# **Probability**: Sheet 5 (solution)

## Problem 2

We just have to prove that  $\mathbb{P}(\Omega) = 1$ , and all properties of a measure will follow. Set

$$A_k = \{(\omega_1, \dots, \omega_n) \in \Omega \mid |\{\omega_i = 1 \mid i = 1, \dots, n\}| = k\}.$$

Then  $\Omega = \bigcup_{k=0}^n \mathcal{A}_i$  and the union is disjoint. Remark that if  $\omega \in \mathcal{A}_k$ , then  $\sum_{i=1}^n \omega_i = k$ , and thus

$$\mathbb{P}\{\omega\} = p^k (1-p)^{n-k}.$$

Moreover,  $|\mathcal{A}_k| = \binom{n}{k}$ . Therefore

$$\mathbb{P}(\Omega_k) = \binom{n}{k} p^k (1-p)^{n-k},$$

and thus,

$$\mathbb{P}(\Omega) = \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} = 1,$$

where the last inequality come from binomial theorem.

#### Problem 3

If  $S_n$  is a  $\mathcal{B}_{n,p}$  r.v., then

$$\mathbb{P}\{S_n = k\} = \binom{n}{k} p^k (1-p)^{n-k}.$$

Suppose  $n \geq 2$ . Therefore,

$$\mathbb{E}S_n = \sum_{k=0}^n k \mathbb{P}\{S_n = k\} = \sum_{k=0}^n k \frac{n!}{(n-k)!k!} p^k (1-p)^{n-k} = \sum_{k=1}^n \underbrace{\frac{n!}{(n-k)!(k-1)!}}_{=n\binom{n-1}{k-1}} p^k (1-p)^{n-k}$$

$$= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{n-k} = np \underbrace{\sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{n-1-k}}_{=1} = np.$$

For the variance, we know that

$$\operatorname{Var}(S_n) = \mathbb{E}[S_n^2] - \mathbb{E}[S_n]^2.$$

<sup>1.</sup> For example, if we take n=3, then  $\mathcal{A}_0=\{(0,0,0)\}$ ,  $\mathcal{A}_1=\{(1,0,0),(0,1,0),(0,0,1)\}$ ,  $\mathcal{A}_2=\{(1,1,0),(0,1,1),(1,0,1)\}$  and  $\mathcal{A}_3=\{(1,1,1)\}$ .

Moreover,

$$\mathbb{E}[S_n^2] = \sum_{k=0}^n k^2 \mathbb{P}\{S_n = k\} = \sum_{k=0}^n k^2 \frac{n!}{(n-k)!k!} p^k (1-p)^{n-k} = \sum_{k=1}^n k \frac{n!}{(n-k)!(k-1)!} p^k (1-p)^{n-k}$$

$$= \sum_{k=1}^n (k-1) \frac{n!}{(n-k)!(k-1)!} p^k (1-p)^{n-k} + \sum_{k=1}^n \frac{n!}{(n-k)!(k-1)!} p^k (1-p)^{n-k}$$

$$= n(n-1) \sum_{k=2}^n \frac{n-2}{(n-k)!(k-2)!} p^k (1-p)^{n-k} + np = n(n-1) p^2 \sum_{k=2}^n \binom{n-2}{k-2} p^{k-2} (1-p)^{n-k} + np$$

$$= n(n-1) p^2 \sum_{k=0}^{n-2} \binom{n-2}{k} p^k (1-p)^{n-2-k} + np = n(n-1) p^2 + np.$$

Therefore

$$Var(S_n) = \mathbb{E}[S_n^2] - \mathbb{E}[S_n]^2 = n(n-1)p^2 + np - n^2p^2 = np(1-p).$$

## Problem 4

Let  $X_i$  the r.v. that is 1 if the  $i^{th}$  letter is incorrect and 0 otherwise. So  $X_i$  are independent and follow a Bernoulli distribution with parameter 1-p. We have that  $S:=S_n=X_1+\ldots+X_n$ , that is the sum of n independent Bernoulli of parameter 1-p, and thus S follow a Binomial distribution  $\mathcal{B}(n,1-p)$ . Therefore

$$\mathbb{P}{S = r} = \binom{n}{r} (1-p)^r p^{n-r}.$$

#### Problem 5

Let  $X_i$  the random variable that is 1 if the  $i^{th}$  children go to school. The  $X_i$  are independent and follow a Bernoulli distribution of parameter 0.62. Let  $S_{500} = X_1 + \ldots + X_{500}$ . It's a sum of 500 independent Bernoulli r.v. of parameter 0.62, and thus  $S_{100}$  follow a Binomial distribution  $\mathcal{B}(500, 0.62)$ . Therefore

$$\mathbb{P}\{S_{500} \ge 290\} = \sum_{k=290}^{500} {500 \choose k} 0.62^k 0.38^{500-k}.$$

#### Problem 6

- 1. Left to the reader.
- 2. Left to the reader.
- **3.** Let X a random variable that follow a  $Geom_p$  distribution. We have to prove that  $\mathbb{P}\{X \in \mathbb{N}^*\} = 1$ .

$$\mathbb{P}\{X \in \mathbb{N}^*\} = \sum_{k=1}^{\infty} \mathbb{P}\{X = k\} = \sum_{k=1}^{\infty} (1 - p)^{k-1} p$$

$$= p \sum_{k=0}^{\infty} (1-p)^k = p \cdot \frac{1}{1 - (1-p)} = p \cdot \frac{1}{p} = 1.$$

4.

$$\mathbb{E}[Y] = \sum_{k=1}^{\infty} k \mathbb{P}\{X = k\} = p \sum_{k=1}^{\infty} k(1-p)^k = p \sum_{k=1}^{\infty} k(1-p)^{k-1}$$

The sum

$$\sum_{k=1}^{\infty} kq^{k-1} = \frac{\mathrm{d}}{\mathrm{d}x} \Big|_{x=q} \frac{1}{1-x} = \frac{1}{(1-x)^2},$$

and thus

$$\sum_{k=1}^{\infty} k(1-p)^{k+1} = \frac{1}{(1-(1-p))^2} = \frac{1}{p^2}.$$

Therefore

$$\mathbb{E}[Y] = p \cdot \frac{1}{p^2} = \frac{1}{p}.$$

To compute the variance, we use

$$Var(Y) = \mathbb{E}[Y^2] = \mathbb{E}[Y]^2.$$

$$\mathbb{E}[Y^2] = \sum_{k=1}^{\infty} k^2 \mathbb{P}\{X = k\} = p \sum_{k=1}^{\infty} k^2 (1-p)^{k-1}.$$

We have that

$$\sum_{k=1}^{\infty} kx^k = x \sum_{k=1}^{\infty} kx^{k-1} = x \cdot \frac{\mathrm{d}}{\mathrm{d}x} \sum_{k=0}^{\infty} x^k = x \left( \frac{1}{1-x} \right)' = \frac{x}{(1-x)^2}.$$

Also

$$\sum_{k=1}^{\infty} k^2 x^{k-1} = \frac{\mathrm{d}}{\mathrm{d}x} \sum_{k=1}^{\infty} k x^k = \left(\frac{x}{(1-x)^2}\right)' = \frac{1+x}{(1-x)^3}.$$

Therefore,

$$\mathbb{E}[Y^2] = p \cdot \frac{1 + (1 - p)}{(1 - (1 - p))^3} = \frac{2 - p}{p^2},$$

and thus

$$Var(Y) = \frac{2-p}{p^2} - \frac{1}{p^2} = \frac{1-p}{p^2}.$$

## Problem 7

1. One way it see it is the following: Let  $X_i$ , the  $i^{th}$  solar panel is defect. The  $X_i$ 's are independent r.v. that follow a Bernoulli distribution of parameter 0.02. Then,  $S_{100} = X_1 + \ldots + X_{100}$  follow a Binomial distribution  $\mathcal{B}(100, 0.02)$ . Therefore

$$\mathbb{P}\{S_{100} = 0\} = \binom{100}{0} 0.02^0 \cdot 0.98^{100} = 0.98^{100}.$$

An other way to model the problem is the following: V denote the number of the first defect panel. Then V follow a  $Geom_{0,2}$  distribution. Then having no defect panel among the 100 first panel is

$$\mathbb{P}{V > 100} = (1-p)^{100} = 0.98^{100}.$$

2. By the memorylessness property

$$\mathbb{P}\{V \leq 1000 \mid V > 100\} = 1 - \mathbb{P}\{V > 1000 \mid V > 100\} = 1 - \mathbb{P}\{V > 900\} = 1 - (1 - 0.2)^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.98^{900} = 1 - 0.$$

3. Using problem 6, we have that

$$\mathbb{E}[V] = \frac{1}{0.02} = 50$$
 and  $Var(V) = 2450$ .

## Problem 8

We recall that  $X \sim Poiss(\lambda)$  if

$$\mathbb{P}\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda}, \quad k \in \mathbb{N}.$$
 
$$\mathbb{E}[X] = \sum_{k=0}^{\infty} k\mathbb{P}\{X=k\} = \sum_{k=0}^{\infty} k\frac{\lambda^k}{k!}e^{-\lambda} = e^{-\lambda}\lambda\sum_{k=0}^{\infty} \frac{\lambda^{k-1}}{(k-1)^2} = e^{-\lambda}\lambda\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda}\lambda e^{\lambda} = \lambda.$$

We also have

$$\mathbb{E}[X^2] = \sum_{k=0}^{\infty} k^2 \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \left( \sum_{k=1}^{\infty} (k-1) \frac{\lambda^k}{(k-1)!} + \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} \right)$$

$$= e^{-\lambda} \left( \lambda^2 \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} + \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} \right) = e^{-\lambda} (\lambda^2 + \lambda) e^{\lambda} = \lambda^2 + \lambda.$$

Therefore,

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \lambda^2 + \lambda - \lambda^2 = \lambda.$$

## Facultative Exercise

Using Binomial theorem, we have

$$\left(1 + \frac{x}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{x^k}{n^k} = \sum_{k=0}^n \frac{x^k}{k!} \prod_{i=0}^{k-1} \left(1 - \frac{i}{n}\right).$$

The last equality come from the fact that

$$\frac{n!}{(n-k)!} = n(n-1)(n-2) \cdot (n-k+1)$$

$$= n^k \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{k-1}{n}\right)$$

$$= n^k \prod_{i=0}^{k-1} \left(1 - \frac{i}{n}\right).$$

Set

$$S_n = \sum_{k=0}^n \frac{x^k}{k!} \prod_{i=0}^{k-1} \left(1 - \frac{i}{n}\right).$$

Set

$$T_n = \sum_{k=0}^n \frac{x^k}{k!}.$$

Fix  $n \in \mathbb{N}^*$ . Then, for all  $k \leq n$ , then

$$\prod_{i=0}^{k-1} \left(1 - \frac{i}{n}\right) \le 1.$$

Therefore  $S_n \leq T_n$  for all n, and thus

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = \lim_{n \to \infty} T_n \ge \lim_{n \to \infty} S_n = e^x.$$

For the converse inequality, let  $m \leq n$ . Then,

$$\sum_{k=0}^{m} \frac{x^k}{k!} \prod_{i=0}^{k-1} \left( 1 - \frac{k}{n} \right) \le \sum_{k=0}^{n} \frac{x^k}{k!} \prod_{i=0}^{k-1} \left( 1 - \frac{k}{n} \right) = S_n.$$

Therefore,

$$T_m = \lim_{n \to \infty} \sum_{k=0}^m \frac{x^k}{k!} \prod_{i=0}^{k-1} \left( 1 - \frac{k}{n} \right) \le \lim_{n \to \infty} S_n = e^x.$$

Finally, we get

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = \lim_{m \to \infty} T_m \le e^x,$$

and thus

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x.$$