Probability : Sheet 4 (solution)

Problem 1

Define the random variable $Y: \Omega \rightarrow \mathbb{R}$ by $Y(\omega)=\omega$. In particular, $\mathbb{P}\{Y \in \Omega\}=1$.

1. If we set $g(k)=2^{k}, k \in \mathbb{N}^{*}$, then $X=g(Y)$. By a formulae of the lecture

$$
\mathbb{E}[X]=\mathbb{E}[g(Y)]=\sum_{k=1} g(k) \mathbb{P}\{Y=k\}=\sum_{k=1}^{\infty} 2^{k} \mathbb{P}\{Y=k\}=\sum_{k=1}^{\infty} 2^{k} \cdot 2^{-k}=\infty
$$

2. If we set $f(k)=\left(\frac{3}{2}\right)^{k}, k \in \mathbb{N}^{*}$ then $Y=g(Y)$. By a formulae of the lecture

$$
\mathbb{E}[X]=\mathbb{E}[g(Y)]=\sum_{k=1}^{\infty} f(k) \mathbb{P}\{Y=k\}=\sum_{k=1}^{\infty}\left(\frac{3}{4}\right)^{k}=3 .
$$

3. If we set $h(k)=(-1)^{k} 2^{k}, k \in \mathbb{N}^{*}$, then $X=h(Y)$ and thus

$$
\mathbb{E}[X]=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} g(k) \mathbb{P}\{Y=k\}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}(-1)^{k} 2^{k} \cdot \frac{1}{2^{k}}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}(-1)^{k}
$$

and since the last limit doesn't exist, the expectation doesn't exist.

Problem 3

Let $Y(\omega)=\omega$. Then the range of Y is Ω, and thus, since $X=|Y|$, we get

$$
\mathbb{E}[X]=\mathbb{E}[|Y|]=\sum_{k=-2}^{2}|k|^{2} \mathbb{P}\{Y=k\}=2 \cdot 2 \cdot \frac{1}{8}+2 \cdot \frac{1}{8}+0 \cdot \frac{1}{2}=\frac{3}{4}
$$

To compute the variance, we use the fact that

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

Since $X^{2}=Y^{2}$, we have

$$
\mathbb{E}\left[X^{2}\right]=\sum_{k=-2}^{2} k^{2} \mathbb{P}\{Y=k\}=2 \cdot 4 \cdot \frac{1}{8}+2 \cdot \frac{1}{8}+0 \cdot \frac{1}{2}=\frac{5}{4}
$$

Therefore

$$
\operatorname{Var}(X)=\frac{5}{4}-\frac{9}{16}=\frac{11}{16}
$$

Problem 5

We have that $\mathbb{P}\{X=k\}=\frac{1}{n}$ for all k. Therefore

$$
\mathbb{E}[X]=\sum_{k=1}^{n} k \mathbb{P}\{X=k\}=\frac{1}{n} \sum_{k=1}^{n} k=\frac{1}{n} \cdot \frac{n(n+1)}{2}=\frac{n+1}{2} .
$$

Let $Y=X^{2}$. The range of Y is $\mathcal{D}=\left\{k^{2} \mid k=1, \ldots, n\right\}$. Therefore,

$$
\begin{aligned}
\mathbb{E}[Y] & =\sum_{j \in \mathcal{D}} j \mathbb{P}\{Y=j\}=\sum_{k=1}^{n} k^{2} \mathbb{P}\{X=k\}=\frac{1}{n} \sum_{k=1}^{n} k^{2} \\
& =\frac{1}{n} \cdot \frac{n(n+1)(2 n+1)}{6}=\frac{(n+1)(2 n+1)}{6} \\
& =\frac{(n+1)}{2} \cdot \frac{(2 n+1)}{3} .
\end{aligned}
$$

Since $\frac{2 n+1}{3} \geq \frac{n+1}{2}$ for all $n \geq 1$, (you can prove it by induction), we get

$$
\mathbb{E}[X]^{2}=\frac{n+1}{2} \cdot \frac{n+1}{2} \leq \frac{n+1}{2} \cdot \frac{2 n+1}{3}=\mathbb{E}\left[X^{2}\right]
$$

Problem 6

By definition

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
$$

1. Using the exercise 8 of the sheet 3 , we know that $X \leq Y$ a.s. implies $\mathbb{E}[X] \leq \mathbb{E}[Y]$. Since

$$
(X-\mathbb{E}[X])^{2} \geq 0 \quad \text { a.s. }
$$

we get $\operatorname{Var}(X) \geq 0$.
2. Using linearity of expectation,

$$
\mathbb{E}[a X+b]=a \mathbb{E}[X]+b
$$

and thus

$$
\mathbb{E}\left[(a X+b-\mathbb{E}[a X+b])^{2}\right]=a^{2} \mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=a^{2} \operatorname{Var}(X)
$$

3. Since

$$
(X-\mathbb{E}[X])^{2}=X^{2}-2 x \mathbb{E}[X]+\mathbb{E}[X]^{2}
$$

we get using linearity of the expectation (and recalling that $\mathbb{E}[X] \in \mathbb{R}$) that

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}-2 X \mathbb{E}[X]+\mathbb{E}[X]^{2}\right]=\mathbb{E}\left[X^{2}\right]-2 \mathbb{E}[X] \mathbb{E}[X]+\mathbb{E}[X]^{2}=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

Problem 7

Using Exercise 8 of sheet 3 , we know that $\mathbb{E}\left[\mathbf{1}_{A}\right]=\mathbb{P}(A)$. Therefore, by 3. from the previous exercise,

$$
\operatorname{Var}\left(\mathbf{1}_{A}\right)=\mathbb{E}\left[\mathbf{1}_{A}^{2}\right]-\mathbb{E}\left[\mathbf{1}_{A}\right]^{2}=\mathbb{P}(A)-\mathbb{P}(A)^{2}=\mathbb{P}(A)(1-\mathbb{P}(A))=\mathbb{P}(A) \mathbb{P}\left(A^{c}\right)
$$

Problem 8

For me, Chebychev inequality and Markov inequality are the same... but in the litterature they can be a bit different. The idea is anyway to remark that

$$
|X| \geq|X| \mathbf{1}_{\{|X| \geq a\}} \geq a \mathbf{1}_{\{|X| \geq a\}}
$$

i.e.

$$
|X| \geq a \mathbf{1}_{\{|X| \geq a\}}
$$

Using the fact that $\mathbb{E}\left[\mathbf{1}_{A}\right]=\mathbb{P}(A)$ (see exercise 8 of the sheet 3) and the linearity of the expectation, we get

$$
\mathbb{E}[|X|] \geq a \mathbb{P}\{|X| \geq a\}
$$

or more commonly

$$
\mathbb{P}\{|X| \geq a\} \leq \frac{\mathbb{E}[|X|]}{a}
$$

Using this, you can get

$$
\mathbb{P}\{|X-\mathbb{E}[X]|>\varepsilon\}=\mathbb{P}\left\{|X-\mathbb{E}[X]|^{2}>\varepsilon^{2}\right\} \leq \frac{\operatorname{Var}(X)}{\varepsilon^{2}}
$$

it's maybe what you call Chebychev inequality?

