Probability Theory 2 : Solution Sheet 11

Exercice 1

Let $\left(S_{t}\right)$ a supermartingale. The implication is obvious since martingale has constant expectation. Conversely, suppose that $\left(S_{t}\right)$ has constant expectation. Let $s<t$. Since $\left(S_{t}\right)$ is a supermartingale,

$$
S_{s}-\mathbb{E}\left[S_{t} \mid \mathcal{F}_{s}\right] \geq 0
$$

Moreover, since $\left(S_{t}\right)$ has constant expectation

$$
\mathbb{E}\left[S_{s}-\mathbb{E}\left[S_{t} \mid \mathcal{F}_{s}\right]\right]=0
$$

Therefore,

$$
\mathbb{E}\left[S_{t} \mid \mathcal{F}_{s}\right]=S_{s}
$$

Exercice 2

We have that

$$
M_{t}=\int_{0}^{t} V_{s} \mathrm{~d} B_{s}=\sum_{k=0}^{\ell_{t}-1} \eta_{k}\left(B_{t_{k+1}}-B_{t_{k}}\right)+\eta_{\ell_{t}}\left(B_{t}-B_{\ell_{t}}\right)
$$

where $\ell_{t}=\lfloor t\rfloor$. We can suppose WLOG that $t \in \mathbb{N}$ (do the proof whenever $t \notin \mathbb{N}$ to convince yourself). To simplify notation, we denote

$$
\Delta B_{i}:=B_{t_{i+1}}-B_{t_{i}} \quad \text { and } \quad \Delta t_{i}=t_{i+1}-t_{i}
$$

Let $s<t$. We suppose WLOG that $s \in \mathbb{N}$ (do the proof whenever $s \notin \mathbb{N}$ to convince yourself). Then, using classical properties of Brownian motion and conditional expectation (technical details are left to the reader)

$$
\begin{aligned}
& \mathbb{E}\left[M_{t}^{2}-\langle M\rangle_{t} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[\sum_{k=0}^{t-1} \sum_{i=0}^{t-1} \eta_{i} \eta_{k} \Delta B_{i} \Delta B_{k}-\sum_{k=0}^{t-1} \eta_{k}^{2} \Delta t_{k} \mid \mathcal{F}_{s}\right] \\
& =\underbrace{\sum_{k=0}^{s-1} \sum_{i=0}^{s-1} \eta_{k} \eta_{i} \Delta B_{i} \Delta B_{k}-\sum_{k=0}^{s-1} \eta_{k}^{2} \Delta t_{k}}_{=M_{s}^{2}-\langle M\rangle_{s}}+\sum_{k=0}^{s-1} \sum_{i=s}^{t-1} \underbrace{\mathbb{E}\left[\eta_{k} \eta_{i} \Delta B_{i} \Delta B_{k} \mid \mathcal{F}_{s}\right]}_{=\mathbb{E}\left[\eta_{i} \eta_{k} \Delta B_{k} \mid \mathcal{F}_{s}\right] \cdot \mathbb{E}\left[\Delta B_{i}\right]=0} \\
& +\sum_{k=s}^{t-1} \sum_{i=0}^{s-1} \underbrace{\mathbb{E}\left[\eta_{k} \eta_{i} \Delta B_{i} \Delta B_{k} \mid \mathcal{F}_{s}\right]}_{=: I}+\underbrace{\left.\sum_{k=s}^{s-1} \sum_{i=s}^{t-1} \mathbb{E}\left[\eta_{k} \eta_{i} \Delta B_{i} \mid \mathcal{F}_{s}\right] \cdot \mathbb{E}\left[\Delta B_{k}\right]=0 B_{k} \mid \mathcal{F}_{s}\right]-\sum_{k=s}^{t-1} \mathbb{E}\left[\eta_{k}^{2} \mid \mathcal{F}_{s}\right] \Delta t_{k}}_{=: I} \\
& =M_{s}^{2}-\langle M\rangle_{s},
\end{aligned}
$$

where I has been computed as follow :

$$
I=\sum_{k=s}^{t-1} \underbrace{\mathbb{E}\left[\eta_{k}^{2}\left(\Delta B_{k}\right)^{2} \mid \mathcal{F}_{s}\right]}_{=\mathbb{E}\left[\eta_{k}^{2} \mid \mathcal{F}_{s}\right] \Delta t_{k}}-\sum_{k=s}^{t-1} \mathbb{E}\left[\eta_{k}^{2} \mid \mathcal{F}_{s}\right] \Delta t_{k}+\sum_{k=s}^{t-1} \sum_{\substack{i=s \\ i \neq k}}^{t-s} \underbrace{\mathbb{E}\left[\eta_{k} \eta_{i} \Delta B_{k} \Delta B_{i} \mid \mathcal{F}_{s}\right]}_{=0}=0 .
$$

Exercice 3

1. Let $\left(\tau_{n}\right)$ a regularizing sequence. Since $\left|M_{t \wedge \tau_{n}}\right| \leq \sup _{0 \leq s \leq t}\left|M_{s}\right| \in L^{1}(\Omega)$, the claim follow by DCT.
2. Denote $\boldsymbol{B}=\left(B^{1}, B^{2}, B^{3}\right)$.
(a) Let $t \geq 1$. Set $h(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{1}{\|x\|}$. We have $\nabla h(x)=\frac{x}{\|x\|^{3}}$. Since h is $\mathcal{C}^{2}(\mathbb{R} \backslash\{0\})$ and $B_{s} \neq 0$ for all $s \in[0, t]$ a.s. we can use Itô formula. By Itô formula,

$$
\begin{aligned}
& h\left(B_{1}(t), B_{2}(t), B_{3}(t)\right) \\
& =h\left(B_{1}^{1}, B_{1}^{2}, B_{1}^{3}\right)+\int_{1}^{t} \nabla h\left(B_{s}^{1}, B_{s}^{2}, B_{s}^{3}\right) \cdot \mathrm{d} \boldsymbol{B}_{s}+\int_{1}^{t} \frac{1}{2} \Delta h\left(B_{s}^{1}, B_{s}^{2}, B_{s}^{3}\right) \mathrm{d} s \\
& =h\left(B_{1}^{1}, B_{1}^{2}, B_{1}^{3}\right)+\int_{1}^{t} \nabla h\left(B_{s}^{1}, B_{s}^{2}, B_{s}^{3}\right) \cdot \mathrm{d} \boldsymbol{B}_{s} .
\end{aligned}
$$

Denote

$$
h_{i}(x):=h_{i}\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{i}}{\|x\|^{3}} .
$$

Let

$$
\tilde{\Omega}:=\left\{\omega \mid \forall t>0, B_{t}(\omega) \neq 0\right\} \cap\left\{\omega \mid t \mapsto B_{t}(\omega) \text { continuous }\right\} .
$$

If $\omega \in \tilde{\Omega}$, by then there is $C=C(\omega)>0$ s.t. $\left\|B_{t}(\omega)\right\| \geq C(\omega)>0$. Therefore, $s \mapsto h\left(B_{s}(\omega)\right)$ is continuous on $[0, t]$, and thus $s \mapsto h_{i}\left(B_{s}(\omega)\right)$ is in $L^{2}([1, t])$. Since $\mathbb{P}(\tilde{\Omega})=1$, we get $h\left(B_{t}\right) \in$ $M_{l o c}^{2}([1, t])$. Therefore,

$$
\int_{0}^{t} h_{i}\left(B_{s}\right) \mathrm{d} B_{s}^{i}
$$

is a local martingale for all $i=1,2,3$. Since a finite sum of local martingale is a local martingale, we conclude that $\left(h\left(B_{t}\right)\right)_{t \geq 1}$ is a local martingale.
(b) Using polar coordinates yields

$$
\mathbb{E}\left[M_{t}^{2}\right]=\int_{\mathbb{R}^{3}} \frac{1}{x^{2}+y^{2}+z^{2}} e^{-\frac{x^{2}+y^{2}+z^{2}}{2 t}} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\frac{1}{t} .
$$

(c) If $\left(M_{t}\right)$ would be a Martingale, $\left(M_{t}^{2}\right)$ would be a submartingale, an thus, $\mathbb{E}\left[M_{t}^{2}\right]$ would be increasing. Since $t \mapsto \frac{1}{t}$ is strictly decreasing, $\left(M_{t}\right)$ is not a martingale.

Exercice 4

1. (a) Set $f(x, t)=e^{\frac{t}{2}} \sin (x)$. By Itô formula

$$
\begin{aligned}
X_{t}=e^{\frac{t}{2}} \sin \left(B_{t}\right) & =f\left(B_{t}, t\right) \\
& =\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, B_{s}\right) \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f}{\partial x^{2}}\left(s, B_{s}\right) \mathrm{d} s+\int_{0}^{t} \frac{\partial f}{\partial s}\left(s, B_{s}\right) \mathrm{d} s \\
& =\int_{0}^{t} e^{\frac{s}{2}} \cos \left(B_{s}\right) \mathrm{d} s .
\end{aligned}
$$

Since

$$
\mathbb{E}\left[\int_{0}^{t} e^{s} \sin ^{2}\left(B_{s}\right) \mathrm{d} s\right] \leq e^{t}-1<\infty
$$

X is a martingale.
(b) Using the same method,

$$
Y_{t}=1-\int_{0}^{t} e^{\frac{s}{2}} \sin \left(B_{s}\right) \mathrm{d} B_{s}
$$

which is also a martingale.
(c) By properties of Itô integral, $\mathbb{E}\left[X_{t}\right]=0$ and $\mathbb{E}\left[Y_{t}\right]=1$ for all t.
2. There are obviously Itô processes. Moreover,

$$
\langle X, Y\rangle_{t}=\int_{0}^{t} e^{s} \cos \left(B_{s}\right) \sin \left(B_{s}\right) \mathrm{d} s
$$

