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Problem 2

We just have to prove that P(2) = 1, and all properties of a measure will follow. Set
Ay ={(w1,...,wn) €Q|{wi=1]i=1,...,n} =k}.}
Then Q = (J;_, A; and the union is disjoint. Remark that il w € Ay, then Y " | w; = k, and thus
P{w} = p*(1—p)" "
Moreover, |Ax| = (7). Therefore
P() = (Z)pk(l -
and thus,
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where the last inequality come from binomial theorem.

Problem 3
If S, is a By, r.v., then

Suppose n > 2. Therefore,
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For the variance, we know that
Var(S,) = E[S2] — E[S,]?.
1. For example, if we take n = 3, then Ay = {(0,0,0)}, A = {(1,0,0),(0,1,0),(0,0,1)}, A2 =

{(1,1,0),(0,1,1),(1,0,1)} and Az = {(1,1,1)}.



Moreover,
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Therefore
|- IE[Sn]2 =n(n— 1)p2 +np —n’p? = np(1 — p).

Problem 4

Let X; the r.v. that is 1 if the i*” letter is incorrect and 0 otherwise. So X; are independent and follow
a Bernoulli distribution with parameter 1 — p. We have that S := 5, = X1 + ...+ X, that is the sum
of n independent Bernoulli of parameter 1 — p, and thus S follow a Binomial distribution B(n,1 — p).
Therefore

pis =)= (") a-p

Problem 5

Let X, the random variable that is 1 if the i** children go to school. The X; are independent and follow
a Bernoulli distribution of parameter 0.62. Let S500 = X1 + ... + X500. It’s a sum of 500 independent
Bernoulli r.v. of parameter 0.62, and thus Sy follow a Binomial distribution 5(500,0.62). Therefore

500

P{S500 > 290} = Z (52()) 0.62%0.38500—k
k=290

Problem 6

1. Left to the reader.
2. Left to the reader.
3. Let X arandom variable that follow a Geom,, distribution. We have to prove that P{X € N*} = 1.

PX eN} = iP{X =k} = i(l —p)!
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and thus
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Therefore

To compute the variance, we use

Var(Y) = E[Y?] = E[Y]?.

E[Y?] = f: EP{X =k} = pi k(1 —p)k—t
k=1 k=1

We have that
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Problem 7

1. One way it see it is the following : Let X;, the i*" solar panel is defect. The X;’s are independent
r.v. that follow a Bernoulli distribution of parameter 0.02. Then, S99 = X1 + ... + X190 follow a
Binomial distribution B(100,0.02). Therefore

100

P{S190 =0} = ( 0 )0.020 - 0.98'90 = (.98100,

An other way to model the problem is the following : V' denote the number of the first defect panel.
Then V follow a Geomg.o distribution. Then having no defect panel among the 100 first panel is

P{V > 100} = (1 — p)'%° = 0.98%.
2. By the memorylessness property
P{V <1000 | V > 100} = 1-P{V > 1000 | V > 100} = 1-P{V > 900} = 1—(1-0.2)%° = 1-0.98%°.

3. Using problem 6, we have that

1
E[V] = 003 = 50 and Var(V) = 2450.



Problem 8
We recall that X ~ Poiss()) if

)\k Y

ﬁe 5 k € N.

P{X =k} =
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We also have
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Therefore,
Var(X) =E[X?| —E[X]? = A2+ A - A2 =\

Facultative Exercise

Using Binomial theorem, we have
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The last equality come from the fact that

=nn—1)n-2)-(n—k+1)

) (D)0

(n—k)!

=0
Set
n .’Ek k—1 i
=g I 3)
k=0 1=0
Set .
k
T, =3 "
k=0

Fix n € N*. Then, for all £ < n, then

Therefore S,, < T,, for all n, and thus
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For the converse inequality, let m < n. Then,
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Therefore,
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Finally, we get

and thus



