Probability : Sheet 2 (solution)

Problem 1

We have 80 people that watched the clip. Among these 80 people, 30% are interested by the product. Among the 120 people that didn't see the clip, $\frac{24}{120}$ are interested by the product. So, at the end,

$$
\frac{0.3}{24 / 120} \approx 1.5
$$

what mean that

$$
\frac{\text { Proportion of people that saw and the clip, like the product }}{\text { Proportion of people that didn't see the clip, like the product }} \approx 1.5,
$$

In other words, seing the clip increase your interest on the product of 50%.

Problem 2

Two way to solve the problem.

1. We consider the sample space

$$
\Omega=\{\{H, H\},\{H, T\},\{T, T\}\}
$$

with probability measure

$$
\mathbb{P}\{H, H\}=\mathbb{P}\{T, T\}=\frac{1}{4} \quad \text { and } \quad \mathbb{P}\{H, T\}=\frac{1}{2}
$$

Then the event $B:$ «One coin is Head» is given by

$$
B=\{\{H, H\},\{H, T\}\} .
$$

So

$$
\mathbb{P}(\{H, H\} \mid B)=\frac{\mathbb{P}(\{H, H\} \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}\{H, H\}}{\mathbb{P}\{H, T\}+\mathbb{P}\{H, H\}}=\frac{1 / 4}{3 / 4}=\frac{1}{3},
$$

(and not $\frac{1}{2}$ as all of you wrote). Notice that in this case, the event «At least one coin is Head» is in fact B
2. We'll consider

$$
\Omega=\{(H, H),(H, T),(T, H),(T, T)\}
$$

with probability measure

$$
\mathbb{P}\{\omega\}=\frac{1}{|\Omega|}=\frac{1}{4}
$$

So now the event $B:$ «One coin is head» is given by

$$
B=\{(T, H),(H, T),(H, H)\}
$$

and thus

$$
\mathbb{P}(\{H, H\} \mid B)=\frac{\mathbb{P}\{H, H\}}{\mathbb{P}(B)}
$$

In this case,

$$
\mathbb{P}(B)=\frac{|B|}{|\Omega|}=\frac{3}{4} .
$$

So at the end, we get

$$
\mathbb{P}(\{H, H\} \mid B)=\frac{1 / 4}{3 / 4}=\frac{1}{3}
$$

as well.

Problem 3

The sample space is given by

$$
\Omega=\{(i, j, k) \mid i, j, k \in\{1, \ldots, 6\}\},
$$

with probability measure

$$
\mathbb{P}\{\omega\}=\frac{1}{|\Omega|}=\frac{1}{6^{3}} .
$$

Let consider the events $A:$ «All dices are differents» and $B:$: One dice is $6 »$. By definition of conditional expectation

$$
\mathbb{P}(B \mid A)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

We have that

$$
\begin{gathered}
A \cap B=\{(6, j, k) \mid j \neq k \neq 6 \neq j\} \cup\{(j, 6, k) \mid j \neq k \neq 6 \neq j\} \cup\{(j, k, 6) \mid j \neq k \neq 6 \neq j\} \\
A=\{(i, j, k) \mid i \neq j \neq k \neq i\} .
\end{gathered}
$$

So

$$
|A \cap B|=3 \cdot 1 \cdot 5 \cdot 4 \quad \text { and } \quad|A|=6 \cdot 5 \cdot 4 .
$$

Therefore

$$
\mathbb{P}(B \mid A)=\frac{|A \cap B| /|\Omega|}{|B| /|\Omega|}=\frac{|A \cap B|}{|B|}=\frac{1}{2} .
$$

Problem 6

Let A and B independents. Then

$$
\mathbb{P}\left(A \cap B^{c}\right)=\mathbb{P}(A)-\mathbb{P}(A \cap B) \underset{(*)}{=} \mathbb{P}(A)-\mathbb{P}(A) \mathbb{P}(B)=\mathbb{P}(A)(1-\mathbb{P}(B))=\mathbb{P}(A) \mathbb{P}\left(B^{c}\right)
$$

where (*) come from the independence of A and B. Therefore A and B^{c} are independent. The proof of the independence of A^{c} and B^{c} goes the same and is left to the reader.

Problem 8

Let A_{i} the events «He has an accident the $i^{\text {th }}$ day» where $i=1, \cdot, 365$. The A_{i} 's are independents. Then so are the A_{i}^{c} (by problem 6).

$$
\begin{gathered}
\mathbb{P}(« \text { At least one accident this year } »)=1-\mathbb{P}(« \text { No accident this year } ») \\
=1-\mathbb{P}\left(\bigcap_{i=1}^{365} A_{i}^{c}\right) \underset{(*)}{=} 1-\mathbb{P}\left(A_{1}^{c}\right)^{365}=1-\left(\frac{499}{500}\right)^{365},
\end{gathered}
$$

where ($*$) come from the independence of the A_{i} 's.

