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Problem 1
There are two ways to see the problem. I’ll present both. I denote R the event "the result is red" and
G the event "the result is green".

1. For RGRRR we can see it as 5 independent Bernoulli experiment with parameter 2
5 (if we consider

that the success is R). So, if Ri is "having a red at the ith thrown" and Gi = Rci , then

P(RGRRR) = P(R1∩G2∩R3∩R4∩R5) = P(R1)·P(G2)·P(R3)·P(R4)·P(R5) =
24 · 5

65
≈ 8, 3·10−3.

For RGRRRG and GRRRRR it correspond to 6 independent Bernoulli experiment with parameter
2
6 (if the success is still R). By a similar calculation, we get respectively for RGRRRG and
GRRRRR

24 · 42

66
≈ 5, 4 · 10−3 and

4 · 25

66
≈ 2, 7 · 10−3.

2. The second way is to consider the sample space

Ω = {(i1, . . . , i5) | i1, . . . , i5 ∈ {R1, R2, G1, G2, G3, G4}}

with
P{(i1, . . . , i5)} =

1

|Ω|
=

1

65

for RGRRR and
Ω̃{(i1, . . . , i6) | i1, . . . , i6 ∈ {R1, R2, G1, G2, G3, G4}},

with
P{(i1, . . . , i6)} =

1

|Ω̃|
=

1

66

for RGRRRG and GRRRRR.

To get RGRRR, is associated to the event

E = {(i1, . . . , i5) | i2 ∈ {G1, . . . , G4}, i1, i3, i4, i5 ∈ {R1, R2}},

and thus

P(E) =
|E|
|Ω|

=
4 · 24

65
.

For RGRRRG and GRRRRR, the events are respectively

F = {(i1, . . . , i6) | i1, i3, i4, i5 ∈ {R1, R2}, i2, i6 ∈ {G1, G2}},

and
G = {(i1, . . . , i6) | i1 ∈ {G1, . . . , G4}, i2, i3, i4, i5, i6 ∈ {R1, R2}}.

Therefore,

P(F ) =
|F |
|Ω̃|

=
24 · 42

66
and P(G) =

|G|
|Ω̃|

=
4 · 25

66
.
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Problem 2
1. We have to write

X + Y =

∞∑
k=1

xk1{X=xk} +

∞∑
k=1

yk1{Y=yk},

as a sum of the form ∑
k,`

ck,`1Ak,`
.

Notice that

1Ω = 1⋃∞
i=1{X=xk} =

∞∑
i=1

1{X=xk}

and

1Ω = 1⋃∞
i=1{Y=yk} =

∞∑
i=1

1{Y=yk},

where in both cases, the last inequality come from exercise 5 of this sheet exercise.

We have that

∞∑
k=1

xk1{X=xk} =

∞∑
k=1

xk1{X=xk}1Ω =

∞∑
k=1

xk1{X=xk}1
⋃∞

i=1{Y=yi}

=

∞∑
k=1

∞∑
i=1

xk1{X=xk}1{Y=yi} =
(∗)

∞∑
k=1

∞∑
i=1

xk1{X=xk,Y=yi},

where (∗) come from the exercise 5 of this sheet. In the same way, we get

∞∑
j=1

yj1{Y=yj} =

∞∑
j=1

∞∑
k=1

yj1{X=xk,Y=yj}.

One can easily prove that

∞∑
j=1

∞∑
k=1

yj1{X=xk,Y=yj} =

∞∑
k=1

∞∑
j=1

yj1{X=xk,Y=yj},

and thus

X + Y =

∞∑
k=1

∞∑
j=1

(xk + yj)1{X=xk,Y=yj}.

2. The result is immediate using exercise 5 of this sheet, and we get

XY =

∞∑
k=1

∞∑
j=1

xkyj1{X=xk,Y=yj}.

3. Let ω ∈ Ω . Then ω ∈ {X = xk} for some k. In particular

g(X)(ω) := g(X(ω)) = g(xk).

Therefore,

g(X)(ω) =

∞∑
k=1

g(xk)1{X=xk}.
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Problem 5
We have to prove that for all ω ∈ Ω,

1A∩B(ω) = 1A(ω)1B(ω)

and if A and B are disjoints,
1A∪B(ω) = 1A(ω) + 1B(ω)

1. We have by definition

1A∩B(ω) =

{
1 ω ∈ A ∩B
0 ω ∈ (A ∩B)c

.

Moreover

1A(ω)1B(ω) = 1 ⇐⇒ 1A(ω) = 1 and 1B(ω) = 1 ⇐⇒ ω ∈ A and ω ∈ B ⇐⇒ ω ∈ A ∩B,

and
1A(ω)1B(ω) = 0 ⇐⇒ 1A(ω) = 0 or 1B(ω) = 0 ⇐⇒ ω /∈ A or ω /∈ B

⇐⇒ x ∈ Ac or x ∈ Bc ⇐⇒ ω ∈ (Ac ∪Bc) = (A ∩B)c.

Therefore,

1A(ω)1B(ω) =

{
1 ω ∈ A ∩B
0 ω ∈ (A ∩B)c

= 1A∩B(ω).

2. The proof essentially goes the same. Here, the fact that A and B are disjoints gives

1A(ω)+1B(ω) = 1 ⇐⇒ (ω ∈ A and ω /∈ B) or (ω ∈ B and ω /∈ A) ⇐⇒ ω ∈ (A∩Bc)∪ (B∩Ac).

Since A and B are disjoint, A ∩Bc = A and B ∩Ac = B. Therefore,

1A(ω) + 1B(ω) = 1 ⇐⇒ ω ∈ A ∪B.

The rest of the proof is left to the reader.

Problem 6
This is typically the kind of proof that is very easy to write but quite hard to follow. I add an example
below to show you what happen. When you understood the example and the mechanism behind, you
should be able to do it by your self (and you’ll see how easy it is). But if you go into it without previous
training, good luck ! ;-)

Let

X =

n∑
k=1

xk1Ak
.

Suppose with out loss of generality that x1, . . . , xk are all distincts (k ≤ n) and k maximal in the sense
that if ` > k, then x` = xj for some j ∈ {1, . . . , k}. For all i ∈ {1, . . . , n}, set

Ji = {j ∈ {1, . . . , n} | xj = xi}.

Notice that if ` ∈ Ji then J` = Ji. Remark that if xi 6= xj , then Ji and Jj are disjoints. Indeed, let i 6= j
with xi 6= xj . If x ∈ Ji ∩ Jj , then x = xi = xj which contradict xi 6= xj . Therefore Ji ∩ Jj = ∅. Finally,
by maximality on k,

k⋃
i=1

Ji = {1, . . . , n},

and the union is disjoints. Set
AJp =

⋃
j∈Jp

Aj . (1)
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Then for all p,
X(ω) = xp ⇐⇒ ω ∈ AJp .

By Problem 5, if A and B are disjoints, then 1A∪B = 1A + 1B , and thus, we can write X as

X =

k∑
i=1

xi1AJi
=
(1)

k∑
i=1

xi1{X=xi}.

By definition of the expectation,

E[X] =

k∑
i=1

xiP{X = xi} =

k∑
i=1

xiP(AJi)

=
(a)

k∑
i=1

xi
∑
j∈Ji

P(Aj) =

k∑
i=1

∑
j∈Ji

xiP(Aj)

=
(b)

k∑
i=1

∑
j∈Ji

xjP(Aj) =
∑

j∈J1∪...∪Jk

xjP(Aj)

=

n∑
j=1

xjP(Aj),

where (a) is because the Ai’s are disjoints, and (b) because if j ∈ Ji then xi = xj . The claim is proved.

Example

Here an example on how the proof works. Let consider consider Ω = {1, . . . , 6} and the function

X(ω) = 2 · 1{1}(ω) + 3 · 1{2}(ω) + 2 · 1{3}(ω) + 2 · 1{4}(ω) + 3 · 1{5}(ω) + 5 · 1{6}(ω).

I can also write it as

X(ω) = 2 · 1{1}(ω) + 3 · 1{2}(ω) + 5 · 1{6}(ω) + 2 · 1{3}(ω) + 2 · 1{4}(ω) + 3 · 1{5}(ω).

Now, let write x1 = 2, x2 = 3, x3 = 5, x4 = 2, x5 = 2 and x6 = 3 and A1 = {1}, A2 = {2}, A3 = {6},
A4 = {3}, A5 = {4} and A6 = {5}. So the Ai’s are disjoints, and

X(ω) =

6∑
i=1

xi1Ai(ω).

The k in the beginning of the proof correspond here to 3. So the list x1, . . . , xk of distinct elements in
the proof is x1, x2, x3 here and correspond to 2, 3, 5. As you can see, adding any xi for i > 3 in x1, x2, x3

will add an element that is already in x1, x2, x3. For example, if I want to add x5 = 2, then 2 will appear
twice (since x1 = 2). So, the list x1, x2, x3 is maximal in the sense that adding any element of x4, x5, x6

will add an element that already exist in x1, x2, x3. Now,

J1 =
{
i ∈ {1, . . . , 6} | xi = x1

}
=
{
i ∈ {1, . . . , 6} | xi = 2

}
= {1, 3, 4},

since x1 = x4 = x5 = 2. Same,

J2 =
{
i ∈ {1, . . . , 6} | xi = x2

}
=
{
i ∈ {1, . . . , 6} | xi = 3

}
= {2, 5},

since x2 = x5 = 3. Finally,

J3 =
{
i ∈ {1, . . . , 6} | xi = x3

}
=
{
i ∈ {2, . . . , 6} | xi = 5

}
= {3}.
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As you can remark, the Ji’s are disjoints and

J1 ∪ J2 ∪ J3 = {1, . . . , 6}. (2)

Now we set,
AJ1 = A1 ∪A3 ∪A4, AJ2 = A2 ∪A5, and AJ3 = A3.

We can then write X as the sum

X(ω) = 2 · (1{1}(ω) + 1{3}(ω) + 1{4}(ω)) + 3 · (1{2}(ω) + 1{5}(ω)) + 5 · 1{6}(ω)

= 2 · 1{1,3,4}(ω) + 3 · 1{2,5}(ω) + 5 · 1{6}(ω)

= 2 · 1AJ1
+ 3 · 1AJ2

+ 5 · 1AJ5
,

and since
AJ1 = {X = 2}, AJ2 = {X = 3} and AJ3 = {X = 5}, (3)

we finally get

X(ω) = 0 · 1{X=1}(ω) + 2 · 1{X=2}(ω) + 3 · 1{X=3}(ω) + 0 · 1{X=4}(ω) + 5 · 1{X=5}(ω) + 0 · 1{X=6}(ω).

By definition of the expectation, we have

E[X] = 0 · P{X = 1}+ 2 · P{X = 2}+ 3 · P{X = 3}+ 0 · P{X = 4}+ 5 · P{X = 5}+ 0 · P{X = 6}
= 2 · P{X = 2}+ 3 · P{X = 3}+ 5 · P{X = 5}
=
(3)

2 · P(AJ1) + 3 · P(AJ2) + 5 · P(AJ3).

Now, since the Ai’s are disjoints, we have that

P(AJ1) = P(A1) + P(A3) + P(A4) and P(AJ2) = P(A2) + P(A5),

so

E[X] = 2 ·
(
P(A1) + P(A3) + P(A4)

)
+ 3 ·

(
P(A2) + P(A5)

)
+ 5 · P(A6)

=
(
2 · P(A1) + 2 · P(A4) + 2 · P(A5)

)
+
(
3 · P(A2) + 3 · P(A5)

)
+ 5 · P(A6)

=

3∑
i=1

∑
j∈Ji

2P(Aj)

=

3∑
i=1

∑
j∈Ji

xiP(Aj)

But remember that if j ∈ Ji, then xj = xi. For example, for j ∈ J1, we have∑
j∈J1

x1P(Aj) =
∑

j∈{1,3,4}

x1P(Aj) = x1P(A1) + x1P(A3) + x1P(A4). (4)

But since x1 = x3 = x4 = 2, the right hand side of (4) is nothing more than

x1P(A1) + x3P(A3) + x4P(A4) =
∑

j∈{1,3,4}

xjP(Aj) =
∑
j∈J1

xjP(Aj).

So finally,

3∑
i=1

∑
j∈Ji

xiP(Aj) =

3∑
i=1

∑
j∈Ji

xjP(Aj) =
∑
j∈J1

xjP(Aj) +
∑
j∈J2

xjP(Aj) +
∑
j∈J3

xjP(Aj) (5)

and since the Ji’s are disjoints, the right hand side of (5) is∑
j∈J1∪J2∪J3

xjP(Aj).
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But as (2), J1 ∪ J2 ∪ J3 = {1, . . . , 6} and thus

∑
j∈J1∪J2∪J3

xjP(Aj) =

6∑
j=1

xjP(Aj).

Finally, we conclude that E[X] is

E[X] =

6∑
i=1

xiP(Ai),

as wished.

Problem 7
The prove goes by induction. For n = 1, the result is obviously correct. I recall that a function g : R −→ R
is convex if for all x, y ∈ R, and all λ ∈ [0, 1],

g
(
λx+ (1− λ)y

)
≤ λg(x) + (1− λ)g(y).

Suppose that

g

(
n∑
i=1

aixi

)
≤

n∑
i=1

aig(xi),

for
n∑
i=1

ai = 1. Let λ1, . . . , λn+1 ≥ 0 s.t.
∑n+1
i=1 λi = 1. Remark that

n+1∑
i=1

λixi = (1− λn+1)
λ1x1 + . . .+ λnxn

1− λn+1︸ ︷︷ ︸
=:y

+λn+1xn+1 = (1− λn+1)y + λn+1xn+1.

Then

g

(
n+1∑
i=1

λixi

)
= g
(
(1− λn+1)y + λn+1xn+1

)
≤
(∗)

(1− λn+1)g(y) + λn+1g(xn+1), (6)

where (∗) come from the definition of the convexity. If we set ai = λi

1−λn+1
, then

y = a1x1 + . . .+ anxn

and
n∑
i=1

ai =
λ1 + . . .+ λn

1− λn+1
=

1− λn+1

1− λn+1
= 1.

Therefore, by recurrence hypothesis,

g(y) ≤
n∑
i=1

g(xi)ai,

and thus

(1− λn+1)g(y) ≤ (1− λn+1)

n∑
i=1

aig(xi) =

n∑
i=1

λig(xi). (7)

Combine (6) and (7) gives

g

(
n+1∑
i=1

λixi

)
≤
n+1∑
i=1

λig(xi).
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