## Probability : Sheet 1 (solution)

## Problem 1

1. The experience can be describe by the sample space $\Omega=\{(i, j) \mid i \in\{H, T\}, j \in\{1, \ldots, 6\}\}$ (where $H$ is for «Head» and $T$ for «Tail». And the probability measure is

$$
\mathbb{P}\{(i, j)\}=\frac{1}{|\Omega|}=\frac{1}{2 \cdot 6}
$$

We have that

$$
A=\{(H, i) \mid i \in\{1, \ldots, 6\}\}
$$

and

$$
B=\{(i, j) \mid i \in\{H, T\}, j \in\{1,3,5\}\} .
$$

We have that

$$
A \cap B=\{(H, i) \mid i \in\{1,3,5\}\}
$$

and thus,

$$
\mathbb{P}(A \cap B)=\frac{|A \cap B|}{|\Omega|}=\frac{3}{12}=\frac{1}{4}
$$

2. The sample space is

$$
\Omega=\left\{\{i, j\} \mid i, j \in\left\{D_{1}, D_{2}, Q_{1}, \ldots, Q_{8}\right\}\right\},
$$

where $Q_{i}$ is a high quality product and $D_{i}$ a defective product. The probability measure is given by

$$
\mathbb{P}\{i, j\}=\frac{1}{|\Omega|}=\frac{1}{\binom{10}{2}}
$$

The event «One high quality and one defective item»is given by

$$
A:=\left\{\{i, j\} \mid i \in\left\{D_{1}, D_{2}\right\}, j \in\left\{Q_{1}, \ldots, Q_{8}\right\}\right\}
$$

and thus

$$
\mathbb{P}(A)=\frac{|A|}{|\Omega|}=\frac{\binom{2}{1}\binom{8}{1}}{\binom{10}{2}}
$$

## Problem 2

1. Consider the events $C$ : «Having a car» and $B$ : «Having a bicycle». The sample space is

$$
\Omega=\left\{C \cap B^{c}, B \cap C^{c}, C \cap B, C^{c} \cap B^{c}\right\},
$$

and the probability measure is given by

$$
\mathbb{P}(B)=0.5, \quad \mathbb{P}(C)=0.2 \quad \text { and } \quad \mathbb{P}(B \cap C)=0.1
$$

By a formulae from the lecture,

$$
\mathbb{P}(B \cup C)=\mathbb{P}(B)+\mathbb{P}(C)-\mathbb{P}(B \cap C)=0.6
$$

2. Consider the event $C$ :«Infected with Chicken pos» and $M$ : «Contract measles ». The sample space is given by

$$
\Omega=\left\{C \cap M, C^{c} \cap M, M^{c} \cap C, M^{c} \cap C^{c}\right\} .
$$

The probability measure is

$$
\mathbb{P}(C)=0.75, \quad \mathbb{P}(M)=0.24 \quad \text { and } \quad \mathbb{P}(M \cap C)=0.18
$$

By a formulae from the lecture,

$$
\mathbb{P}(C \cup M)=\mathbb{P}(M)+\mathbb{P}(C)-\mathbb{P}(M \cap C)=0.81
$$

## Problem 3

I recall how to compute the cardinality of the set

$$
\mathcal{K}_{m}=\{\ell \in[1,1000]: m \mid \ell\}
$$

where $m \mid \ell$ means *" $m$ divide $\ell$ "*.

$$
\begin{aligned}
\mathcal{K}_{m} & =\{k m \mid k \in \mathbb{Z}, 1 \leq k m \leq 1000\} \\
& =\left\{k m \mid k \in \mathbb{Z}, 1 \leq k \leq \frac{1000}{m}\right\} \\
& =m\left\{k \in \mathbb{Z} \left\lvert\, 1 \leq k \leq \frac{1000}{m}\right.\right\}
\end{aligned}
$$

where, if $A$ is a set, I denote

$$
m A=\{m a \mid a \in A\} .
$$

And thus

$$
\begin{equation*}
|\mathcal{K}|=\left\lfloor\frac{1000}{m}\right\rfloor \tag{1}
\end{equation*}
$$

where $\lfloor x\rfloor$ denote the biggest integer $k$ s.t. $k \leq x$. For example, $\lfloor 2.567\rfloor=2$ or $\lfloor\pi\rfloor=3$.

## Example

$$
\left|\mathcal{K}_{2}\right|=\left\lfloor\frac{1000}{2}\right\rfloor=\lfloor 500\rfloor=500
$$

or

$$
\left|\mathcal{K}_{3}\right|=\left\lfloor\frac{1000}{3}\right\rfloor=\lfloor 333 . \overline{3}\rfloor=333
$$

where $333, \overline{3}$ means $333,3333333 \ldots$.

## Solution of problem 3

Using inclusion exclusion formulae, we directly have

$$
\begin{aligned}
\mathbb{P}\left(\mathcal{K}_{2} \cup \mathcal{K}_{3} \cup \mathcal{K}_{5}\right) & =\mathbb{P}\left(\mathcal{K}_{2}\right)+\mathbb{P}\left(\mathcal{K}_{3}\right)+\mathbb{P}\left(\mathcal{K}_{5}\right)-\mathbb{P}\left(\mathcal{K}_{2} \cap \mathcal{K}_{3}\right)-\mathbb{P}\left(\mathcal{K}_{2} \cap \mathcal{K}_{5}\right)-\mathbb{P}\left(\mathcal{K}_{3} \cap \mathcal{K}_{5}\right)+\mathbb{P}\left(\mathcal{K}_{2} \cap \mathcal{K}_{3} \cap \mathcal{K}_{5}\right) \\
& =\mathbb{P}\left(\mathcal{K}_{2}\right)+\mathbb{P}\left(\mathcal{K}_{3}\right)+\mathbb{P}\left(\mathcal{K}_{5}\right)-\mathbb{P}\left(\mathcal{K}_{6}\right)-\mathbb{P}\left(\mathcal{K}_{10}\right)-\mathbb{P}\left(K_{15}\right)+\mathbb{P}\left(\mathcal{K}_{30}\right),
\end{aligned}
$$

where $\mathbb{P}\left(\mathcal{K}_{i}\right)=\frac{\left|\mathcal{K}_{i}\right|}{1000}$. I let you conclude using (1).

## Problem 4

Let $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ a sequence of decreasing event, i.e. $A_{n+1} \subset A_{n}$ for all $n$. Set $B_{i}=A_{i} \backslash A_{i+1}$. Then $\left\{B_{i}\right\}_{i \in \mathbb{N}}$ are disjoints. Also, set $E=\bigcap_{n=1}^{\infty} A_{i}$. Then (make a draw if you want to be convinced),

$$
A_{1}=E \cup \bigcup_{i=1}^{\infty} B_{i}
$$

and the union are disjoint. Therefore, by definition of a probability,

$$
\begin{align*}
& \mathbb{P}\left(A_{1}\right)=\mathbb{P}\left(E \cup \bigcup_{i=1}^{\infty} B_{i}\right) \\
&=\begin{array}{l}
\text { dijoints union } \\
\mathbb{P} \\
(E)+\mathbb{P}\left(\bigcup_{i=1}^{\infty} B_{i}\right) \\
\\
\\
\text { disjoint union } \\
\mathbb{P}(E)+\sum_{i=1}^{\infty} \mathbb{P}\left(B_{i}\right) \\
\end{array} \\
&=\mathbb{P}(E)+\lim _{n \rightarrow \infty} \sum_{i=1}^{n-1} \mathbb{P}\left(B_{i}\right)
\end{align*}
$$

Since $A_{i+1} \subset A_{i}$, we have that,

$$
\mathbb{P}\left(B_{i}\right)=\mathbb{P}\left(A_{i} \backslash A_{i+1}\right)=\mathbb{P}\left(A_{i}\right)-\mathbb{P}\left(A_{i+1}\right),
$$

and thus

$$
\sum_{i=1}^{n-1} \mathbb{P}\left(B_{i}\right)=\sum_{i=1}^{n-1}\left(\mathbb{P}\left(A_{i}\right)-\mathbb{P}\left(A_{i+1}\right)\right)=\mathbb{P}\left(A_{1}\right)-\mathbb{P}\left(A_{n}\right)
$$

Therefore, the equation (E) becomes

$$
\mathbb{P}\left(A_{1}\right)=\mathbb{P}(E)+\left(\mathbb{P}\left(A_{1}\right)-\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)\right)
$$

which is equivalent to

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)=\mathbb{P}(E)=\mathbb{P}\left(\bigcap_{n=1}^{\infty} A_{i}\right)
$$

The claim follow.

## Problem 6

Let consider the events $K$ : «He know the answer» and $C$ : «The answer is correct». The sample space is

$$
\Omega=\left\{K \cap C, K \cap C^{c}, K^{c} \cap C, K^{c} \cap C^{c}\right\},
$$

and the probability measure is given by

$$
\mathbb{P}(K)=p, \quad \mathbb{P}(C \mid K)=1 \quad \text { and } \quad \mathbb{P}\left(C \mid K^{c}\right)=\frac{1}{N}
$$

By definition,

$$
\mathbb{P}(K \mid C)=\frac{\mathbb{P}(K \cap C)}{\mathbb{P}(C)}=\frac{\mathbb{P}(C \mid K) \mathbb{P}(K)}{\mathbb{P}(C)}
$$

Using Bayes formula,

$$
\mathbb{P}(C)=\mathbb{P}(C \mid K) \mathbb{P}(K)+\mathbb{P}\left(C \mid K^{c}\right) \mathbb{P}\left(K^{c}\right)=p+\frac{(1-p)}{N}
$$

Finally,

$$
\mathbb{P}(K \mid C)=\frac{p}{p+\frac{1-p}{N}}
$$

## Problem 7

Let $R_{i}:$ «We take a red ball at the $i^{\text {th }}$ thrown ». The sample space is

$$
\Omega=\left\{R_{1} \cap R_{2}, R_{1}^{c} \cap R_{2}, R_{2}^{c} \cap R_{1}, R_{1}^{c} \cap R_{2}^{c}\right\}
$$

with the probability measure

$$
\mathbb{P}\left(R_{1}\right)=\frac{r}{r+w} \quad \mathbb{P}\left(R_{2} \mid R_{1}\right)=\frac{r+d}{r+d+w} \quad \text { and } \quad \mathbb{P}\left(R_{2} \mid R_{1}^{c}\right)=\frac{r}{r+d+w} .
$$

By Bayes formulae,

$$
\mathbb{P}\left(R_{2}\right)=\mathbb{P}\left(R_{2} \mid R_{1}\right) \mathbb{P}\left(R_{1}\right)+\mathbb{P}\left(R_{2} \mid R_{1}^{c}\right) \mathbb{P}\left(R_{1}^{c}\right)=\frac{r+d}{r+d+w} \cdot \frac{r}{r+d}+\frac{r}{r+d+w} \cdot \frac{w}{r+d}
$$

By definition of conditional expectation :

$$
\mathbb{P}\left(R_{1} \mid R_{2}\right)=\frac{\mathbb{P}\left(R_{1} \cap R_{2}\right)}{\mathbb{P}\left(R_{2}\right)}=\frac{\mathbb{P}\left(R_{2} \mid R_{1}\right) \mathbb{P}\left(R_{1}\right)}{\mathbb{P}\left(R_{2}\right)}=\ldots
$$

## Problem 8

Consider the events $G:$ «The suspect is guilty»and $C:$ < The person has the caracteristic». By assumption, we have

$$
\mathbb{P}(G)=0.4, \quad \mathbb{P}(C)=0.2, \quad \text { and } \quad \mathbb{P}(C \mid G)=0.4
$$

What we want to compute is $\mathbb{P}(G \mid C)$. By definition

$$
\mathbb{P}(G \mid C)=\frac{\mathbb{P}(G \cap C)}{\mathbb{P}(C)}
$$

By definition,

$$
\mathbb{P}(C \mid G)=\frac{\mathbb{P}(G \cap C)}{\mathbb{P}(G)}
$$

and thus

$$
\mathbb{P}(G \cap C)=\mathbb{P}(C \mid G) \mathbb{P}(G)=0.4 \times 0.4=0.16
$$

Therefore,

$$
\mathbb{P}(G \mid C)=\frac{0.16}{0.2}=0.8
$$

