Probability : Sheet 3 (solution)

Problem 1

There are two ways to see the problem. I'll present both. I denote R the event "the result is red" and G the event "the result is green".

1. For $R G R R R$ we can see it as 5 independent Bernoulli experiment with parameter $\frac{2}{5}$ (if we consider that the success is R). So, if R_{i} is "having a red at the $i^{\text {th }}$ thrown" and $G_{i}=R_{i}^{c}$, then
$\mathbb{P}(R G R R R)=\mathbb{P}\left(R_{1} \cap G_{2} \cap R_{3} \cap R_{4} \cap R_{5}\right)=\mathbb{P}\left(R_{1}\right) \cdot \mathbb{P}\left(G_{2}\right) \cdot \mathbb{P}\left(R_{3}\right) \cdot \mathbb{P}\left(R_{4}\right) \cdot \mathbb{P}\left(R_{5}\right)=\frac{2^{4} \cdot 5}{6^{5}} \approx 8,3 \cdot 10^{-3}$.
For $R G R R R G$ and $G R R R R R$ it correspond to 6 independent Bernoulli experiment with parameter $\frac{2}{6}$ (if the success is still R). By a similar calculation, we get respectively for $R G R R R G$ and GRRRRR

$$
\frac{2^{4} \cdot 4^{2}}{6^{6}} \approx 5,4 \cdot 10^{-3} \quad \text { and } \quad \frac{4 \cdot 2^{5}}{6^{6}} \approx 2,7 \cdot 10^{-3}
$$

2. The second way is to consider the sample space

$$
\Omega=\left\{\left(i_{1}, \ldots, i_{5}\right) \mid i_{1}, \ldots, i_{5} \in\left\{R_{1}, R_{2}, G_{1}, G_{2}, G_{3}, G_{4}\right\}\right\}
$$

with

$$
\mathbb{P}\left\{\left(i_{1}, \ldots, i_{5}\right)\right\}=\frac{1}{|\Omega|}=\frac{1}{6^{5}}
$$

for $R G R R R$ and

$$
\tilde{\Omega}\left\{\left(i_{1}, \ldots, i_{6}\right) \mid i_{1}, \ldots, i_{6} \in\left\{R_{1}, R_{2}, G_{1}, G_{2}, G_{3}, G_{4}\right\}\right\}
$$

with

$$
\mathbb{P}\left\{\left(i_{1}, \ldots, i_{6}\right)\right\}=\frac{1}{|\tilde{\Omega}|}=\frac{1}{6^{6}}
$$

for $R G R R R G$ and $G R R R R R$.
To get $R G R R R$, is associated to the event

$$
E=\left\{\left(i_{1}, \ldots, i_{5}\right) \mid i_{2} \in\left\{G_{1}, \ldots, G_{4}\right\}, i_{1}, i_{3}, i_{4}, i_{5} \in\left\{R_{1}, R_{2}\right\}\right\}
$$

and thus

$$
\mathbb{P}(E)=\frac{|E|}{|\Omega|}=\frac{4 \cdot 2^{4}}{6^{5}}
$$

For $R G R R R G$ and $G R R R R R$, the events are respectively

$$
F=\left\{\left(i_{1}, \ldots, i_{6}\right) \mid i_{1}, i_{3}, i_{4}, i_{5} \in\left\{R_{1}, R_{2}\right\}, i_{2}, i_{6} \in\left\{G_{1}, G_{2}\right\}\right\}
$$

and

$$
G=\left\{\left(i_{1}, \ldots, i_{6}\right) \mid i_{1} \in\left\{G_{1}, \ldots, G_{4}\right\}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6} \in\left\{R_{1}, R_{2}\right\}\right\}
$$

Therefore,

$$
\mathbb{P}(F)=\frac{|F|}{|\tilde{\Omega}|}=\frac{2^{4} \cdot 4^{2}}{6^{6}} \quad \text { and } \quad \mathbb{P}(G)=\frac{|G|}{|\tilde{\Omega}|}=\frac{4 \cdot 2^{5}}{6^{6}}
$$

Problem 2

1. We have to write

$$
X+Y=\sum_{k=1}^{\infty} x_{k} \mathbf{1}_{\left\{X=x_{k}\right\}}+\sum_{k=1}^{\infty} y_{k} \mathbf{1}_{\left\{Y=y_{k}\right\}}
$$

as a sum of the form

$$
\sum_{k, \ell} c_{k, \ell} \mathbf{1}_{A_{k, \ell}}
$$

Notice that

$$
\mathbf{1}_{\Omega}=\mathbf{1}_{\bigcup_{i=1}^{\infty}\left\{X=x_{k}\right\}}=\sum_{i=1}^{\infty} \mathbf{1}_{\left\{X=x_{k}\right\}}
$$

and

$$
\mathbf{1}_{\Omega}=\mathbf{1}_{\bigcup_{i=1}^{\infty}\left\{Y=y_{k}\right\}}=\sum_{i=1}^{\infty} \mathbf{1}_{\left\{Y=y_{k}\right\}}
$$

where in both cases, the last inequality come from exercise 5 of this sheet exercise. We have that

$$
\begin{aligned}
\sum_{k=1}^{\infty} x_{k} \mathbf{1}_{\left\{X=x_{k}\right\}} & =\sum_{k=1}^{\infty} x_{k} \mathbf{1}_{\left\{X=x_{k}\right\}} \mathbf{1}_{\Omega}=\sum_{k=1}^{\infty} x_{k} \mathbf{1}_{\left\{X=x_{k}\right\}} \mathbf{1}_{\bigcup_{i=1}^{\infty}\left\{Y=y_{i}\right\}} \\
& =\sum_{k=1}^{\infty} \sum_{i=1}^{\infty} x_{k} \mathbf{1}_{\left\{X=x_{k}\right\}} \mathbf{1}_{\left\{Y=y_{i}\right\}} \underset{(*)}{=} \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} x_{k} \mathbf{1}_{\left\{X=x_{k}, Y=y_{i}\right\}}
\end{aligned}
$$

where $(*)$ come from the exercise 5 of this sheet. In the same way, we get

$$
\sum_{j=1}^{\infty} y_{j} \mathbf{1}_{\left\{Y=y_{j}\right\}}=\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} y_{j} \mathbf{1}_{\left\{X=x_{k}, Y=y_{j}\right\}}
$$

One can easily prove that

$$
\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} y_{j} \mathbf{1}_{\left\{X=x_{k}, Y=y_{j}\right\}}=\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} y_{j} \mathbf{1}_{\left\{X=x_{k}, Y=y_{j}\right\}}
$$

and thus

$$
X+Y=\sum_{k=1}^{\infty} \sum_{j=1}^{\infty}\left(x_{k}+y_{j}\right) \mathbf{1}_{\left\{X=x_{k}, Y=y_{j}\right\}}
$$

2. The result is immediate using exercise 5 of this sheet, and we get

$$
X Y=\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} x_{k} y_{j} \mathbf{1}_{\left\{X=x_{k}, Y=y_{j}\right\}}
$$

3. Let $\omega \in \Omega$. Then $\omega \in\left\{X=x_{k}\right\}$ for some k. In particular

$$
g(X)(\omega):=g(X(\omega))=g\left(x_{k}\right)
$$

Therefore,

$$
g(X)(\omega)=\sum_{k=1}^{\infty} g\left(x_{k}\right) \mathbf{1}_{\left\{X=x_{k}\right\}}
$$

Problem 5

We have to prove that for all $\omega \in \Omega$,

$$
\mathbf{1}_{A \cap B}(\omega)=\mathbf{1}_{A}(\omega) \mathbf{1}_{B}(\omega)
$$

and if A and B are disjoints,

$$
\mathbf{1}_{A \cup B}(\omega)=\mathbf{1}_{A}(\omega)+\mathbf{1}_{B}(\omega)
$$

1. We have by definition

$$
\mathbf{1}_{A \cap B}(\omega)= \begin{cases}1 & \omega \in A \cap B \\ 0 & \omega \in(A \cap B)^{c}\end{cases}
$$

Moreover

$$
\mathbf{1}_{A}(\omega) \mathbf{1}_{B}(\omega)=1 \Longleftrightarrow \mathbf{1}_{A}(\omega)=1 \text { and } \mathbf{1}_{B}(\omega)=1 \Longleftrightarrow \omega \in A \text { and } \omega \in B \Longleftrightarrow \omega \in A \cap B
$$

and

$$
\begin{gathered}
\mathbf{1}_{A}(\omega) \mathbf{1}_{B}(\omega)=0 \Longleftrightarrow \mathbf{1}_{A}(\omega)=0 \text { or } \mathbf{1}_{B}(\omega)=0 \Longleftrightarrow \omega \notin A \text { or } \omega \notin B \\
\Longleftrightarrow x \in A^{c} \text { or } x \in B^{c} \Longleftrightarrow \omega \in\left(A^{c} \cup B^{c}\right)=(A \cap B)^{c} .
\end{gathered}
$$

Therefore,

$$
\mathbf{1}_{A}(\omega) \mathbf{1}_{B}(\omega)=\left\{\begin{array}{ll}
1 & \omega \in A \cap B \\
0 & \omega \in(A \cap B)^{c}
\end{array}=\mathbf{1}_{A \cap B}(\omega)\right.
$$

2. The proof essentially goes the same. Here, the fact that A and B are disjoints gives $\mathbf{1}_{A}(\omega)+\mathbf{1}_{B}(\omega)=1 \Longleftrightarrow(\omega \in A$ and $\omega \notin B)$ or $(\omega \in B$ and $\omega \notin A) \Longleftrightarrow \omega \in\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)$.

Since A and B are disjoint, $A \cap B^{c}=A$ and $B \cap A^{c}=B$. Therefore,

$$
\mathbf{1}_{A}(\omega)+\mathbf{1}_{B}(\omega)=1 \Longleftrightarrow \omega \in A \cup B
$$

The rest of the proof is left to the reader.

Problem 6

Let

$$
X=\sum_{k=1}^{n} x_{k} \mathbf{1}_{A_{k}}
$$

Suppose with out loss of generality that x_{1}, \ldots, x_{k} all distincts $(k \geq n)$ and k maximal in the sense that if $\ell>k$, then $x_{\ell}=x_{i}$ for some $i \in\{1, \ldots, k\}$. For all $i \in\{1, \ldots, n\}$, set

$$
J_{i}=\left\{j \in\{1, \ldots, n\} \mid x_{j}=x_{i}\right\} .
$$

Notice that if $\ell \in J_{i}$ then $J_{\ell}=J_{i}$. Denote $A_{J_{i}}=\bigcup_{j \in J_{i}} A_{i}$. Remark that if $x_{i} \neq x_{j}$, then J_{i} and J_{j} are disjoints. Indeed, let $i \neq j$ with $x_{i} \neq x_{j}$. If $x \in J_{i} \cap J_{j}$, then $x=x_{i}=x_{j}$ which contradict $x_{i} \neq x_{j}$. Therefore $J_{i} \cap J_{j}=\varnothing$. Finally, by assumption on k and maximality of k,

$$
\bigcup_{i=1}^{k} J_{i}=\{1, \ldots, n\}
$$

and the union is disjoints. Set

$$
\begin{equation*}
A_{J_{i}}=\bigcup_{j \in J_{i}} A_{j} \tag{1}
\end{equation*}
$$

Then, for all i,

$$
X(\omega)=x_{i} \Longleftrightarrow \omega \in A_{J_{i}}
$$

By Problem 5, if A and B are disjoints, then $\mathbf{1}_{A \cup B}=\mathbf{1}_{A}+\mathbf{1}_{B}$, and thus, we can write X as

$$
X=\sum_{i=1}^{k} x_{i} \mathbf{1}_{A_{J_{i}}} \underset{(1)}{=} \sum_{i=1}^{k} x_{i} \mathbf{1}_{\left\{X=x_{i}\right\}}
$$

By definition of the expectation,

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=1}^{k} x_{i} \mathbb{P}\left\{X=x_{i}\right\}=\sum_{i=1}^{k} x_{i} \mathbb{P}\left(A_{J_{i}}\right) \\
& =\underset{(a)}{\bar{a}} \sum_{i=1}^{k} x_{i} \sum_{j \in J_{i}} \mathbb{P}\left(A_{j}\right)=\sum_{i=1}^{k} \sum_{j \in J_{i}} x_{i} \mathbb{P}\left(A_{j}\right) \\
& =\sum_{(b)}^{k} \sum_{i=1} x_{j} \mathbb{P}\left(A_{j}\right)=\sum_{j \in J_{1} \cup \ldots \cup J_{k}} x_{j} \mathbb{P}\left(A_{j}\right) \\
& =\sum_{j=1}^{n} x_{j} \mathbb{P}\left(A_{j}\right)
\end{aligned}
$$

where (a) is because the A_{i} 's are disjoints, and (b) because if $j \in J_{i}$ then $x_{i}=x_{j}$. The claim is proved.

Example

Here an example on how the proof works. Let consider consider $\Omega=\{1, \ldots, 6\}$ and the function

$$
X(\omega)=2 \cdot \mathbf{1}_{\{1\}}(\omega)+3 \cdot \mathbf{1}_{\{2\}}(\omega)+2 \cdot \mathbf{1}_{\{3\}}(\omega)+2 \cdot \mathbf{1}_{\{4\}}(\omega)+3 \cdot \mathbf{1}_{\{5\}}(\omega)+5 \cdot \mathbf{1}_{\{6\}}(\omega) .
$$

I can also write it as

$$
X(\omega)=2 \cdot \mathbf{1}_{\{1\}}(\omega)+3 \cdot \mathbf{1}_{\{2\}}(\omega)+5 \cdot \mathbf{1}_{\{6\}}(\omega)+2 \cdot \mathbf{1}_{\{3\}}(\omega)+2 \cdot \mathbf{1}_{\{4\}}(\omega)+3 \cdot \mathbf{1}_{\{5\}}(\omega) .
$$

Now, let write $x_{1}=2, x_{2}=3, x_{3}=5, x_{4}=2, x_{5}=2$ and $x_{6}=3$ and $A_{1}=\{1\}, A_{2}=\{2\}, A_{3}=\{6\}$, $A_{4}=\{3\}, A_{5}=\{4\}$ and $A_{6}=\{5\}$. So the A_{i} 's are disjoints, and

$$
X(\omega)=\sum_{i=1}^{6} x_{i} \mathbf{1}_{A_{i}}(\omega)
$$

The k in the beginning of the proof correspond here to 3 . So the list x_{1}, \ldots, x_{k} of distinct elements in the proof is x_{1}, x_{2}, x_{3} here and correspond to $2,3,5$. As you can see, adding any x_{i} for $i>3$ in x_{1}, x_{2}, x_{3} will add an element that is already in x_{1}, x_{2}, x_{3}. For example, if I want to add $x_{5}=2$, then 2 will appear twice (since $x_{1}=2$). So, the list x_{1}, x_{2}, x_{3} is maximal in the sense that adding any element of x_{4}, x_{5}, x_{6} will add an element that already exist in x_{1}, x_{2}, x_{3}. Now,

$$
J_{1}=\left\{i \in\{1, \ldots, 6\} \mid x_{i}=x_{1}\right\}=\left\{i \in\{1, \ldots, 6\} \mid x_{i}=2\right\}=\{1,3,4\}
$$

since $x_{1}=x_{4}=x_{5}=2$. Same,

$$
J_{2}=\left\{i \in\{1, \ldots, 6\} \mid x_{i}=x_{2}\right\}=\left\{i \in\{1, \ldots, 6\} \mid x_{i}=3\right\}=\{2,5\}
$$

since $x_{2}=x_{5}=3$. Finally,

$$
J_{3}=\left\{i \in\{1, \ldots, 6\} \mid x_{i}=x_{3}\right\}=\left\{i \in\{2, \ldots, 6\} \mid x_{i}=5\right\}=\{3\}
$$

As you can remark, the J_{i} 's are disjoints and

$$
\begin{equation*}
J_{1} \cup J_{2} \cup J_{3}=\{1, \ldots, 6\} \tag{2}
\end{equation*}
$$

Now we set,

$$
A_{J_{1}}=A_{1} \cup A_{3} \cup A_{4}, \quad A_{J_{2}}=A_{2} \cup A_{5}, \quad \text { and } \quad A_{J_{3}}=A_{3} .
$$

We can then write X as the sum

$$
\begin{aligned}
X(\omega) & =2 \cdot\left(\mathbf{1}_{\{1\}}(\omega)+\mathbf{1}_{\{3\}}(\omega)+\mathbf{1}_{\{4\}}(\omega)\right)+3 \cdot\left(\mathbf{1}_{\{2\}}(\omega)+\mathbf{1}_{\{5\}}(\omega)\right)+5 \cdot \mathbf{1}_{\{6\}}(\omega) \\
& =2 \cdot \mathbf{1}_{\{1,3,4\}}(\omega)+3 \cdot \mathbf{1}_{\{2,5\}}(\omega)+5 \cdot \mathbf{1}_{\{6\}}(\omega) \\
& =2 \cdot 1_{A_{J_{1}}}+3 \cdot \mathbf{1}_{A_{J_{2}}}+5 \cdot \mathbf{1}_{A_{J_{5}}},
\end{aligned}
$$

and since

$$
\begin{equation*}
A_{J_{1}}=\{X=2\}, \quad A_{J_{2}}=\{X=3\} \quad \text { and } \quad A_{J_{3}}=\{X=5\} \tag{3}
\end{equation*}
$$

we finally get

$$
X(\omega)=0 \cdot \mathbf{1}_{\{X=1\}}(\omega)+2 \cdot \mathbf{1}_{\{X=2\}}(\omega)+3 \cdot \mathbf{1}_{\{X=3\}}(\omega)+0 \cdot \mathbf{1}_{\{X=4\}}(\omega)+5 \cdot \mathbf{1}_{\{X=5\}}(\omega)+0 \cdot \mathbf{1}_{\{X=6\}}(\omega) .
$$

By definition of the expectation, we have

$$
\begin{aligned}
\mathbb{E}[X] & =0 \cdot \mathbb{P}\{X=1\}+2 \cdot \mathbb{P}\{X=2\}+3 \cdot \mathbb{P}\{X=3\}+0 \cdot \mathbb{P}\{X=4\}+5 \cdot \mathbb{P}\{X=5\}+0 \cdot \mathbb{P}\{X=6\} \\
& =2 \cdot \mathbb{P}\{X=2\}+3 \cdot \mathbb{P}\{X=3\}+5 \cdot \mathbb{P}\{X=5\} \\
& =2 \cdot \mathbb{P}\left(A_{J_{1}}\right)+3 \cdot \mathbb{P}\left(A_{J_{2}}\right)+5 \cdot \mathbb{P}\left(A_{J_{3}}\right) .
\end{aligned}
$$

Now, since the A_{i} 's are disjoints, we have that

$$
\mathbb{P}\left(A_{J_{1}}\right)=\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{3}\right)+\mathbb{P}\left(A_{4}\right) \quad \text { and } \quad \mathbb{P}\left(A_{J_{2}}\right)=\mathbb{P}\left(A_{2}\right)+\mathbb{P}\left(A_{5}\right)
$$

so

$$
\begin{aligned}
\mathbb{E}[X] & =2 \cdot\left(\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{3}\right)+\mathbb{P}\left(A_{4}\right)\right)+3 \cdot\left(\mathbb{P}\left(A_{2}\right)+\mathbb{P}\left(A_{5}\right)\right)+5 \cdot \mathbb{P}\left(A_{6}\right) \\
& =\left(2 \cdot \mathbb{P}\left(A_{1}\right)+2 \cdot \mathbb{P}\left(A_{4}\right)+2 \cdot \mathbb{P}\left(A_{5}\right)\right)+\left(3 \cdot \mathbb{P}\left(A_{2}\right)+3 \cdot \mathbb{P}\left(A_{5}\right)\right)+5 \cdot \mathbb{P}\left(A_{6}\right) \\
& =\sum_{i=1}^{3} \sum_{j \in J_{i}} 2 \mathbb{P}\left(A_{j}\right) \\
& =\sum_{i=1}^{3} \sum_{j \in J_{i}} x_{i} \mathbb{P}\left(A_{j}\right)
\end{aligned}
$$

But remember that if $j \in J_{i}$, then $x_{j}=x_{i}$. For example, for $j \in J_{1}$, we have

$$
\begin{equation*}
\sum_{j \in J_{1}} x_{1} \mathbb{P}\left(A_{j}\right)=\sum_{j \in\{1,3,4\}} x_{1} \mathbb{P}\left(A_{j}\right)=x_{1} \mathbb{P}\left(A_{1}\right)+x_{1} \mathbb{P}\left(A_{3}\right)+x_{1} \mathbb{P}\left(A_{4}\right) . \tag{4}
\end{equation*}
$$

But since $x_{1}=x_{3}=x_{4}=2$, the right hand side of (4) is nothing more than

$$
x_{1} \mathbb{P}\left(A_{1}\right)+x_{3} \mathbb{P}\left(A_{3}\right)+x_{4} \mathbb{P}\left(A_{4}\right)=\sum_{j \in\{1,3,4\}} x_{j} \mathbb{P}\left(A_{j}\right)=\sum_{j \in J_{1}} x_{j} \mathbb{P}\left(A_{j}\right) .
$$

So finally,

$$
\begin{equation*}
\sum_{i=1}^{3} \sum_{j \in J_{i}} x_{i} \mathbb{P}\left(A_{j}\right)=\sum_{i=1}^{3} \sum_{j \in J_{i}} x_{j} \mathbb{P}\left(A_{j}\right)=\sum_{j \in J_{1}} x_{j} \mathbb{P}\left(A_{j}\right)+\sum_{j \in J_{2}} x_{j} \mathbb{P}\left(A_{j}\right)+\sum_{j \in J_{3}} x_{j} \mathbb{P}\left(A_{j}\right) \tag{5}
\end{equation*}
$$

and since the J_{i} 's are disjoints, the right hand side of (5) is

$$
\sum_{j \in J_{1} \cup J_{2} \cup J_{3}} x_{j} \mathbb{P}\left(A_{j}\right) .
$$

But as (2), $J_{1} \cup J_{2} \cup J_{3}=\{1, \ldots, 6\}$ and thus

$$
\sum_{j \in J_{1} \cup J_{2} \cup J_{3}} x_{j} \mathbb{P}\left(A_{j}\right)=\sum_{j=1}^{6} x_{j} \mathbb{P}\left(A_{j}\right) .
$$

Finally, we conclude that $\mathbb{E}[X]$ is

$$
\mathbb{E}[X]=\sum_{i=1}^{6} x_{i} \mathbb{P}\left(A_{i}\right)
$$

as wished.

Problem 7

The prove goes by induction. For $n=1$, the result is obviously correct. I recall that a function $g: \mathbb{R} \longrightarrow \mathbb{R}$ is convex if for all $x, y \in \mathbb{R}$, and all $\lambda \in[0,1]$,

$$
g(\lambda x+(1-\lambda) y) \leq \lambda g(x)+(1-\lambda) g(y)
$$

Suppose that

$$
g\left(\sum_{i=1}^{n} a_{i} x_{i}\right) \leq \sum_{i=1}^{n} a_{i} g\left(x_{i}\right)
$$

for $\sum_{i=1}^{n} a_{i}=1$. Let $\lambda_{1}, \ldots, \lambda_{n+1} \geq 0$ s.t. $\sum_{i=1}^{n+1} \lambda_{i}=1$. Remark that

$$
\sum_{i=1}^{n+1} \lambda_{i} x_{i}=\left(1-\lambda_{n+1}\right) \underbrace{\frac{\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}}{1-\lambda_{n+1}}}_{=: y}+\lambda_{n+1} x_{n+1}=\left(1-\lambda_{n+1}\right) y+\lambda_{n+1} x_{n+1}
$$

Then

$$
\begin{equation*}
g\left(\sum_{i=1}^{n+1} \lambda_{i} x_{i}\right)=g\left(\left(1-\lambda_{n+1}\right) y+\lambda_{n+1} x_{n+1}\right) \underset{(1)}{\leq}\left(1-\lambda_{n+1}\right) g(y)+\lambda_{n+1} g\left(x_{n+1}\right) \tag{6}
\end{equation*}
$$

where (1) come from the definition of the convexity. If we set $a_{i}=\frac{\lambda_{i}}{1-\lambda_{n+1}}$, then

$$
y=a_{1} x_{1}+\ldots+a_{n} x_{n}
$$

and

$$
\sum_{i=1}^{n} a_{i}=\frac{\lambda_{1}+\ldots+\lambda_{n}}{1-\lambda_{n+1}}=\frac{1-\lambda_{n+1}}{1-\lambda_{n+1}}=1
$$

Therefore, by recurrence hypothesis,

$$
g(y)=\sum_{i=1}^{n} g\left(x_{i}\right) a_{i}
$$

and thus

$$
\begin{equation*}
\left(1-\lambda_{n+1}\right) \sum_{i=1}^{n} a_{i} g\left(x_{i}\right)=\sum_{i=1}^{n} \lambda_{i} g\left(x_{i}\right) . \tag{7}
\end{equation*}
$$

Combine (6) and (7) gives

$$
g\left(\sum_{i=1}^{n+1} a_{i} x_{i}\right) \leq \sum_{i=1}^{n+1} a_{i} g\left(x_{i}\right)
$$

