## Probability : Sheet 6 (solution)

## Problem 1

Let $X_{i}$ is 1 if the $i^{\text {th }}$ person is in favor of the new law, and 0 if the $i^{t h}$ person is not in favor the new law. Then $X_{i} \sim \operatorname{Bern}(0.65)$. Let

$$
S_{100}=X_{1}+\ldots+X_{100} \sim \operatorname{Bern}(100,0.65)
$$

We denote $\Phi$ the cumulative function of a $\mathcal{N}(0,1)$ law, i.e. if $X \sim \mathcal{N}(0,1)$,

$$
\Phi(x)=\mathbb{P}\{X \leq x\}
$$

1. Since the $X_{i}$ 's are i.i.d. ${ }^{1}$, using De Moivre Laplace theorem, we get

$$
\mathbb{P}\left\{S_{100} \geq 50\right\}=\mathbb{P}\left\{\frac{S_{100}-100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}} \geq \frac{50-100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}}\right\}=1-\Phi\left(\frac{50-100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}}\right)
$$

2. Since the $X_{i}$ 's i.i.d., using De Moivre Laplace theorem, we get

$$
\mathbb{P}\left\{S_{100} \leq 30\right\}=\mathbb{P}\left\{\frac{S_{100}-100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}} \leq \frac{30-100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}}\right\}=\Phi\left(\frac{30-100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}}\right)
$$

3. Since the $X_{i}$ 's i.i.d., using De Moivre Laplace theorem, we get

$$
\begin{gathered}
\mathbb{P}\left\{60 \leq S_{100} \leq 70\right\}=\mathbb{P}\left\{\frac{60-100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}} \leq \frac{S_{100}-100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}} \leq \frac{70-100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}}\right\} \\
=\Phi\left(\frac{70-100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}}\right)-\Phi\left(\frac{60-100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}}\right)
\end{gathered}
$$

## Problem 2

Let $X_{i}$ be 1 if the dice show 6 at the $i^{\text {th }}$ thrown and 0 if it show something else at the $i^{\text {th }}$ thrown. Then $X_{i} \sim \operatorname{Bern}\left(\frac{1}{6}\right)$. Let

$$
S_{1000}=X_{1}+\ldots+X_{1000} \sim \operatorname{Binom}\left(1000, \frac{1}{6}\right)
$$

1. Using a Poisson approximation,

$$
\mathbb{P}\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

where $\lambda=\frac{1000}{6}$. Therefore,

$$
\mathbb{P}\{150 \leq X \leq 200\}=\sum_{k=150}^{200} \mathbb{P}\{X=k\}=e^{-\lambda} \sum_{k=150}^{200} \frac{\lambda^{k}}{k!}
$$

We unfortunately can't write this sum as a closed form. One can use a calculator to compute the sum.

1. independent and identically distributed
2. We have that

$$
\mathbb{P}\left\{\frac{150-1000 \cdot \frac{1}{6}}{\sqrt{1000 \cdot \frac{5}{36}}} \leq \frac{S_{1000}-1000 \cdot \frac{1}{6}}{\sqrt{1000 \cdot \frac{5}{36}}} \leq \frac{200-1000 \cdot \frac{1}{6}}{\sqrt{1000 \cdot \frac{5}{36}}}\right\}
$$

and since the $X_{i}$ 's i.i.d., we get using De Moivre-Laplace,

$$
\mathbb{P}\left\{150 \leq S_{1000} \leq 200\right\}=\Phi\left(\frac{200-1000 \cdot \frac{1}{6}}{\sqrt{1000 \cdot \frac{5}{36}}}\right)-\Phi\left(\frac{150-1000 \cdot \frac{1}{6}}{\sqrt{1000 \cdot \frac{5}{36}}}\right)
$$

## Problem 3

Let $X_{i}$ the price of a stock at the $i^{t h}$ period. We have that

$$
\mathbb{P}\left\{X_{i+1}=u X_{i}\right\}=p \quad \text { and } \quad \mathbb{P}\left\{X_{i+1}=d X_{i}\right\}=1-p
$$

Let $X_{0}=s$. We have to compute

$$
\mathbb{P}\left\{X_{1000} \geq 1.3 s\right\}
$$

Set $Y_{i}=X_{i}-X_{i-1}$ for $i=1, \ldots, 1000$. We have that the $Y_{i}$ 's are independents (by hypothesis), $Y_{i} \sim \operatorname{Bern}(0.52)$ for all $i$ and

$$
X_{1000}=s+Y_{1}+\ldots+Y_{1000}
$$

Set

$$
S_{1000}=Y_{1}+\ldots+Y_{1000}
$$

Therefore,

$$
\begin{aligned}
& \mathbb{P}\left\{X_{1000} \geq 1.3 s\right\}=\mathbb{P}\left\{S_{1000}\right.\geq 0.3 s\}=\mathbb{P}\left\{\frac{S_{1000}-1000 \cdot 0.52}{\sqrt{1000 \cdot 0.52 \cdot 0.48}} \geq \frac{0.3 s-1000 \cdot 0.52}{\sqrt{1000 \cdot 0.52 \cdot 0.48}}\right\} \\
&=1-\Phi\left(\frac{0.3 s-1000 \cdot 0.52}{\sqrt{1000 \cdot 0.52 \cdot 0.48}}\right) .
\end{aligned}
$$

As we can remark, this probability depend on $s$, and thus, if $s$ is to big, this probability will be 0 , and if $s$ is very small, then this will happen with probability close to 1 .

## Problem 5

1. The space is $(\Omega, \mathcal{F}, \mathbb{P})$ where $\Omega$ is the set of the people considered, $\mathcal{F}=2^{\Omega}$ is the power set of $\Omega$ and $\mathbb{P}\{\omega\}=\frac{1}{10^{5}}$.
2. Let $X$ describe the number of people that have the disease. Then,

$$
\mathbb{P}\{X \geq 4\}=1-\mathbb{P}\{X \leq 3\}=1-\sum_{k=0}^{3}\binom{5 \cdot 10^{5}}{k} \frac{1}{10^{5 k}}\left(1-\frac{1}{10^{5}}\right)^{5 \cdot 10^{5}-k}=\ldots
$$

3. In this situation ( $p$ very small and $n$ very large), the Poisson approximation is a very good approxiamation. We set $\lambda=\frac{4}{10^{5}}$. Then,

$$
\mathbb{P}\{X \geq 4\}=1-\mathbb{P}\{X \leq 3\}=1-e^{-\lambda} \sum_{k=0}^{3} \frac{\lambda^{k}}{k!}=\ldots
$$

which is $\underbrace{\text { much much ... much }}$ easier to compute.
$n$ times

## Problem 7

1. It's not since $\{1, \ldots, 5\}^{c}=\{6\} \notin \mathcal{F}_{1}$.
2. Yes it is. One can check that $\mathcal{F}_{2}$ is stable by finite union, finite intersection and complementary (it's a bit long, but quite easy).
3. No it's not since $\{1,2,3,\} \cap\{1,2\}^{c}=\{3\} \notin \mathcal{F}_{3}$.
4. No it's not since $\{1,2\} \cap\{2,3,4,5,6\}=\{2\} \notin \mathcal{F}_{4}$.

## Problem 8

1. For all $A \in \mathcal{F}$,

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

2. The event $A, B \in \mathcal{F}$ are independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

## Problem 9

We'll prove only that

$$
\mathcal{B}(\mathbb{R})=\sigma\{(a, b] \mid-\infty<a<b<+\infty\}
$$

where $\sigma(\mathcal{A})$ is the $\sigma$-algebra generated by $\mathcal{A}$ (i.e. the smallest $\sigma$-algebra that contain $\mathcal{A}$ ). The others are proved in the same way.

Let $a, b \in \mathbb{R}$ s.t. $a<b$. Remark that

$$
(a, b]=\bigcup_{n=1}^{\infty}\left(a, b+\frac{1}{n}\right) .
$$

Since $I_{n}:=\left(a, b+\frac{1}{n}\right)$ are open for all $n, I_{n}$ belongs to $\mathcal{B}(\mathbb{R})$ for all $n$. Since $\mathcal{B}(\mathbb{R})$ is stable by countable union, we get that $[a, b) \in \mathcal{B}(\mathbb{R})$. Therefore

$$
\sigma\{(a, b] \mid-\infty<a<b<+\infty\} \subset \mathcal{B}(\mathbb{R})
$$

Therefore $\mathcal{B}(\mathbb{R})$ contains $\{(a, b] \mid-\infty<a<b<+\infty\}$ and thus it contains $\sigma\{(a, b] \mid-\infty<a<b<+\infty\}$. Therefore

$$
\{(a, b] \mid-\infty<a<b<+\infty\} \subset \mathcal{B}(\mathbb{R})
$$

We recall that $\mathcal{B}(\mathbb{R})$ is the smallest $\sigma$-algebra that contains all opens sets. We therefore have to show that $\sigma\{(a, b] \mid-\infty<a<b<+\infty\}$ contains the open set to conclude that

$$
\mathcal{B}(\mathbb{R}) \subset \sigma\{(a, b] \mid-\infty<a<b<+\infty\}
$$

All open set are countable union of open interval of the form $(a, b)$ with $a, b \in \mathbb{R}$. So if we prove that $(a, b) \in \sigma\{(a, b] \mid-\infty<a<b<+\infty\}$ for all $a, b \in \mathbb{R}$ we are done. Let $N$ s.t. $b-\frac{1}{n}>a$ for all $n \geq N$. Therefore

$$
(a, b)=\bigcup_{n \geq N}\left(a, b-\frac{1}{n}\right]
$$

Since $\sigma\{(a, b] \mid-\infty<a<b<+\infty\}$ is stable by countable union and that $\left(a, b-\frac{1}{n}\right] \in \sigma\{(a, b] \mid$ $-\infty<a<b<+\infty\}$ for all $n \geq N$, we get that $(a, b) \in \sigma\{(a, b] \mid-\infty<a<b<+\infty\}$, and thus $\sigma\{(a, b] \mid-\infty<a<b<+\infty\}$ contain the opens set of $\mathbb{R}$ and thus

$$
\mathcal{B}(\mathbb{R}) \subset \sigma\{(a, b] \mid-\infty<a<b<+\infty\}
$$

Finally we have that

$$
\mathcal{B}(\mathbb{R})=\sigma\{(a, b] \mid-\infty<a<b<+\infty\}
$$

## Problem 10

We have that

$$
\{x\}=\bigcup_{n=1}^{\infty}\left(x-\frac{1}{n}, x+\frac{1}{n}\right) .
$$

Since $I_{n}:=\left(x-\frac{1}{n}, x+\frac{1}{n}\right)$ is open for all $n$, all $I_{n}$ belong to $\mathcal{B}(\mathbb{R})$. Since $\mathcal{B}(\mathbb{R})$ is stable by countable union, $\bigcup_{n \in \mathbb{N}} I_{n} \in \mathcal{B}(\mathbb{R})$. Therefore $\{x\} \in \mathcal{B}(\mathbb{R})$.

