Probability Theory 2 : Solution Sheet 10

Exercice 1

1. Since

$$
\int_{0}^{T} \mathbf{1}_{\left\{t \leq \tau_{n}\right\}} X_{t}^{2} \mathrm{~d} t=\int_{0}^{\tau_{n}} X_{t}^{2} \mathrm{~d} t \leq n
$$

then $\left(X_{t} \mathbf{1}_{\left\{t \leq \tau_{n}\right\}}\right)$ is in $M^{2}([0, T])$. Therefore, using Itô isometry yield,

$$
\begin{aligned}
\mathbb{E}\left[\int_{0}^{\tau_{n}} X_{t}^{2} \mathrm{~d} t\right] & =\mathbb{E}\left[\int_{0}^{T} \mathbf{1}_{\left\{t<\tau_{n}\right\}} X_{t}^{2} \mathrm{~d} t\right] \\
& =\mathbb{E}\left[\left(\int_{0}^{T} \mathbf{1}_{\left\{s<\tau_{n}\right\}} X_{s} \mathrm{~d} B_{t}\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\int_{0}^{\tau_{n}} X_{t} \mathrm{~d} B_{t}\right)^{2}\right] \\
& =\mathbb{E}\left[M_{t \wedge \tau_{n}}^{2}\right] \\
& \leq \mathbb{E}\left[\sup _{0 \leq t \leq T} M_{t}^{2}\right]
\end{aligned}
$$

2. If $X \in M^{2}([0, T])$, then $\left(M_{t}\right)_{t \in[0, T]}$ is a square integrable martingale, and thus, by Doob inequality,

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T} M_{t}^{2}\right] \leq 4 \mathbb{E}\left[M_{T}^{2}\right]=4 \mathbb{E}\left[\int_{0}^{T} X_{t}^{2} \mathrm{~d} t\right],
$$

where we used Itô isometry in the last equality.
Conversely, suppose $\mathbb{E}\left[\sup _{0 \leq t \leq T} M_{t}^{2}\right]<\infty$. Let $\tau_{n} \nearrow \infty$ a.s. By monotone convergence theorem and the previous question,

$$
\mathbb{E}\left[\int_{0}^{T} X_{s}^{2} \mathrm{~d} s\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[\int_{0}^{\tau_{n}} X_{s}^{2} \mathrm{~d} s\right] \leq \mathbb{E}\left[\sup _{0 \leq t \leq T} M_{t}^{2}\right]<\infty .
$$

Therefore, $\left(X_{t}\right) \in M^{2}([0, T])$.

Exercice 2

This exercise is only calculation. We just sketch the solution. Since $Z \sim \mathcal{N}(0,1)$, its density function is given by $f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}$.
1.

$$
\mathbb{E}\left[Z^{2} e^{\alpha Z}\right]=\int_{\mathbb{R}} z^{2} e^{\alpha z} f_{Z}(z) \mathrm{d} z
$$

2. $\left(H_{t}\right)$ is continuous on $\left\{B_{1}=0\right\}^{c}$. Since $\mathbb{P}\left\{B_{1}=0\right\}=0,\left(H_{t}\right)$ is a.s. continuous and $\lim _{t \rightarrow 1^{-}} H_{t}=0$ a.s. The fact that $\left(H_{t}\right) \in M_{l o c}^{2}([0,1])$ is clear since $t \mapsto H_{t}$ is a.s. continuous on $[0,1]$. To check that $\left(H_{t}\right) \notin M^{2}([0,1])$, we can prove that

$$
\mathbb{E}\left[\int_{0}^{1} H_{s}^{2} \mathrm{~d} s\right] \underset{(1)}{=} \int_{0}^{1} \mathbb{E}\left[H_{s}^{2}\right] \mathrm{d} s=+\infty
$$

where (1) follow by Fubini.

Exercice 3

1. Let $\left(\tau_{n}\right)$ and $\left(\sigma_{n}\right)$ sequences of stopping time s.t. $\tau_{n}, \sigma_{n} \nearrow \infty$ a.s. and s.t. $\left(M_{t \wedge \tau_{n}}\right)$ and $\left(N_{t \wedge \sigma_{n}}\right)$ (such sequences are called regularizing sequences. Are continuous martingales for all n. In particular, $\left(M_{\left(t \wedge \tau_{n}\right) \wedge \sigma_{n}}\right)$ and $\left(N_{\left(t \wedge \sigma_{n}\right) \wedge \tau_{n}}\right)$ are martingale, and thus, $\kappa_{n}:=\sigma_{n} \wedge \tau_{n}$ is a sequence of stopping s.t. $\kappa_{n} \nearrow \infty$ and s.t. $\left((M+N)_{t \wedge \kappa_{n}}\right)$ is a Martingale for all n. Therefore, $M+N$ is a local martingale.
2. Take $M=N=B$, where B is a Brownian motion. M and N are local Martingales (because there are martingales), but $N M=B^{2}$ is not.
3. Suppose that M is a positive local martingale. To prove that M is a supermartingale, it's enough to prove that if $s<t$, then for all $A \in \mathcal{F}_{s}$,

$$
\begin{equation*}
\mathbb{E}\left[M_{t} \mathbf{1}_{A}\right] \leq \mathbb{E}\left[M_{s} \mathbf{1}_{A}\right] \tag{1}
\end{equation*}
$$

Indeed, if (1) hold, then

$$
\mathbb{E}\left[\mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right] \mathbf{1}_{A}\right] \leq \mathbb{E}\left[M_{s} \mathbf{1}_{A}\right]
$$

for all $A \in \mathcal{F}_{s}$, and since $\mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right]$ and M_{s} are \mathcal{F}_{s} measurable, we'll get $\mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right] \leq M_{s}$ a.s.
Let $\left(\tau_{n}\right)$ a regularizing sequence and let $A \in \mathcal{F}_{s}$. Then

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{1}_{A \cap\left\{\tau_{n}>s\right\}}\left(M_{t \wedge \tau_{n}}-M_{s}\right)\right] & =\mathbb{E}\left[\mathbf{1}_{A \cap\left\{\tau_{n}>s\right\}}\left(M_{t \wedge \tau_{n}}-M_{s \wedge \tau_{n}}\right)\right] \\
& =\mathbb{E}\left[\mathbf{1}_{A \cap\left\{\tau_{n}>s\right\}}\left(M_{t \wedge \tau_{n}}-\mathbb{E}\left[M_{t \wedge \tau_{n}} \mid \mathcal{F}_{s}\right]\right)\right] \\
& =0,
\end{aligned}
$$

where the last equality come from the fact that $A \cap\left\{\tau_{n}>s\right\}$ is \mathcal{F}_{s} measurable and that

$$
\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{A \cap \tau_{n}>s} M_{t \wedge \tau_{n}} \mid \mathcal{F}_{s}\right]\right]=\mathbb{E}\left[M_{t \wedge \tau_{N}} \mathbf{1}_{A \cap\left\{\tau_{n}>s\right\}}\right] .
$$

Remark that

$$
\lim _{n \rightarrow \infty} \mathbf{1}_{A \cap\left\{\tau_{n}>s\right\}}\left(M_{t \wedge \tau_{n}}-M_{s}\right)=\mathbf{1}_{A}\left(M_{t}-M_{s}\right)
$$

and

$$
\mathbf{1}_{A \cap\left\{\tau_{n}>s\right\}}\left(M_{t \wedge \tau_{n}}-M_{s}\right) \geq-M_{s} .
$$

Moreover, $M_{s} \in L^{1}(\Omega)$ for all $s \geq 0$. Indeed, by Fatou's lemma,

$$
\mathbb{E}\left[M_{s}\right] \leq \liminf _{n \rightarrow \infty} \mathbb{E}\left[M_{s \wedge \tau_{n}}\right]=\mathbb{E}\left[M_{0}\right]<\infty
$$

Therefore, using Fatou's lemma yields

$$
0=\liminf _{n \rightarrow \infty} \mathbb{E}\left[\mathbf{1}_{A \cap\left\{\tau_{n}>s\right\}}\left(M_{t \wedge \tau_{n}}-M_{s}\right)\right] \geq \mathbb{E}\left[\mathbf{1}_{A}\left(M_{t}-M_{s}\right)\right]
$$

and thus, (1) follow.

