Random Matrices

Prof. G. Akemann

October 15, 2018

Contents

1 What is a random matrix and possible applications 2
1.1 Setup of notation : Random variable (r.v.) 2
1.2 What is a random matrix ? 3
1.3 The Gaussian Orthogonal Ensemble GOE 3
1.3.1 Distribution of matrix elements 3
1.3.2 distribution of matrix element in the GOE 3

1 What is a random matrix and possible applications

1.1 Setup of notation : Random variable (r.v.)

- For an interval $\mathfrak{S} \subset \mathbb{R}$ we denote $\rho(x)$ it's PDF (Probability Density Function).

$$
\int_{a}^{b} \rho(x) \mathrm{d} x=\mathbb{P}\{X \in[a, b] \subset \mathfrak{S}\}
$$

- If $\mathbb{P}\{X \in \mathfrak{S}\}=1$, the average of X (or $1^{\text {st }}$ moment)

$$
\langle X\rangle:=\int_{\mathfrak{S}} x \rho(x) \mathrm{d} x,
$$

and the $n^{\text {th }}$ moment is given by

$$
\left\langle X^{n}\right\rangle:=\int_{\mathfrak{S}} \mathrm{x}^{n} \rho(x) \mathrm{d} x
$$

- The variance is given by

$$
\operatorname{Var}(X)=\left\langle(X-\langle X\rangle)^{2}\right\rangle=\left\langle X^{2}\right\rangle-\langle X\rangle^{2}
$$

A variable is centered if $\langle X\rangle=0$, and thus $\operatorname{Var}(X)=\left\langle X^{2}\right\rangle$. For example Gauss r.v.'s with PDF

$$
\rho(x)=\sqrt{\frac{a}{\pi}} e^{-a x^{2}},
$$

$\mathfrak{S}=\mathbb{R},\langle X\rangle=0$ and $\operatorname{Var}(X)=\frac{1}{2 a}$.

- The Cumulative Distribution Function (CDF) is defined as

$$
F(x) \int_{-\infty}^{x} \rho(x) \mathrm{d} x .
$$

We have

$$
\lim _{x \rightarrow-\infty} F(x)=0 \quad \text { and } \quad \lim _{x \rightarrow+\infty} F(x)=1
$$

- For $n \geq 2$, random variables X_{1}, \ldots, X_{n} are described by the Joint PDF (JPDF) $\rho\left(x_{1}, \ldots, x_{n}\right)$. So $\rho\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}$ is the probability to find

$$
X_{1} \in\left[x_{1}, x_{1}+\mathrm{d} x_{1}\right], \ldots, X_{n} \in\left[x_{n}, x_{n}+\mathrm{d} x_{n}\right] .
$$

- The r.v.'s are independent if

$$
\rho\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} \rho\left(x_{i}\right)
$$

- The marginal PDF of X_{1} is given by

$$
\rho\left(x_{1}\right):=\int \rho\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{2} \ldots \mathrm{~d} x_{n}
$$

It's the probability that

$$
X_{1} \in\left[x_{1}, x_{1}+\mathrm{d} x_{1}\right]
$$

independently of all others r.v.'s

- Change of variables if $x_{i}=x_{i}(y), i=1, \ldots, n$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, then

$$
\rho\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}=\rho\left(x_{1}(y), \ldots, x_{n}(y)\right)|\mathcal{J}(x, y)| \mathrm{d} y_{1} \ldots \mathrm{~d} y_{n}
$$

with $\mathcal{J}(x, y)=\operatorname{det}\left(\frac{\partial x_{j}}{\partial y_{i}}\right)_{1 \leq i, j \leq n}$ the Jacobian matrix.

1.2 What is a random matrix ?

1.3 The Gaussian Orthogonal Ensemble GOE

Take a matrix H of size $N \times N$, and fill in r.v.'s $H_{i, j}, i, j=1, \ldots, N$ that are independent and Gaussian $\mathcal{N}(0,1)$. In general, the matrix H that we have constructed is not symmetric $\left(H \neq H^{T}\right)$. We symmetrize it :

$$
H_{s}=\frac{1}{2}\left(H+H^{T}\right)
$$

By linear algebra, we can write H_{s} as

$$
H_{s}=O \Lambda O^{T}
$$

where $O \in \mathcal{O}(N)$ and $\Lambda=\operatorname{Diag}\left(x_{1}, \ldots, x_{N}\right)$.

Remark 1.

1. We'll not consider matrices with complex eigenvalues.
2. This H_{s} is one member of the GOE.

There are other ensembles: Gaussian Unitary Ensembles (GUE). Suppose $\tilde{H}_{i j}$ has real and imaginary part in $\mathcal{N}(0,1)$ and

$$
\tilde{H}_{\text {herm }}:=\frac{1}{2}\left(\tilde{H}+\tilde{H}^{\dagger}\right)
$$

1.3.1 Distribution of matrix elements

GOE probability measure on the set of random matrix of size $N \times N$ is given by

$$
\rho(H)=\prod_{1 \leq i, j \leq N} \rho\left(H_{i j}\right)=\prod_{1 \leq i, j \leq n} \frac{1}{\sqrt{2 \pi}} e^{\frac{-H_{i j}^{2}}{2}},
$$

where $H=\left(H_{i j}\right) \in \mathcal{S}(N)$ with independent Gaussian r.v.'s entries.
The eigenvalues of a non-symmetric matrix with real entries are complex-conjugated in the sense that if λ is an eigenvalue, then so is $\bar{\lambda}$. That characteristic polynomial of H is given by

$$
p(\lambda)=\operatorname{det}\left(\lambda I_{n}-H\right)
$$

and has real coefficient. We denote the set of square random matrices with real Gaussian's independent r.v.'s entries as the Real Ginibre Ensemble. In the GOE,

$$
H_{s}=\frac{1}{2}\left(H+H^{T}\right)
$$

We have N diagonal elements $\left(H_{s}\right)_{i i}, i=1, \ldots, N$ and $\frac{N(N-1)}{2}$ upper triangular part $\left(H_{s}\right)_{i j}$, with $i<j$ and $i, j=1, \ldots, N$.

1.3.2 distribution of matrix element in the GOE

Since $H_{i j} \sim \mathcal{N}(0,1)$ for all i, j and that there are independent, we have that

$$
\left(H_{s}\right)_{i j}=\frac{1}{2}\left(H_{i j}+H_{j i}\right) \sim \mathcal{N}\left(0, \frac{1}{2}\right), \quad i \neq j .
$$

Therefore

$$
\begin{aligned}
\rho\left(H_{s}\right) & =\rho\left(\left(H_{s}\right)_{11}, \ldots,\left(H_{s}\right)_{N N}\right)=\prod_{i=1}^{N} \frac{e^{\frac{-\left(H_{s}\right)_{i i}^{2}}{2}}}{\sqrt{2 \pi}} \prod_{\substack{1 \leq j \leq N \\
i<j}} \frac{e^{-\left(H_{s}\right)_{i j}^{2}}}{\sqrt{\pi}} \\
& =\frac{1}{2^{\frac{N}{2}} \pi^{\frac{N^{2}}{2}}} \exp \left\{-\frac{1}{2} \sum_{i=1}^{N}\left(H_{s}\right)_{i i}^{2}-\sum_{1 \leq i<j \leq N}\left(H_{s}\right)_{i j}^{2}\right\} \\
& =\frac{1}{2^{\frac{N}{2}} \pi^{\frac{N^{2}}{2}}} \exp \left\{-\frac{1}{2} \sum_{i=1}^{N}\left(H_{s}\right)_{i i}^{2}-\frac{1}{2} \sum_{\substack{1 \leq i, j \leq N \\
i \neq j}}\left(H_{s}\right)_{i j}^{2}\right\} \\
& =\frac{1}{2^{\frac{N}{2}} \pi^{\frac{N^{2}}{2}}} \exp \left\{-\frac{1}{2} \operatorname{Tr}\left(H_{s}^{2}\right)\right\},
\end{aligned}
$$

since

$$
\sum_{1 \leq i, j \leq N}\left(H_{s}\right)_{i j}\left(H_{s}\right)_{j i}=\operatorname{Tr}\left(H_{s} H_{s}^{T}\right),
$$

and H_{s} is symmetric. Similarly, for H in the Real Ginibre ensemble (i.e. H is not necessarily symmetric),

$$
\rho(H) \propto \exp \left\{-\operatorname{Tr}\left(H H^{T}\right)\right\} . \quad \text { Or maybe } \propto \exp \left\{-\frac{1}{2} \operatorname{Tr}\left(H H^{T}\right)\right\} ?
$$

Outcome

$$
\operatorname{Tr}\left(H_{s}^{2}\right)=\sum_{i=1}^{N} X_{i}^{2}
$$

where the X_{i} 's are the eigenvalues of H. Not sure of this: The Goal is to understand statistics of GOE eigenvalues where the JPDF is given by $\rho\left(x_{1}, \ldots, x_{n}\right)$. We'll show latter that

$$
\rho\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{Z_{N, B}} e^{-\frac{1}{2} \sum_{i=1}^{N} x_{i}^{2}} \prod_{1 \leq j<k \leq N}\left|x_{k}-x_{j}\right|^{\beta},
$$

and thus, that the $X_{i}^{\prime} s$ are not independent. The term $\left|x_{k}-x_{j}\right|$ come from $H_{s}=O \Lambda O^{T}$ and

$$
Z_{N, \beta}=(2 \pi)^{N / 2} \prod_{j=1}^{N} \frac{\Gamma(1+j \beta / 2)}{\Gamma(1+\beta / 2)}
$$

where for GOE we have $\beta=1$, for $\mathbf{G U E}$ we have $\beta=2$ and for GSE (Gaussian Sympletic Ensemble) we have $\beta=4$. Therefore,

$$
\rho\left(x_{1}, \ldots, x_{n}\right) \propto \exp \left\{-\frac{1}{2} \sum_{i=1}^{N} x_{i}^{2}+\beta \sum_{j<k} \log \left|x_{k}-x_{j}\right|\right\}
$$

for $\beta>0$ and Gaussian β ensemble. Eigenvalues behave like N charged particules interactiong with Coulomb repulsion in 2D at certains values of inverse temperature β while being confined by a Gauss potential.

A popular quantity : level spacing distribution $P(s)$ which is the probability to find two consecutive eigenvalues at distance s. For GOE of $N \times N$ matrices

$$
P_{\mathbf{G O E}}(s)=\frac{s}{2} e^{-s^{2} / 4}
$$

Remark 2. Two surprises arises :

1. Not very clear : Extreme by accurate approximate for $N \times N$ GOE,
2. Can be found in many phenomena in Nature.
