Probability : Sheet 6 (solution)

Problem 1

Let X_i is 1 if the i^{th} person is in favor of the new law, and 0 if the i^{th} person is not in favor the new law. Then $X_i \sim Bern(0.65)$. Let

$$S_{100} = X_1 + \ldots + X_{100} \sim Bern(100, 0.65).$$

We denote Φ the cumulative function of a $\mathcal{N}(0,1)$ law, i.e. if $X \sim \mathcal{N}(0,1)$,

$$\Phi(x) = \mathbb{P}\{X \le x\}.$$

1. Since the X_i 's are i.i.d.¹, using De Moivre Laplace theorem, we get

$$\mathbb{P}\{S_{100} \ge 50\} = \mathbb{P}\left\{\frac{S_{100} - 100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}} \ge \frac{50 - 100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}}\right\} = 1 - \Phi\left(\frac{50 - 100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}}\right).$$

2. Since the X_i 's i.i.d., using De Moivre Laplace theorem, we get

$$\mathbb{P}\{S_{100} \le 30\} = \mathbb{P}\left\{\frac{S_{100} - 100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}} \le \frac{30 - 100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}}\right\} = \Phi\left(\frac{30 - 100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}}\right)$$

3. Since the X_i 's i.i.d., using De Moivre Laplace theorem, we get

$$\mathbb{P}\{60 \le S_{100} \le 70\} = \mathbb{P}\left\{\frac{60 - 100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}} \le \frac{S_{100} - 100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}} \le \frac{70 - 100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}}\right\}$$
$$= \Phi\left(\frac{70 - 100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}}\right) - \Phi\left(\frac{60 - 100 \cdot 0.65}{\sqrt{100 \cdot 0.65 \cdot 0.35}}\right).$$

Problem 2

Let X_i be 1 if the dice show 6 at the i^{th} thrown and 0 if it show something else at the i^{th} thrown. Then $X_i \sim Bern\left(\frac{1}{6}\right)$. Let

$$S_{1000} = X_1 + \ldots + X_{1000} \sim Binom\left(1000, \frac{1}{6}\right)$$

1. Using a Poisson approximation,

$$\mathbb{P}\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda},$$

where $\lambda = \frac{1000}{6}$. Therefore,

$$\mathbb{P}\{150 \le X \le 200\} = \sum_{k=150}^{200} \mathbb{P}\{X=k\} = e^{-\lambda} \sum_{k=150}^{200} \frac{\lambda^k}{k!}.$$

We unfortunately can't write this sum as a closed form. One can use a calculator to compute the sum.

^{1.} independent and identically distributed

2. We have that

$$\mathbb{P}\left\{\frac{150 - 1000 \cdot \frac{1}{6}}{\sqrt{1000 \cdot \frac{5}{36}}} \le \frac{S_{1000} - 1000 \cdot \frac{1}{6}}{\sqrt{1000 \cdot \frac{5}{36}}} \le \frac{200 - 1000 \cdot \frac{1}{6}}{\sqrt{1000 \cdot \frac{5}{36}}}\right\},\$$

and since the X_i 's i.i.d., we get using De Moivre-Laplace,

$$\mathbb{P}\{150 \le S_{1000} \le 200\} = \Phi\left(\frac{200 - 1000 \cdot \frac{1}{6}}{\sqrt{1000 \cdot \frac{5}{36}}}\right) - \Phi\left(\frac{150 - 1000 \cdot \frac{1}{6}}{\sqrt{1000 \cdot \frac{5}{36}}}\right).$$

Problem 3

Let X_i the price of a stock at the i^{th} period. We have that

$$\mathbb{P}\{X_{i+1} = uX_i\} = p \text{ and } \mathbb{P}\{X_{i+1} = dX_i\} = 1 - p.$$

Let $X_0 = s$. We have to compute

$$\mathbb{P}\left\{X_{1000} \ge 1.3s\right\}.$$

Set $Y_i = X_i - X_{i-1}$ for i = 1, ..., 1000. We have that the Y_i 's are independents (by hypothesis), $Y_i \sim Bern(0.52)$ for all i and

$$X_{1000} = s + Y_1 + \ldots + Y_{1000}.$$

 Set

$$S_{1000} = Y_1 + \ldots + Y_{1000}.$$

Therefore,

$$\mathbb{P}\{X_{1000} \ge 1.3s\} = \mathbb{P}\{S_{1000} \ge 0.3s\} = \mathbb{P}\left\{\frac{S_{1000} - 1000 \cdot 0.52}{\sqrt{1000 \cdot 0.52 \cdot 0.48}} \ge \frac{0.3s - 1000 \cdot 0.52}{\sqrt{1000 \cdot 0.52 \cdot 0.48}}\right\}$$
$$= 1 - \Phi\left(\frac{0.3s - 1000 \cdot 0.52}{\sqrt{1000 \cdot 0.52 \cdot 0.48}}\right).$$

As we can remark, this probability depend on s, and thus, if s is to big, this probability will be 0, and if s is very small, then this will happen with probability close to 1.

Problem 5

- 1. The space is $(\Omega, \mathcal{F}, \mathbb{P})$ where Ω is the set of the people considered, $\mathcal{F} = 2^{\Omega}$ is the power set of Ω and $\mathbb{P}\{\omega\} = \frac{1}{10^5}$.
- **2.** Let X describe the number of people that have the disease. Then,

$$\mathbb{P}\{X \ge 4\} = 1 - \mathbb{P}\{X \le 3\} = 1 - \sum_{k=0}^{3} \binom{5 \cdot 10^5}{k} \frac{1}{10^{5k}} \left(1 - \frac{1}{10^5}\right)^{5 \cdot 10^5 - k} = \dots$$

3. In this situation (*p* very small and *n* very large), the Poisson approximation is a very good approximation. We set $\lambda = \frac{5 \cdot 10^5}{10^5} = 5$. Then,

$$\mathbb{P}\{X \ge 4\} = 1 - \mathbb{P}\{X \le 3\} = 1 - e^{-\lambda} \sum_{k=0}^{3} \frac{\lambda^k}{k!} = \dots$$

which is much much ... much easier to compute.

n times

Problem 7

- **1.** It's not since $\{1, \ldots, 5\}^c = \{6\} \notin \mathcal{F}_1$.
- 2. Yes it is. One can check that \mathcal{F}_2 is stable by finite union, finite intersection and complementary (it's a bit long, but quite easy).
- **3.** No it's not since $\{1, 2, 3, \} \cap \{1, 2\}^c = \{3\} \notin \mathcal{F}_3$.
- 4. No it's not since $\{1,2\} \cap \{2,3,4,5,6\} = \{2\} \notin \mathcal{F}_4$.

Problem 8

1. For all $A \in \mathcal{F}$,

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

2. The event $A, B \in \mathcal{F}$ are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Problem 9

We'll prove only that

$$\mathcal{B}(\mathbb{R}) = \sigma\{(a, b] \mid -\infty < a < b < +\infty\}$$

where $\sigma(\mathcal{A})$ is the σ -algebra generated by \mathcal{A} (i.e. the smallest σ -algebra that contain \mathcal{A}). The others are proved in the same way.

Let $a, b \in \mathbb{R}$ s.t. a < b. Remark that

$$(a,b] = \bigcup_{n=1}^{\infty} \left(a,b+\frac{1}{n}\right).$$

Since $I_n := (a, b + \frac{1}{n})$ are open for all n, I_n belongs to $\mathcal{B}(\mathbb{R})$ for all n. Since $\mathcal{B}(\mathbb{R})$ is stable by countable union, we get that $[a, b) \in \mathcal{B}(\mathbb{R})$. Therefore

$$\sigma\{(a,b] \mid -\infty < a < b < +\infty\} \subset \mathcal{B}(\mathbb{R}).$$

Therefore $\mathcal{B}(\mathbb{R})$ contains $\{(a, b] \mid -\infty < a < b < +\infty\}$ and thus it contains $\sigma\{(a, b] \mid -\infty < a < b < +\infty\}$. Therefore

$$\sigma\{(a,b] \mid -\infty < a < b < +\infty\} \subset \mathcal{B}(\mathbb{R}).$$

We recall that $\mathcal{B}(\mathbb{R})$ is the smallest σ -algebra that contains all opens sets. We therefore have to show that $\sigma\{(a,b) \mid -\infty < a < b < +\infty\}$ contains the open set to conclude that

$$\mathcal{B}(\mathbb{R}) \subset \sigma\{(a, b] \mid -\infty < a < b < +\infty\}$$

All open set are countable union of open interval of the form (a, b) with $a, b \in \mathbb{R}$. So if we prove that $(a, b) \in \sigma\{(a, b] \mid -\infty < a < b < +\infty\}$ for all $a, b \in \mathbb{R}$ we are done. Let N s.t. $b - \frac{1}{n} > a$ for all $n \ge N$. Therefore

$$(a,b) = \bigcup_{n \ge N} \left(a, b - \frac{1}{n} \right)$$

Since $\sigma\{(a,b] \mid -\infty < a < b < +\infty\}$ is stable by countable union and that $(a, b - \frac{1}{n}] \in \sigma\{(a,b] \mid -\infty < a < b < +\infty\}$ for all $n \ge N$, we get that $(a,b) \in \sigma\{(a,b] \mid -\infty < a < b < +\infty\}$, and thus $\sigma\{(a,b] \mid -\infty < a < b < +\infty\}$ contain the opens set of \mathbb{R} and thus

$$\mathcal{B}(\mathbb{R}) \subset \sigma\{(a, b] \mid -\infty < a < b < +\infty\}.$$

Finally we have that

$$\mathcal{B}(\mathbb{R}) = \sigma\{(a, b] \mid -\infty < a < b < +\infty\}$$

Problem 10

We have that

$$\{x\} = \bigcup_{n=1}^{\infty} \left(x - \frac{1}{n}, x + \frac{1}{n}\right).$$

Since $I_n := (x - \frac{1}{n}, x + \frac{1}{n})$ is open for all n, all I_n belong to $\mathcal{B}(\mathbb{R})$. Since $\mathcal{B}(\mathbb{R})$ is stable by countable union, $\bigcup_{n \in \mathbb{N}} I_n \in \mathcal{B}(\mathbb{R})$. Therefore $\{x\} \in \mathcal{B}(\mathbb{R})$.