\right\}=\mathbb{P}\left\{c \sup _{t \geq 0} W_{\frac{t}{c^{2}}}>x\right\}=\mathbb{P}\{c Z>x\}
$$

where the last equality come from the fact that

$$
\sup _{t \geq 0} W_{t}(\omega)=\sup _{t \geq 0} W_{\frac{t}{c^{2}}}(\omega)
$$

for all ω.
Claim 2: $Z \in\{0, \infty\}$ a.s.

Since

$$
\mathbb{P}\{Z>x\}=\mathbb{P}\{c Z>x\}=\mathbb{P}\left\{Z>\frac{x}{c}\right\} \underset{c \rightarrow \infty}{\longrightarrow} \mathbb{P}\{Z>0\}
$$

we have

$$
\mathbb{P}\{Z>x\}=\mathbb{P}\{Z>0\}
$$

Therefore

$$
\mathbb{P}\{Z=\infty\}=\lim _{n \rightarrow \infty} \mathbb{P}\{Z>n\}=\mathbb{P}\{Z>0\}
$$

Since $W_{0}=0$, we have that $Z \geq 0$ a.s., and thus

$$
1=\mathbb{P}\{Z \geq 0\}=\mathbb{P}\{Z=0\}+\mathbb{P}\{Z>0\}=\mathbb{P}\{Z \in\{0, \infty\}\},
$$

what prove the claim.

Claim 3: $\mathbb{P}\{Z=0\}=0$.
Set $Z_{t}=\sup _{0 \leq s \leq t} W_{s}$. Using reflexion principle,

$$
\mathbb{P}\left\{Z_{t}>0\right\}=2 \mathbb{P}\left\{W_{t}>0\right\}=1
$$

Since $Z_{t} \leq Z$ a.s., we get $\mathbb{P}\{Z>0\}=1$ and thus $\mathbb{P}\{Z=0\}=0$.
2. Since $\left(-W_{t}\right)$ is a BM an

$$
\inf _{t \geq 0} W_{t}=-\sup _{t \geq 0}\left(-W_{t}\right)
$$

we get

$$
\mathbb{P}\left\{\inf _{t \geq 0} W_{t}=-\infty\right\}=\mathbb{P}\left\{\sup _{t \geq 0}\left(-W_{t}\right)=+\infty\right\}=1
$$

Exercice 4

1. The argument is to use the fact that the bounded variation of Brownian motion is ∞ a.s. but since differentiability doesn't implies bounded variation as $f(x)=x^{2} \sin \left(\frac{1}{x^{2}}\right)$ defined on $[-1,1]$ proved, the statement should have been to prove that the Brownian motion is not continuously differentiable on compact set.

Claim : Continuously differentiable function has bounded variation on $[a, b]$.
Let $f:[a, b] \rightarrow \mathbb{R}$ a continuously differentiable function and $\Pi: 0=t_{0}<t_{1}<\infty<t_{n}=b$ a subdivision of $[a, b]$. Then

$$
\sum_{i=0}^{n-1}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right|=\sum_{i=0}^{n-1}\left|\int_{t_{i}}^{t_{i+1}} f^{\prime}\right| \leq \sum_{i=0}^{n-1} \int_{t_{i}}^{t_{i+1}}\left|f^{\prime}\right|=\int_{a}^{b}\left|f^{\prime}\right|
$$

Therefore,

$$
V_{a}^{b}(f) \leq \int_{a}^{b}\left|f^{\prime}\right|
$$

Since f^{\prime} is continuous, it's integrable on $[a, b]$, an thus $V_{a}^{b}(f)<\infty$, what prove the claim.
2. Recall that

$$
\ell:=\limsup _{h \rightarrow 0} \frac{\left|W_{t+h}-W_{t}\right|}{h}<k
$$

mean that

$$
\forall \varepsilon>0, \exists \delta>0: \forall h \in \mathbb{R},|h| \leq \delta \Longrightarrow \frac{\left|W_{t+h}-W_{t}\right|}{h} \leq \ell+\varepsilon
$$

So, taking ε small enough to have $\ell+\varepsilon \leq k$, there exist $\delta>0$ s.t.

$$
\left|W_{t+h}-W_{t}\right|<k|h|
$$

for all $|h| \leq \delta$. Let $\omega \in A_{k}$.
(a) If m is fixed, $\left\{\left[\frac{j}{m}, \frac{j+1}{m}\right)\right\}_{j=0}^{m-1}$ is a partition of $[0,1)$, there is $j:=j_{m}$ s.t $\frac{j}{m} \leq t<\frac{j+1}{m}$. Suppose that m is big enough to have

$$
\frac{j}{m} \leq t \leq \frac{j+1}{m} \leq \frac{j+2}{m} \leq \frac{j+3}{m} \leq t+\delta
$$

Then, if $r=1,2,3$,

$$
\left|W_{\frac{j+r}{m}}(\omega)-W_{\frac{j+r+1}{m}}\right| \leq\left|W_{\frac{j+r}{m}}(\omega)-W_{t}(\omega)\right|+\left|W_{\frac{j+r+1}{m}}(\omega)-W_{t}\right| .
$$

Since $\left|t-\frac{j+r}{m}\right| \leq \delta$ and $\left|t-\frac{j+r+1}{m}\right| \leq \delta$, we have that

$$
\begin{aligned}
\left|W_{\frac{j+r}{m}}(\omega)-W_{t}(\omega)\right|+\left|W_{\frac{j+r+1}{m}}(\omega)-W_{t}\right| & \leq k\left|t-\frac{j+r}{m}\right|+k\left|t-\frac{j+r+1}{m}\right| \\
& \leq k \cdot \frac{r}{m}+k \cdot \frac{r+1}{m} \\
& =k \cdot \frac{2 r+1}{m}
\end{aligned}
$$

as wished. The fact that

$$
\begin{equation*}
\mathbb{P}\left\{\left|W_{t+h}-W_{t}\right| \leq a\right\} \leq \frac{2 a}{\sqrt{2 \pi h}} \tag{1}
\end{equation*}
$$

come from the fact that $W_{t+h}-W_{t} \sim \mathcal{N}(0, h)$.
(b) Let

$$
B_{m, j}:=\left\{\left.\omega|\forall r=1,2,3| W_{\frac{j+r}{m}}(\omega)-W_{\frac{j+r+1}{m}}(\omega) \right\rvert\, \leq k \cdot \frac{2 r+1}{m}\right\}
$$

and set

$$
B_{m}=\bigcup_{j=1}^{m} B_{m, j}
$$

Using independence of increments and (1), we have

$$
\mathbb{P}\left(B_{m, j}\right)=\bigcap_{r=1}^{3} \mathbb{P}\left\{\left|W_{\frac{j+r}{m}}-W_{\frac{j+r+1}{m}}\right| \leq k \cdot \frac{2 r+1}{m}\right\} \leq \prod_{r=1}^{3} 2 \cdot \frac{2 r+1}{\sqrt{2 \pi \cdot m}} \sim \frac{1}{m \sqrt{m}} .
$$

Therefore

$$
\mathbb{P}\left(B_{m}\right) \lesssim \sum_{j=1}^{m} \frac{1}{m \sqrt{m}}=\frac{1}{\sqrt{m}},
$$

where $A \lesssim B$ means that there is a constant $C>0$ s.t. $A \leq C B$. Hence,

$$
\mathbb{P}\left(B_{n_{4}}\right) \lesssim \frac{1}{n^{2}}
$$

and thus

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(B_{n^{4}}\right)<\infty
$$

The claim follow by Borel-Cantelli lemma.
(c) Let $\omega \in D_{0}$. Let t s.t.

$$
\lim _{h \rightarrow 0} \frac{W_{t+h}-W_{t}}{h}
$$

exists. In particular, if

$$
\ell:=\limsup _{n \rightarrow \infty} \frac{\left|W_{t+h}(\omega)-W_{t}(\omega)\right|}{h},
$$

and $k=\lfloor\ell\rfloor+2$, then $\omega \in A_{k}$. Therefore,

$$
D_{0} \subset \bigcup_{k \in \mathbb{N}} A_{k}=: G_{0}
$$

Since

$$
\bigcup_{k \in \mathbb{N}} A_{k} \subset \limsup _{n \rightarrow \infty} A_{n^{2}},
$$

we get $\mathbb{P}\left(G_{0}\right)=0$ as wished.
(d) Set

$$
D_{n}=\left\{\omega \mid W_{t}(\omega) \text { is differentiable for a least one } t \in[n, n+1)\right\}
$$

and

$$
A_{k}^{n}=\left\{\omega \left\lvert\, \limsup _{h \rightarrow 0} \frac{\left|W_{t+h}-W_{t}\right|}{h}<k\right. \text { for at least on } t \in[n, n+1)\right\} .
$$

We have that D_{n} and $\bigcup_{k \in \mathbb{N}} A_{k}^{n}=: G_{n}$ are nulle sets, and thus, $\bigcup_{n \in \mathbb{N}} D_{n}$ is a null set, what prove the claim.

