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Probability : Practice Exam (solution)

Problem 1
1. See your notes.
2. Let {Ai}∞i=1 a collection of F . Since F is a σ a σ−algebra, it’s stable by complementary and

countable union. Therefore,
∞⋂
i=1

Ai =

( ∞⋃
i=1

Aci

)c
∈ F .

3. (a) Let prove that FB is a σ−algebra. The fact that B and ∅ are in FB is clear. Let A ∈ FB . i.e.
there is C ∈ F s.t. A = C ∩B. Then,

Ac = B \A = B \ (C ∩B) = (B ∩ Cc) ∪ (B ∩Bc) = B ∩ Cc.

Here Cc = Ω \C ∈ F . Therefore, Ac ∈ FB . Let {Ai}∞i=1 a collection of element of FB . I.e. for
all Ai there is Ci ∈ F s.t. Ai = B ∩ Ci. Then,

∞⋃
i=1

Ai =

∞⋃
i=1

(Ci ∩B) = B ∩

( ∞⋃
i=1

Ci

)
︸ ︷︷ ︸
∈F

∈ FB .

Let show that Q is a probability on (B,FB). We have Q(B) = P(B)
P(B) = 1. Also, if {Ai}∞i=1 is

disjoint collection of FB , then

Q

( ∞⋃
i=1

Ai

)
=

1

P(B)
P

( ∞⋃
i=1

Ai

)
=
(∗)

∞∑
i=1

P(Ai)

P(B)
=

∞∑
i=1

Q(Ai),

where (∗) come from the fact that P is a probability on (Ω,F) and Ai ∈ F for all i.
(b) i. It’s not a random variable because X−1({1}) = {(P, F )} /∈ F .

ii. It is a random variable because X|B = 0 and thus

X−1(B) =

{
∅ 0 /∈ B
B 0 ∈ B.

Therefore X−1(B) ∈ FB for all Borel set B.

Problem 2
Let Xi denote « The ith client comes ». Then Xi ∼ Bern(0.8). Set

Sn = X1 + . . .+Xn.

Since the Xi are i.i.d., we have that Sn ∼ Binom(n, 0.8).
1. Using the DeMoivre Laplace theorem

P {S190 ≤ 150} = P
{
S190 − 190 · 0.8√

190 · 0.2 · 0.8
≤ 150− 190 · 0.8√

190 · 0.2 · 0.8

}
= Φ0,1(−0.36) ≈ 0.36.

2. We have to find n s.t. P{Sn ≤ 150} ≥ 0.99. This equation is equivalent to

P
{
Sn − n · 0.8√
n · 0.8 · 0.2

≤ 150− n · 0.8√
n · 0.8 · 0.2

}
= Φ0,1(2.33) ⇐⇒ 150− 0.8n√

n · 0.2 · 0.8
≥ 2.33 ⇐⇒ n ≤ 172.

So, the restaurant can take at most 172 reservation.
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Problem 3
1. See your notes.
2. (a)

Var(aX + bY ) = E
[(
aX + bY − E[aX + bY ]

)2]
= E

[(
(aX − E[aX]) + (bY − E[bY ])

)2]
= E

[(
aX − E[aX]

)2]
+ 2E

[(
aX − E[aX]

)(
bY − E[bY ]

)]
+ E

[(
bY − E[bY ]

)2]
= a2E

[(
X − E[X]

)2]
+ 2abE

[(
X − E[X]

)(
Y − E[Y ]

)]
+ b2E

[(
Y − E[Y ]

)2]
= a2Var(X) + b2Var(Y ) + 2abCov(X,Y ).

(b) If X and Y are independent, we know that E[XY ] = E[X]E[Y ], and thus

Cov(X,Y ) = E
[(
X − E[X]

)(
Y − E[Y ]

)]
= E

[
XY −XE[Y ]− Y E[X] + E[X]E[Y ]

]
= E[XY ]− E[X]E[Y ]

= 0.

3. (a) We have

P{X = 0, Y = 0} = P{1} =
1

6
= P{X = 0}P{Y = 0},

P{X = 1, Y = 0} = P{3} =
1

6
= P{X = 1}P{Y = 0}

P{X = 2, Y = 0} = P{5} =
1

6
= P{X = 2}P{Y = 0}.

Notice that since A and B independent implies that A and Bc are independent (proved in
problem 6 of the sheet 2 and also is problem 6 of this exam), we can conclude that X and Y
are independent.

(b) Using 2. and the fact that X and Y are independent, we get

Var(e3X −
√

5Y ) = e6Var(X) + 5Var(X).

Now,
E[X] = P{3, 4}+ 2P{5, 6} = 1,

E[X2] = P{3, 4}+ 4P{5, 6} =
5

3
,

and thus
Var(X) = E[X2]− E[X]2 =

2

3
.

Also
E[Y ] =

1

2
and E[Y 2] =

1

2
,

and thus
Var(Y ) = E[Y 2]− E[Y ]2 =

1

4
.

At the end

Var(e3X −
√

5Y ) =
2e6

3
+

5

4
.
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Problem 4
Let V denote the first shop where Peter forgets his bag. It’s a Geom

(
1
4

)
r.v.. The probability that

he forgets his bag in the last shop given he forgot his back somewhere is given by

P{V = 4 | V ≤ 4} =
P{V = 4, V ≤ 4}

P{V ≤ 4}
=

P{V = 4}
1− P{V > 4}

=
1
4 ( 3

4 )3

1−
(
3
4

)4 =
27

175
.

Problem 5
What we know is P(T ) = P(H) = 1

2 , P(Ri | H) = 2
3 , P(Ri | T ) = 1

3 , for all i = {1, 2}, P(R2 |
H ∩ R1) = 2

3 and P(R2 | T ∩ R1) = 1
3 (this can be easier to visualize on a tree). We also know more

information, but this is all what we need to solve our problem. Not that what following looks a bit
barbarous. But just do a tree, and you’ll see how simple it is :-) However, at the exam, I need to see
those formula (and there justification as I did).
1. Using formula of total probability :

P(R1) = P(R1 | H)P(H) + P(R1 | T )P(T ) = ...

2. Using definition of conditonnal probability (or Bayes works as well),

P(H | R1) =
P(R1 | H)P(H)

P(R1)
= ...

3. By definition of conditional probability,

P(R2 | R1) =
P(R1 ∩R2)

P(R1)
.

Using formula of total probability,

P(R1 ∩R2) = P(R1 ∩R2 | H)P(H) + P(R1 ∩R2 | T )P(T ).

Using definition of conditional probability

P(R1 ∩R2 | H) = P(R1 | H)P(R2 | H ∩R1)

and
P(R1 ∩R2 | T ) = P(R1 | T )P(R2 | T ∩R1).

Combine all will gives the right result.
4. We know P(R1) and P(R1 ∩ R2) (from previous questions). To compute P(R2), we use definition

of conditional expectation

P(R2) = P(R2 | T )P(T ) + P(R2 | H)P(H) = P(R1).

We you have computed this, and see that P(R1 ∩ R2) 6= P(R1)P(R2). Therefore there are not
independent.

Problem 6
1. PX(R) = P(Ω) = 1 and if {Ai}∞i=1 is a disjoints collection of Borel sets, then

PX

( ∞⋃
i=1

Ai

)
= P

(
X−1

{ ∞⋃
i=1

Ai

})
= P

( ∞⋃
i=1

{X ∈ Ai}

)
=
(∗)

∞∑
i=1

P{X ∈ Ai} =

∞∑
i=1

PX(Ai),

where (∗) come from the fat that P is a measure and X−1(Ai) = {X ∈ Ai} are disjoints. Indeed, if
ω ∈ X−1(Ai)∩X−1(Aj) = X−1(Ai∩Aj), then X(ω) ∈ Ai∩Aj = ∅, which is impossible. Therefore
X−1(Ai) ∩X−1(Aj) = ∅.
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2. (a) We have that

EX [Y ] =

∫ 2

0

e−x dx+

∫ 3

1

e−x dx = 1− e−2 + e−1 − e−3,

EX [Z] = PX([1, 5]) =

∫ 5

1

e−x dx = e−1 − e−5.

Moeovr,
Y Z = (1[0,2] + 1[0,3])1[0,5] = 1[0,2]1[1,5] + 1[1,3]1[1,5] = 1[1,2] + 1[1,3].

Therefore,

EX [Y Z] =

∫ 2

1

e−x dx+

∫ 3

1

e−x dx = e−1 − e−2 + e−1 − e−3 = 2e−1 − e−2 − e−3.

(b) We could check that EX [Y Z] 6= EX [Y ]EX [Z], and thus Y and Z are not independent.
3. (a) We have to prove that (Z ◦X)−1(B) ∈ F for all B ∈ B(R). Notice that

(Z ◦X)−1(B) = X−1(Z−1(B)).

Since Z is a random variable on (R,B(R)), we have that Z−1(B) ∈ B(R) for all Borel-set. Also,
X is a random variable on (Ω,F), and thus X−1(B̃) ∈ F for all Borel set B̃. In particular,
X−1(Z−1(B)) ∈ F for all Borel set B ∈ B(R). The claim follow.

(b) One can remark that Z ◦X = 1[1,5](X(ω)), and thus

E[Z ◦X] = P{Z = 1} = P{X ∈ [1, 5]} = PX([1, 5]) = EX [Z] = e−1 − e−5.

Problem 7
1. (a) i. Since (A \B) ∪B is dijoint,

P(A) = P((A \B) ∪B) = P(A \B) + P(B),

and thus
P(A \B) = P(A)− P(B).

ii. No it’s not true. For example, take P = Unif [0, 1], A = [0, 1/2] and B = [1/2, 1]. Then,
P(A) = P(B), but

P(A \B) = P([0, 1/2)) =
1

2
6= P(A)− P(B) = 0.

(b) Suppose A and B independent. Then,

P(A)P(Bc) = P(A)(1−P(B)) = P(A)−P(A)P(B) =
(1)

P(A)−P(A∩B) =
(2)

P(A\(A∩B)) = P(A∩Bc),

where (1) come from the independence of A and B and (2) come from the fact that A∩B ⊂ A
and the previous question.

2. Set E =
⋂
n∈NBn, and En = Bn \ Bn+1. Notice that the En’s are disjoint and E is also disjoint

with the En. Now

B1 = E ∪
∞⋃
i=1

En,

and thus,

P(B1) = P(E) + P

( ∞⋃
i=1

Ei

)
= P(E) +

∞∑
k=1

P(Bk \Bk+1). (1)

4



Now, using 1.(a)i. of this exercise,

n−1∑
k=1

P(Bk \Bk+1) =

n∑
k=1

P(Bk)− P(Bk+1) = P(B1)− P(Bn).

Taking the limit n→∞ and replacing in (1), we finally obtain

P(E) + P(B1)− lim
n→∞

P(Bn) = P(B1),

and thus
P(E) = lim

n→∞
P(Bn),

as wished.
3. This was the most difficult exercise of this exam. Fix n ∈ N. Since P{Xn ≤ Xn+1} = 1,

there is a set Nn s.t. P(Nn) = 0 and for all ω /∈ Nn, Xn(ω) ≤ Xn+1(ω). Set K =
⋃
n∈NNn. Set

Bn = {ω ∈ Kc | Xn ≤ x} and On = {ω ∈ K | Xn ≤ x}. In particular, Bn+1 ⊂ Bn and⋂
n∈N
{Xn ≤ x} =

⋂
n∈N

(Bn ∪On) =
⋂
n∈N

Bn ∪
⋂
n∈N

On.

Now, these two sets are disjoint, and P

(⋂
n∈N

On

)
= 0. Therefore

P

(⋂
n∈N
{Xn ≤ x}

)
= P

(⋂
n∈N

Bn

)
=
(1)

lim
n→∞

P(Bn) =
(2)

lim
n→∞

P(Bn ∪On) = lim
n→∞

P{Xn ≤ x},

where (1) come from 2. and (2) comes from the fact that P(On) = 0 for all n and P(On)+P(Bn) =
P(Bn ∪On) because Bn and On are disjoints.

Problem 8
1. (a) Ω is the set of all couple that got married in 2018, F is the power set and P{ω} = 1

3652 =: p.
(b) If X is the number of couple that were born that 24th of january, then

P{X = 25} =

(
40000

5

)
p5(1− p)40000−5.

This can be approximated by a Poisson law of parameter λ = 40000p. I.e.

P{X = 25} = e−λ
λ25

(25)!
.

2. (a) Same but P{ω} = 1
365 =: q.

(b) Same with λ = 40000q.
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