Probability : Sheet 7 (solution)

Problem 1

$$
\mathbb{Q}(\{x\})=\mathbb{Q}((-\infty, x] \backslash(-\infty, x))=\mathbb{Q}((-\infty, x])-\mathbb{Q}((-\infty, x)) .
$$

Set $\psi(y)=\mathbb{Q}((-\infty, y])$. By a proposition of the couse, ψ is continuous. Then,

$$
(-\infty, x)=\bigcup_{n \geq 1}\left(-\infty, x-\frac{1}{n}\right],
$$

and thus, by continuity of the measure,
$\mathbb{Q}((-\infty, x))=\mathbb{Q}\left(\bigcup_{n \geq 1}\left(-\infty, x-\frac{1}{n}\right]\right)=\lim _{n \rightarrow \infty} \mathbb{Q}\left(\left(-\infty, x-\frac{1}{n}\right)\right)=\lim _{n \rightarrow \infty} \psi\left(x-\frac{1}{n}\right) \underset{(*)}{=} \psi(x)=\mathbb{Q}((-\infty, x])$,
where (*) come from continuity. Therefore,

$$
\mathbb{Q}((-\infty, x])=\mathbb{Q}((-\infty, x)),
$$

and thus $\mathbb{Q}(\{x\})=0$.

Problem 2

Since $\psi \geq 0$, it define a density function if and only if

$$
\int_{\mathbb{R}} \psi(x) \mathrm{d} x=1
$$

i.e. if and only if $\lambda=\frac{1}{1000}$.

$$
\mathbb{P}\{50 \leq X \leq 150\}=\int_{50}^{150} \psi(x) \mathrm{d} x=e^{-0.05}-e^{-0.15}
$$

Problem 3

Let f_{X} the density function of X. Since X i absolutely continuous, there is f_{X} s.t.

$$
\mathbb{P}\{X \leq y\}=\int_{-\infty}^{y} f_{X}(x) \mathrm{d} x
$$

Method 1 : If you don't know the result that tells you that

$$
\mathbb{E}[h(X)]=\int_{\mathbb{R}} h(x) f_{X}(x) \mathrm{d} x
$$

(I didn't find the previouremark that

$$
\mathbb{P}\{a X+b \leq x\}=\mathbb{P}\left\{X \leq \frac{x-b}{a}\right\}=\int_{-\infty}^{\frac{x-b}{a}} f_{X}(x) \mathrm{d} x
$$

and thus,

$$
f_{a X+b}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} \mathbb{P}\{a X+b \leq x\}=\frac{1}{a} f_{X}\left(\frac{x-b}{a}\right) .
$$

Therefore,

$$
\begin{gathered}
\mathbb{E}[a X+b]=\int_{\mathbb{R}} x f_{a X+b}(x) \mathrm{d} x=\frac{1}{a} \int_{\mathbb{R}} x f_{X}\left(\frac{x-b}{a}\right) \mathrm{d} x \underset{u=\frac{x-b}{a}}{=} \int_{\mathbb{R}}(a u+b) f_{X}(u) \mathrm{d} u \\
=a \int_{\mathbb{R}} u f_{X}(u) \mathrm{d} u+b \underbrace{\int_{\mathbb{R}} f_{X}(u) \mathrm{d} u}_{=1}=a \mathbb{E}[X]+b .
\end{gathered}
$$

Method 2 : There is a theorem that says that if $h: \mathbb{R} \longrightarrow \mathbb{R}$ is s.t. $h(X)$ is a r.v., then

$$
\mathbb{E}[h(X)]=\int_{\mathbb{R}} h(x) f_{X}(x) \mathrm{d} x
$$

Applying this to $h(x)=a x+b$ the claim follow. (I didn't see this result in your lecture note, so you may be can't use it).

Problem 9

An elementary random variable is a linear combinaison of finitely many unitary function of disjoints events, i.e. if $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space, an elementary r.v. is a function of the form

$$
a_{1} \mathbf{1}_{A_{1}}+\ldots+a_{n} \mathbf{1}_{A_{n}}
$$

for $A_{i} \in \mathcal{F}$ for all i and all A_{i} 's are disjoints. The integral integral of such a function is given by

$$
\int_{\Omega}\left(a_{1} \mathbf{1}_{A_{1}}+\ldots+a_{n} \mathbf{1}_{A_{n}}\right) \mathrm{d} \mathbb{P}=a_{1} \mathbb{P}\left(A_{1}\right)+\ldots+a_{n} \mathbb{P}\left(A_{n}\right)
$$

As you can see, the integral of a r.v. correspond to its expectation.

Problem 10

1.

$$
\int_{\Omega} X d \mathbb{P}=1 \mathbb{P}([0,1])-1 \mathbb{P}([-1,0])+1 \cdot \mathbb{P}(\{0\})
$$

Using

$$
\mathbb{P}(A)=\frac{1}{\sqrt{2 \pi}} \int_{A} e^{-\frac{x^{2}}{2}} \mathrm{~d} x
$$

the claim follow (calculation are left to the readers).
Remark : As you can see, in the previous integral, I didn't right the elementary r.v. as a sum of unitary function of disjoints events. The reason is that the integral doesn't depend on the writing, i.e. let

$$
X=\sum_{i=1}^{n} a_{i} \mathbf{1}_{A_{i}}
$$

where A_{j} 's are not necessarily disjoints. Write X as a linear combinaison of unitary function of disjoints events, i.e.

$$
X=\sum_{i=1}^{m} b_{j} \mathbf{1}_{B_{j}},
$$

where the B_{j} 's are disjoints. Then,

$$
\int_{\Omega} X \mathrm{~d} P=\sum_{i=1}^{n} a_{i} \mathbb{P}\left(A_{i}\right)=\sum_{i=1}^{m} b_{i} \mathbb{P}\left(B_{i}\right)
$$

2.

$$
\int_{\Omega} X \mathrm{~d} \mathbb{P}=10 \cdot \mathbb{P}\left(\left[\frac{1}{4}, \frac{3}{4}\right]\right)+5 \cdot \mathbb{P}([1,10])+10 \cdot \mathbb{P}(\{100\})
$$

Now,

$$
\mathbb{P}(A)=\sum_{k \in \mathbb{N} \cap A} \mathbb{P}(\{k\})=\sum_{k \in \mathbb{N} \cap A} 2^{-k}
$$

Therefore

$$
\int_{\Omega} X d \mathbb{P}=5 \cdot \sum_{k=1}^{10} 2^{-k}+10 \cdot 2^{-100}=5+10 \cdot 2^{100}-5 \cdot 2^{-10}
$$

3. We have that

$$
\mathbb{P}(A)=\frac{1}{2}\left(\int_{A} \mathbf{1}_{[0,1]}(x) \mathrm{d} x+\delta_{\frac{1}{2}}(A)\right),
$$

where

$$
\delta_{\frac{1}{2}}(A)=\left\{\begin{array}{ll}
1 & \frac{1}{2} \in A \\
0 & \frac{1}{2} \notin A
\end{array} .\right.
$$

Therefore,

$$
\begin{gathered}
\int_{\Omega} X \mathrm{~d} \mathbb{P}=\mathbb{P}\left(\left[0, \frac{1}{4}\right]\right)+2 \cdot \mathbb{P}\left(\left\{\frac{1}{2}\right\}\right)+\mathbb{P}\left(\left[\frac{1}{2}, 1\right]\right) \\
=\frac{1}{2} \cdot \frac{1}{4}+\frac{1}{2} \cdot 2+\frac{1}{2}\left(\frac{1}{2}-1+1\right)=\frac{11}{8}
\end{gathered}
$$

