Probability : Practice Exam (solution)

Problem 1

1. See your notes.
2. Let $\left\{A_{i}\right\}_{i=1}^{\infty}$ a collection of \mathcal{F}. Since \mathcal{F} is a σ a σ-algebra, it's stable by complementary and countable union. Therefore,

$$
\bigcap_{i=1}^{\infty} A_{i}=\left(\bigcup_{i=1}^{\infty} A_{i}^{c}\right)^{c} \in \mathcal{F} .
$$

3. (a) Let prove that \mathcal{F}_{B} is a σ-algebra. The fact that B and \varnothing are in \mathcal{F}_{B} is clear. Let $A \in \mathcal{F}_{B}$. i.e. there is $C \in \mathcal{F}$ s.t. $A=C \cap B$. Then,

$$
A^{c}=B \backslash A=B \backslash(C \cap B)=\left(B \cap C^{c}\right) \cup\left(B \cap B^{c}\right)=B \cap C^{c}
$$

Here $C^{c}=\Omega \backslash C \in \mathcal{F}$. Therefore, $A^{c} \in \mathcal{F}_{B}$. Let $\left\{A_{i}\right\}_{i=1}^{\infty}$ a collection of element of \mathcal{F}_{B}. I.e. for all A_{i} there is $C_{i} \in \mathcal{F}$ s.t. $A_{i}=B \cap C_{i}$. Then,

$$
\bigcup_{i=1}^{\infty} A_{i}=\bigcup_{i=1}^{\infty}\left(C_{i} \cap B\right)=B \cap \underbrace{\left(\bigcup_{i=1}^{\infty} C_{i}\right)}_{\in \mathcal{F}} \in \mathcal{F}_{B}
$$

Let show that \mathbb{Q} is a probability on $\left(B, \mathcal{F}_{B}\right)$. We have $\mathbb{Q}(B)=\frac{\mathbb{P}(B)}{\mathbb{P}(B)}=1$. Also, if $\left\{A_{i}\right\}_{i=1}^{\infty}$ is disjoint collection of \mathcal{F}_{B}, then

$$
\mathbb{Q}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\frac{1}{\mathbb{P}(B)} \mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right) \underset{(*)}{=} \sum_{i=1}^{\infty} \frac{\mathbb{P}\left(A_{i}\right)}{\mathbb{P}(B)}=\sum_{i=1}^{\infty} \mathbb{Q}\left(A_{i}\right),
$$

where $(*)$ come from the fact that \mathbb{P} is a probability on (Ω, \mathbb{F}) and $A_{i} \in \mathcal{F}$ for all i.
(b) i. It's not a random variable because $X^{-1}(\{1\})=\{(P, F)\} \notin \mathcal{F}$.
ii. It is a random variable because $\left.X\right|_{B}=0$ and thus

$$
X^{-1}(B)= \begin{cases}\varnothing & 0 \notin B \\ B & 0 \in B\end{cases}
$$

Therefore $X^{-1}(B) \in \mathcal{F}_{B}$ for all Borel set B.

Problem 2

Let X_{i} denote «The $i^{\text {th }}$ client comes $»$. Then $X_{i} \sim \operatorname{Bern}(0.8)$. Set

$$
S_{n}=X_{1}+\ldots+X_{n}
$$

Since the X_{i} are i.i.d., we have that $S_{n} \sim \operatorname{Binom}(n, 0.8)$.

1. Using the DeMoivre Laplace theorem

$$
\mathbb{P}\left\{S_{190} \leq 150\right\}=\mathbb{P}\left\{\frac{S_{190}-190 \cdot 0.8}{\sqrt{190 \cdot 0.2 \cdot 0.8}} \leq \frac{150-190 \cdot 0.8}{\sqrt{190 \cdot 0.2 \cdot 0.8}}\right\}=\Phi_{0,1}(-0.36) \approx 0.36
$$

2. We have to find n s.t. $\mathbb{P}\left\{S_{n} \leq 150\right\} \geq 0.99$. This equation is equivalent to

$$
\mathbb{P}\left\{\frac{S_{n}-n \cdot 0.8}{\sqrt{n \cdot 0.8 \cdot 0.2}} \leq \frac{150-n \cdot 0.8}{\sqrt{n \cdot 0.8 \cdot 0.2}}\right\}=\Phi_{0,1}(2.33) \Longleftrightarrow \frac{150-0.8 n}{\sqrt{n \cdot 0.2 \cdot 0.8}} \geq 2.33 \Longleftrightarrow n \leq 172
$$

So, the restaurant can take at most 172 reservation.

Problem 3

1. See your notes.
2. (a)

$$
\begin{aligned}
\operatorname{Var}(a X+b Y) & =\mathbb{E}\left[(a X+b Y-\mathbb{E}[a X+b Y])^{2}\right] \\
& =\mathbb{E}\left[((a X-\mathbb{E}[a X])+(b Y-\mathbb{E}[b Y]))^{2}\right] \\
& =\mathbb{E}\left[(a X-\mathbb{E}[a X])^{2}\right]+2 \mathbb{E}[(a X-\mathbb{E}[a X])(b Y-\mathbb{E}[b Y])]+\mathbb{E}\left[(b Y-\mathbb{E}[b Y])^{2}\right] \\
& =a^{2} \mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]+2 a b \mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]+b^{2} \mathbb{E}\left[(Y-\mathbb{E}[Y])^{2}\right] \\
& =a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y) .
\end{aligned}
$$

(b) If X and Y are independent, we know that $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$, and thus

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] \\
& =\mathbb{E}[X Y-X \mathbb{E}[Y]-Y \mathbb{E}[X]+\mathbb{E}[X] \mathbb{E}[Y]] \\
& =\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y] \\
& =0
\end{aligned}
$$

3. (a) We have

$$
\begin{aligned}
& \mathbb{P}\{X=0, Y=0\}=\mathbb{P}\{1\}=\frac{1}{6}=\mathbb{P}\{X=0\} \mathbb{P}\{Y=0\} \\
& \mathbb{P}\{X=1, Y=0\}=\mathbb{P}\{3\}=\frac{1}{6}=\mathbb{P}\{X=1\} \mathbb{P}\{Y=0\} \\
& \mathbb{P}\{X=2, Y=0\}=\mathbb{P}\{5\}=\frac{1}{6}=\mathbb{P}\{X=2\} \mathbb{P}\{Y=0\}
\end{aligned}
$$

Notice that since A and B independent implies that A and B^{c} are independent (proved in problem 6 of the sheet 2 and also is problem 6 of this exam), we can conclude that X and Y are independent.
(b) Using 2. and the fact that X and Y are independent, we get

$$
\operatorname{Var}\left(e^{3} X-\sqrt{5} Y\right)=e^{6} \operatorname{Var}(X)+5 \operatorname{Var}(X)
$$

Now,

$$
\begin{array}{r}
\mathbb{E}[X]=\mathbb{P}\{3,4\}+2 \mathbb{P}\{5,6\}=1 \\
\mathbb{E}\left[X^{2}\right]=\mathbb{P}\{3,4\}+4 \mathbb{P}\{5,6\}=\frac{5}{3}
\end{array}
$$

and thus

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\frac{2}{3}
$$

Also

$$
\mathbb{E}[Y]=\frac{1}{2} \quad \text { and } \quad \mathbb{E}\left[Y^{2}\right]=\frac{1}{2}
$$

and thus

$$
\operatorname{Var}(Y)=\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}=\frac{1}{4}
$$

At the end

$$
\operatorname{Var}\left(e^{3} X-\sqrt{5} Y\right)=\frac{2 e^{6}}{3}+\frac{5}{4}
$$

Problem 4

Let V denote the first shop where Peter forgets his bag. It's a Geom $\left(\frac{1}{4}\right)$ r.v.. The probability that he forgets his bag in the last shop given he forgot his back somewhere is given by

$$
\mathbb{P}\{V=4 \mid V \leq 4\}=\frac{\mathbb{P}\{V=4, V \leq 4\}}{\mathbb{P}\{V \leq 4\}}=\frac{\mathbb{P}\{V=4\}}{1-\mathbb{P}\{V>4\}}=\frac{\frac{1}{4}\left(\frac{3}{4}\right)^{3}}{1-\left(\frac{3}{4}\right)^{4}}=\frac{27}{175}
$$

Problem 5

What we know is $\mathbb{P}(T)=\mathbb{P}(H)=\frac{1}{2}, \mathbb{P}\left(R_{i} \mid H\right)=\frac{2}{3}, \mathbb{P}\left(R_{i} \mid T\right)=\frac{1}{3}$, for all $i=\{1,2\}, \mathbb{P}\left(R_{2} \mid\right.$ $\left.H \cap R_{1}\right)=\frac{2}{3}$ and $\mathbb{P}\left(R_{2} \mid T \cap R_{1}\right)=\frac{1}{3}$ (this can be easier to visualize on a tree). We also know more information, but this is all what we need to solve our problem. Not that what following looks a bit barbarous. But just do a tree, and you'll see how simple it is :-) However, at the exam, I need to see those formula (and there justification as I did).

1. Using formula of total probability :

$$
\mathbb{P}\left(R_{1}\right)=\mathbb{P}\left(R_{1} \mid H\right) \mathbb{P}(H)+\mathbb{P}\left(R_{1} \mid T\right) \mathbb{P}(T)=\ldots
$$

2. Using definition of conditonnal probability (or Bayes works as well),

$$
\mathbb{P}\left(H \mid R_{1}\right)=\frac{\mathbb{P}\left(R_{1} \mid H\right) \mathbb{P}(H)}{\mathbb{P}\left(R_{1}\right)}=\ldots
$$

3. By definition of conditional probability,

$$
\mathbb{P}\left(R_{2} \mid R_{1}\right)=\frac{\mathbb{P}\left(R_{1} \cap R_{2}\right)}{\mathbb{P}\left(R_{1}\right)}
$$

Using formula of total probability,

$$
\mathbb{P}\left(R_{1} \cap R_{2}\right)=\mathbb{P}\left(R_{1} \cap R_{2} \mid H\right) \mathbb{P}(H)+\mathbb{P}\left(R_{1} \cap R_{2} \mid T\right) \mathbb{P}(T)
$$

Using definition of conditional probability

$$
\mathbb{P}\left(R_{1} \cap R_{2} \mid H\right)=\mathbb{P}\left(R_{1} \mid H\right) \mathbb{P}\left(R_{2} \mid H \cap R_{1}\right)
$$

and

$$
\mathbb{P}\left(R_{1} \cap R_{2} \mid T\right)=\mathbb{P}\left(R_{1} \mid T\right) \mathbb{P}\left(R_{2} \mid T \cap R_{1}\right)
$$

Combine all will gives the right result.
4. We know $\mathbb{P}\left(R_{1}\right)$ and $\mathbb{P}\left(R_{1} \cap R_{2}\right)$ (from previous questions). To compute $\mathbb{P}\left(R_{2}\right)$, we use definition of conditional expectation

$$
\mathbb{P}\left(R_{2}\right)=\mathbb{P}\left(R_{2} \mid T\right) \mathbb{P}(T)+\mathbb{P}\left(R_{2} \mid H\right) \mathbb{P}(H)=\mathbb{P}\left(R_{1}\right)
$$

We you have computed this, and see that $\mathbb{P}\left(R_{1} \cap R_{2}\right) \neq \mathbb{P}\left(R_{1}\right) \mathbb{P}\left(R_{2}\right)$. Therefore there are not independent.

Problem 6

1. $\mathbb{P}_{X}(\mathbb{R})=\mathbb{P}(\Omega)=1$ and if $\left\{A_{i}\right\}_{i=1}^{\infty}$ is a disjoints collection of Borel sets, then

$$
\mathbb{P}_{X}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\mathbb{P}\left(X^{-1}\left\{\bigcup_{i=1}^{\infty} A_{i}\right\}\right)=\mathbb{P}\left(\bigcup_{i=1}^{\infty}\left\{X \in A_{i}\right\}\right) \underset{(*)}{=} \sum_{i=1}^{\infty} \mathbb{P}\left\{X \in A_{i}\right\}=\sum_{i=1}^{\infty} \mathbb{P}_{X}\left(A_{i}\right),
$$

where $(*)$ come from the fat that \mathbb{P} is a measure and $X^{-1}\left(A_{i}\right)=\left\{X \in A_{i}\right\}$ are disjoints. Indeed, if $\omega \in X^{-1}\left(A_{i}\right) \cap X^{-1}\left(A_{j}\right)=X^{-1}\left(A_{i} \cap A_{j}\right)$, then $X(\omega) \in A_{i} \cap A_{j}=\emptyset$, which is impossible. Therefore $X^{-1}\left(A_{i}\right) \cap X^{-1}\left(A_{j}\right)=\varnothing$.
2. (a) We have that

$$
\begin{gathered}
\mathbb{E}_{X}[Y]=\int_{0}^{2} e^{-x} \mathrm{~d} x+\int_{1}^{3} e^{-x} \mathrm{~d} x=1-e^{-2}+e^{-1}-e^{-3} \\
\mathbb{E}_{X}[Z]=\mathbb{P}_{X}([1,5])=\int_{1}^{5} e^{-x} \mathrm{~d} x=e^{-1}-e^{-5}
\end{gathered}
$$

Moeovr,

$$
Y Z=\left(\mathbf{1}_{[0,2]}+\mathbf{1}_{[0,3]}\right) \mathbf{1}_{[0,5]}=\mathbf{1}_{[0,2]} \mathbf{1}_{[1,5]}+\mathbf{1}_{[1,3]} \mathbf{1}_{[1,5]}=\mathbf{1}_{[1,2]}+\mathbf{1}_{[1,3]} .
$$

Therefore,

$$
\mathbb{E}_{X}[Y Z]=\int_{1}^{2} e^{-x} \mathrm{~d} x+\int_{1}^{3} e^{-x} \mathrm{~d} x=e^{-1}-e^{-2}+e^{-1}-e^{-3}=2 e^{-1}-e^{-2}-e^{-3}
$$

(b) We could check that $\mathbb{E}_{X}[Y Z] \neq \mathbb{E}_{X}[Y] \mathbb{E}_{X}[Z]$, and thus Y and Z are not independent.
3. (a) We have to prove that $(Z \circ X)^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}(\mathbb{R})$. Notice that

$$
(Z \circ X)^{-1}(B)=X^{-1}\left(Z^{-1}(B)\right)
$$

Since Z is a random variable on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, we have that $Z^{-1}(B) \in \mathcal{B}(\mathbb{R})$ for all Borel-set. Also, X is a random variable on (Ω, \mathcal{F}), and thus $X^{-1}(\tilde{B}) \in \mathcal{F}$ for all Borel set \tilde{B}. In particular, $X^{-1}\left(Z^{-1}(B)\right) \in \mathcal{F}$ for all Borel set $B \in \mathcal{B}(\mathbb{R})$. The claim follow.
(b) One can remark that $Z \circ X=\mathbf{1}_{[1,5]}(X(\omega))$, and thus

$$
\mathbb{E}[Z \circ X]=\mathbb{P}\{Z=1\}=\mathbb{P}\{X \in[1,5]\}=\mathbb{P}_{X}([1,5])=\mathbb{E}_{X}[Z]=e^{-1}-e^{-5}
$$

Problem 7

1. (a) i. Since $(A \backslash B) \cup B$ is dijoint,

$$
\mathbb{P}(A)=\mathbb{P}((A \backslash B) \cup B)=\mathbb{P}(A \backslash B)+\mathbb{P}(B)
$$

and thus

$$
\mathbb{P}(A \backslash B)=\mathbb{P}(A)-\mathbb{P}(B)
$$

ii. No it's not true. For example, take $\mathbb{P}=\operatorname{Unif}[0,1], A=[0,1 / 2]$ and $B=[1 / 2,1]$. Then, $\mathbb{P}(A)=\mathbb{P}(B)$, but

$$
\mathbb{P}(A \backslash B)=\mathbb{P}([0,1 / 2))=\frac{1}{2} \neq \mathbb{P}(A)-\mathbb{P}(B)=0
$$

(b) Suppose A and B independent. Then,

$$
\mathbb{P}(A) \mathbb{P}\left(B^{c}\right)=\mathbb{P}(A)(1-\mathbb{P}(B))=\mathbb{P}(A)-\mathbb{P}(A) \mathbb{P}(B) \underset{(1)}{=} \mathbb{P}(A)-\mathbb{P}(A \cap B) \underset{(2)}{=} \mathbb{P}(A \backslash(A \cap B))=\mathbb{P}\left(A \cap B^{c}\right)
$$

where (1) come from the independence of A and B and (2) come from the fact that $A \cap B \subset A$ and the previous question.
2. Set $E=\bigcap_{n \in \mathbb{N}} B_{n}$, and $E_{n}=B_{n} \backslash B_{n+1}$. Notice that the E_{n} 's are disjoint and E is also disjoint with the E_{n}. Now

$$
B_{1}=E \cup \bigcup_{i=1}^{\infty} E_{n}
$$

and thus,

$$
\begin{equation*}
\mathbb{P}\left(B_{1}\right)=\mathbb{P}(E)+\mathbb{P}\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\mathbb{P}(E)+\sum_{k=1}^{\infty} \mathbb{P}\left(B_{k} \backslash B_{k+1}\right) \tag{1}
\end{equation*}
$$

Now, using 1.(a)i. of this exercise,

$$
\sum_{k=1}^{n-1} \mathbb{P}\left(B_{k} \backslash B_{k+1}\right)=\sum_{k=1}^{n} \mathbb{P}\left(B_{k}\right)-\mathbb{P}\left(B_{k+1}\right)=\mathbb{P}\left(B_{1}\right)-\mathbb{P}\left(B_{n}\right)
$$

Taking the limit $n \rightarrow \infty$ and replacing in (1), we finally obtain

$$
\mathbb{P}(E)+\mathbb{P}\left(B_{1}\right)-\lim _{n \rightarrow \infty} \mathbb{P}\left(B_{n}\right)=\mathbb{P}\left(B_{1}\right),
$$

and thus

$$
\mathbb{P}(E)=\lim _{n \rightarrow \infty} \mathbb{P}\left(B_{n}\right),
$$

as wished.
3. This was the most difficult exercise of this exam. Fix $n \in \mathbb{N}$. Since $\mathbb{P}\left\{X_{n} \leq X_{n+1}\right\}=1$, there is a set \mathcal{N}_{n} s.t. $\mathbb{P}\left(\mathcal{N}_{n}\right)=0$ and for all $\omega \notin \mathcal{N}_{n}, X_{n}(\omega) \leq X_{n+1}(\omega)$. Set $K=\bigcup_{n \in \mathbb{N}} \mathcal{N}_{n}$. Set $B_{n}=\left\{\omega \in K^{c} \mid X_{n} \leq x\right\}$ and $O_{n}=\left\{\omega \in K \mid X_{n} \leq x\right\}$. In particular, $B_{n+1} \subset B_{n}$ and

$$
\bigcap_{n \in \mathbb{N}}\left\{X_{n} \leq x\right\}=\bigcap_{n \in \mathbb{N}}\left(B_{n} \cup O_{n}\right)=\bigcap_{n \in \mathbb{N}} B_{n} \cup \bigcap_{n \in \mathbb{N}} O_{n} .
$$

Now, these two sets are disjoint, and $\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} O_{n}\right)=0$. Therefore

$$
\mathbb{P}\left(\bigcap_{n \in \mathbb{N}}\left\{X_{n} \leq x\right\}\right)=\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} B_{n}\right) \underset{(1)}{=} \lim _{n \rightarrow \infty} \mathbb{P}\left(B_{n}\right) \underset{(2)}{=} \lim _{n \rightarrow \infty} \mathbb{P}\left(B_{n} \cup O_{n}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left\{X_{n} \leq x\right\},
$$

where (1) come from 2. and (2) comes from the fact that $\mathbb{P}\left(O_{n}\right)=0$ for all n and $\mathbb{P}\left(O_{n}\right)+\mathbb{P}\left(B_{n}\right)=$ $\mathbb{P}\left(B_{n} \cup O_{n}\right)$ because B_{n} and O_{n} are disjoints.

Problem 8

1. (a) Ω is the set of all couple that got married in $2018, \mathcal{F}$ is the power set and $\mathbb{P}\{\omega\}=\frac{1}{365^{2}}=: p$.
(b) If X is the number of couple that were born that 24th of january, then

$$
\mathbb{P}\{X=25\}=\binom{40000}{5} p^{5}(1-p)^{40000-5}
$$

This can be approximated by a Poisson law of parameter $\lambda=40000 p$. I.e.

$$
\mathbb{P}\{X=25\}=e^{-\lambda} \frac{\lambda^{25}}{(25)!}
$$

2. (a) Same but $\mathbb{P}\{\omega\}=\frac{1}{365}=: q$.
(b) Same with $\lambda=40000 q$.
