Dynamics of interacting systems

Prof. Dr. B. Gentz

October 21, 2018

Contents

1	Det	$\operatorname{erministic} \operatorname{dynamical} \operatorname{systems} \operatorname{in} \mathbb{R}^n$	2
	1.1	Stability of trajectories	3
	1.2	The use of Lyapunov functions	6
	1.3	Further concept of stability	9

1 Deterministic dynamical systems in \mathbb{R}^n

Let consider the ODE

$$\begin{cases} \dot{x}_t = f(x_t, t; \mu) \\ x_{t_0} = x_0 \end{cases}$$

For now, μ is not revelent for us. We write $\dot{x} = f(x, t)$.

Théorème 1.1 (Local existence and uniqueness).

Assume $U \subset \mathbb{R}^n$ open, and $f: U \longrightarrow \mathbb{R}^n$ locally Lipschitz, i.e. for all open set $\mathcal{O} \subset U$ s.t. $\overline{\mathcal{O}}$ is compact, there is $\gamma = \gamma(\mathcal{O})$ s.t.

$$||f(x) - f(y)|| \le \gamma ||x - y||,$$

for all $x, y \in \mathcal{O}$. Then, for all $x_0 \in U$, there is a r > 0 and a unique $(x_t)_{t \in (-r,r)}$ s.t. $(x_t)_t$ satisfy the autonomous ODE $\dot{x} = f(x)$ with initial condition x_0 .

Example

The theorem hold locally only. For example $\dot{x} = 1 + x^2$ has solution $x_t = \tan(t+c)$ (where c is determinate by initial conditions). The solution leaves any bounded set in finite time.

Given initial condition (t_0, x_0) , we write (as needed) :

$$x_t = x(t) = x(t, t_0, x_0) = x(t, t_0, x_0; \mu) = x(t; \mu).$$

We describe here different notions :

- 1. The phase space. Here \mathbb{R}^n , but it can also be a cylinder, a sphere, any compact manifold...
- 2. The vector field $f(x,t,\mu)$ describes tangent vector at the point x_t of the solution curve $x = (x_t)_t$,
- **3.** $\mathcal{O}(x_0) := \{x(t, t_0, x_0) \mid t \in I\}$ is the *orbit* through $x_0 \in U$, i.e. the points in phase space which lie on the solution curve / trajectory passing through x_0 . Note that $\mathcal{O}(x_0) = \mathcal{O}(x(T, t_0, x_0))$ for all $T \in I$.

Example

Consider

$$\begin{cases} \dot{x} = y \\ \dot{y} = -x \end{cases}, \quad (x, y) \in \mathbb{R}^2,$$

and the initial condition $(x_0, y_0) = (1, 0)$. Then, $(x_t, y_t) = (\cos(t), -\sin(t))$. The graph of trajectory (or integral curves) passing through (1, 0) at t = 0 are

$$\{(\cos(t), -\sin(t), t) \mid t \in \mathbb{R}\}.$$

We see on the next picture

The Orbit through (1,0) is

$$\{(\cos(t), -\sin(t)) \mid t \in \mathbb{R}\} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$$

As opposed to the graph, the orbit is merely a set of points in phase space.

Let define $\Phi^{t,t_0}(x_0) := x(t,t_0,x_0)$ or for autonomous systems $\dot{x} = f(x)$, $\Phi^t(x_0) := x(t,t_0)$. Let consider autonomous vector field $\dot{x} = f(x)$.

Définition 1.2 (stationary point).

The point $\bar{x} \in U$ is called a stationary point if $f(\bar{x}) = 0$.

If a stationary point \bar{x} is an initial condition, then the solution of $\dot{x} = f(x)$ doesn't change over time.

1.1 Stability of trajectories

Let $\bar{x} = (\bar{x}_t)_t$ be a solution of $\dot{x} = f(x)$.

Définition 1.3 (Lyapunov stability / Local stability).

A trajectory \bar{x} is called stable if

 $\forall \varepsilon > 0, \exists \delta = \delta(\varepsilon) > 0: \forall \xi, \|\bar{x}(t_0) - \xi\| < \delta \implies \forall t > t_0, \|\bar{x}(t) - \Phi^{t,t_0}(\xi)\| = \|\Phi^{t,t_0}(\bar{x}(t_0)) - \Phi^{t,t_0}(\xi)\| < \varepsilon$

where ξ above is an initial condition.

Remark 1.

- **1.** $\|\cdot\|$ is any norm in \mathbb{R}^n ,
- **2.** Existence of solution for all *t* is assumed implicitly,
- **3.** Concept for trajectories : if \hat{x} is a stationary point, the concept can by applied as well, using that $\hat{x} = \Phi^{t,t_0}(\hat{x})$ for all t.
- 4. A trajectory is stable if all solutions starting in a sufficiently small neighborhood stay close for ever,
- 5. If $\dot{x} = f(x)$ has a unique solution given an arbitrary initial condition, then a stationary point cannot be reached in finite time.

Homework

Does the following system has Lyapunov stable trajectories ?

$$\begin{cases} \dot{x} = y \\ \dot{y} = -x \end{cases}, \quad (x, y) \in \mathbb{R}^2.$$

Définition 1.4 (Unstable trajectories).

Any trajectory that is not stable is called unstable

Example

A saddle

$$\begin{cases} \dot{x} = x \\ \dot{y} = -y \end{cases}, \quad (x, y) \in \mathbb{R}^2.$$

Since the system is not coupled, we may consider x and y separately :

1. x > 0 (resp. x < 0) if and only if x is locally increasing (resp. locally decreasing). Therefore, the stationary point $\bar{x} = 0$ is clearly unstable. To picture the behaviour, take the advantage of the fact

that in \mathbb{R} , any dynamic system is a gradient system : $\dot{x} = -\nabla\left(-\frac{x^2}{2}\right)$.

2. The opposite hold true for $y: \bar{y} = 0$ is a stable stationary point; $y_t \to 0$ for all initial condition.

$$\dot{y} = -\nabla\left(\frac{y^2}{2}\right)$$

3. If we combined **1.** and **2.** then (0,0) is unstable.

Définition 1.5 (Asymptotic stability).

The solution of $\dot{x} = f(x)$ is asymptotically stable if

- 1. \bar{x} is Lyapunov stable,
- 2. The δ from the definition 1.1 can be chosen small enough to guarantee

$$\lim_{t \to \infty} \|\bar{x}(t) - \Phi^t(\xi)\| = 0$$

for all initial condition ξ with $\|\bar{x}(t_0) - \xi\| < \delta$.

Example

The part 2. of the previous definition can be satisfied even if 1. is violated. Consider the system in \mathbb{R}^2 in polar coordinate satisfying

$$\begin{cases} \dot{r} = r(1-r) & r \ge 0, \\ \dot{\theta} = \sin^2\left(\frac{\theta}{2}\right) & \theta \in [0, 2\pi). \end{cases}$$

This system is not coupled, r has a stationary point in 0 and 1. Moreover, $\dot{r} > 0 \iff r < 1$ and $\dot{r} < 0 \iff r > 1$. Thus $r_t \to 1$ unless $r_0 = 0$. Moreover, since $\theta > 0$, we have $\dot{\theta} > 0$ and thus θ is increasing. Therefore $\theta_t \to 2\pi \pmod{2\pi}$. Thus $\theta_t \equiv 0$ or $\theta_t \to 2\pi \pmod{2\pi} = 0$. We conclude that

either $r_0 = 0$ and $(r_t, \theta_t) \to (0, 0)$ or $r_0 > 0$ and $(r_t, \theta_t) \to (1, 0)$. If $\theta_0 > 0$, there is a long excursion before approaching the stationary. Therefore, there is no Lyapunov stability.

Remark 2. In cartesian coordinate, the system is given by

$$\begin{cases} \dot{x} = (1 - \sqrt{x^2 + y^2})x - \frac{1}{2} \left(1 - \frac{x}{\sqrt{x^2 + y^2}}\right)y\\ \dot{y} = (1 - \sqrt{x^2 + y^2})y + \frac{1}{2} \left(1 - \frac{x}{\sqrt{x^2 + y^2}}\right)x. \end{cases}$$

In pola coordinate the system is given by

The x-axis represent r and the y-axis represent θ . In cartesian coordinate, it's given by

Example

An example of asymptotically stable system :

$$\begin{cases} \dot{x} = -x - 2y \\ \dot{y} = 2x - y \end{cases}, \quad (x, y) \in \mathbb{R}^2.$$

1.2 The use of Lyapunov functions

Basic idea : If \bar{x} is a stable stationary point, then there exist a neighborhood U of \bar{x} s.t. trajectories remain in U once they entered. It's true if vector field f at ∂U is pointing inwards or is tangential

This needs to remain true for smaller and smaller U shrinking to $\{\bar{x}\}$.

Théorème 1.6 (Lyapunov functions).

Let \bar{x} be stationary for $\dot{x} = f(x)$, W be a neighborhood of \bar{x} s.t. $\bar{x} \in W \subset U$ and $\mathcal{V} : W \longrightarrow \mathbb{R}$ a differentiable function s.t. $\mathcal{V}(\bar{x}) = 0$, $\mathcal{V}(x) > 0$ for all $x \neq \bar{x}$ and $\dot{\mathcal{V}}(x) \leq 0$ on $W \setminus \{\bar{x}\}$ where

$$\dot{\mathcal{V}}(x) = \langle \nabla \mathcal{V}(x), f(x) \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{V}(x_t),$$

is the derivative of \mathcal{V} along the trajectory $(x_t)_t$. Then \bar{x} is stable. Moreover, if $\dot{\mathcal{V}}(x) < 0$, then \bar{x} is asymptotically stable.

The function \mathcal{V} is called a *Lyapunov function*.

Remark 3.

- 1. If the choice W = U is possible, then \bar{x} is globally asymptotically stable. As a consequence, all solution remain bounded and satisfy $x_t \to \bar{x}$ as $t \to \infty$. This allows to test stability and boundness without solving the ODE.
- 2. The problem is that there is no general method to find Lyapunov functions.
- 3. For multiple stationary points, find local Lyapunov functions.

Proof.

Step 1 : Let $\delta > 0$ small enough to have $\mathcal{B}_{\delta}(\bar{x}) \subset U^1$ Set

$$m := \min\{\mathcal{V}(x) \mid \partial \mathcal{B}_{\delta}(\bar{x})\}.$$

Define

$$U_1 := \{ x \in \mathcal{B}_{\delta}(\bar{x}) \mid \mathcal{V}(x) < m \},\$$

and let $x_0 \in U_1 \setminus \{\bar{x}\}$. Since $\mathcal{V}(x) \leq 0$, then $\mathcal{V}(\Phi^t(x_0))$ is non decreasing. By definition of U_1 , we have that $\Phi^t(x_0)$ remains in U_1 for all t, and thus in $\mathcal{B}_{\delta}(\bar{x})$. Since $\delta > 0$ is unspecified, this show the stability.

Step 2: Assume now that the stronger hypothesis $\dot{\mathcal{V}}(x) < 0$ on $W \setminus \{\bar{x}\}$. Then $V(\Phi^t(x_0))$ is strictly decreasing for $x_0 \in U_1$. Let $(t_n)_n$ an increasing sequence that diverge to ∞ . Since $\overline{\mathcal{B}_{\delta}(\bar{x})}$ is compact, $(\Phi^{t_n}(x_0))_n$ has a convergent subsequence $(\Phi^{t_{n_k}}(x_0))_k$ satisfying

$$\Phi^{t_{n_k}}(x_0) \xrightarrow[k \to \infty]{} \hat{x} \in \overline{\mathcal{B}_{\delta}(\bar{x})}$$

Step 3 : By contradiction, suppose $\hat{x} \neq \bar{x}$. Then, there is $\varepsilon > 0$ s.t. $\bar{x} \notin \overline{\mathcal{B}_{\varepsilon}(\bar{x})} \subset U_1$. As in the step 1, let \tilde{U}_1 a neighborhood of \bar{x} s.t. $\bar{x} \in \tilde{U}_1 \subset \overline{\mathcal{B}_{\varepsilon}(\bar{x})}$ and $\Phi^t(\xi) \in \overline{\mathcal{B}_{\varepsilon}(\bar{x})}$ for all $\xi \in \tilde{U}_1$.

Consequently, $\Phi^{t_{n_k}}(x_0)$ can never enter in \tilde{U}_1 . Thus, $\Phi^t(x_0)$ canot enter in \tilde{U}_1 neither, (otherwise we could choose all t_n s.t. $\Phi^{t_n}(x_0) \in \overline{\mathcal{B}_{\varepsilon}(\bar{x})}$ leading to a contradiction). So far, we established that $x = (x_t)_t$ start and remains forever in U_1 while avoiding \tilde{U}_1 . Since $\dot{\mathcal{V}}(x) < 0$, we finally have that there is K s.t. $\dot{\mathcal{V}}(x) < -K$ and thus

$$\mathcal{V}(\Phi^{t_{n_k}}(x_0)) - \mathcal{V}(x_0) = \int_0^{t_{n_k}} (\dot{\mathcal{V}}(\Phi^s(x_0)) \,\mathrm{d}s \le -Kt_{n_k}.$$

Therefore

$$\mathcal{V}(\Phi^{t_{n_k}}(x_0)) \le \mathcal{V}(x_0) - Kt_{n_k} \underset{k \to \infty}{\longrightarrow} -\infty,$$

and thus, there is k_0 s.t. for all $k \ge k_0$,

$$\mathcal{V}(\Phi^{t_{n_k}}(x_0)) < 0,$$

which is a contradiction since a Lyapunov function is non-negative.

Example

1. Consider

$$\begin{cases} \dot{x} = y \\ \dot{y} = x + \gamma x^2 y \end{cases}, \quad (x, y) \in \mathbb{R}^2.$$

There is a stationary point at (0,0). A Lyapunov function is given by

$$\mathcal{V}(x,y) = \frac{1}{2} ||(x,y)||^2.$$

¹ $U \subset \subset V$ mean that $\overline{U} \subset V$.

It's a Lyapunov function since V(0,0) = 0, V(x,y) > 0 whenever $(x,y) \neq (0,0)$ and

$$\dot{\mathcal{V}}(x,y) = \left\langle \nabla \mathcal{V}(x,y), \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} y \\ -x + \gamma x^2 y \end{pmatrix} \right\rangle = \gamma x^2 y \underset{\gamma < 0}{\leq} 0.$$

Therefore, for $\gamma < 0$, (0,0) is globally stable. We would have to work harder to show that (0,0) is even (globally) asymptotically stable (previous theorem doesn't help here).

2. A particle of mass m attached to a spring of stiffness $k(x + x^3)$. The ODE for the displacement of the particle is given by

$$m\ddot{x} + k(x + x^3) = 0, \quad k > 0.$$

Rewrinting with $y = \dot{x}$ gives

$$\begin{cases} \dot{x} = y\\ \dot{y} = -\frac{k}{m}(x + x^3). \end{cases}$$

It has a unique stationary point at (0,0). The total energy is given by

$$E(x,y) = m\frac{y^2}{2} + k\left(\frac{x^2}{2} + \frac{x^4}{4}\right).$$

It's a Lyapunov function since $E \ge 0$ and E(x, y) = 0 if and aonly if (x, y) = (0, 0) and

$$\dot{E}(x,y) = \left\langle \nabla E(x,y), \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} k(x+x^3) \\ my \end{pmatrix}, \begin{pmatrix} y \\ -\frac{k}{m}(x+x^3) \end{pmatrix} \right\rangle = 0.$$

Therefore (0,0) is stable. Is (0,0) asymptotically stable ? (homework). For k = 1 et m = 4, we have the following trajectories :

3. Same system than 2. with a damping term added

$$\begin{cases} \dot{x} = y\\ \dot{y} = -\frac{k}{m}(x + x^3) - \alpha y. \end{cases}$$

Use the same Lyapunov function as before

$$\dot{E}(x,y) = -\alpha m y^2$$
 and $\dot{E}(x,0) = 0.$

So we don't have information on the asymptotical stability. We modify the Lyapunov function and we consider

$$\mathcal{V}(x,y) = m\frac{y^2}{2} + k\left(\frac{x^2}{2} + \frac{x^4}{4}\right) + \beta(xy + \alpha\frac{x^2}{2}),$$

for some $\beta \in \mathbb{R}$. We have

- $\mathcal{V}(0,0) = 0$,
- $\mathcal{V}(x,y) > 0$ for $(x,y) \neq (0,0)$ and $\beta > 0$ small enough (using $2|xy| \leq x^2 + y^2$).
- $\dot{\mathcal{V}}(x,y) = -\beta \frac{k}{m}(x^2 + x^4) (\alpha m \beta)y^2 < 0$ for $(x,y) \neq (0,0)$ and β small.

Therefore, for $\alpha > 0$, (0,0) is globally asymptotically stable. How does the vector field change when we introduce the damping $\alpha > 0$?

1.3 Further concept of stability

 $\overline{x} = (\overline{x}_t)_t \text{ is orbitally stable } if$ $\forall \varepsilon > 0, \exists \delta > 0 : \|\overline{x}(t_0) - \Phi^{t_0}(\xi)\| < \delta \implies \forall t > t_0, \operatorname{dist}(\Phi^{t,t_0}(\xi), \mathcal{O}^+(x_0, t_0)) < \varepsilon,$ whose $\mathcal{O}^+(x_0, t_0) = \{\Phi^{t,t_0}(x_0) \mid t \ge t_0\}$ (orbit, forward in time).

Remark 4. In other word, if the trajectory $\Phi^t(\xi)$ is close to orbit $\mathcal{O}(x_0, t_0)$ at time t_0 , then the distance of trajectory remains close to the orbit forward in time.

The idea is it allow for different speeds.

 $-\underbrace{\mathbf{D\acute{e}finition 1.8 (asymptotical orbital stability).}}_{\bar{x} = (\bar{x}_t)_t \text{ is asymptotically orbitally stable if } \bar{x} \text{ is orbitally stable and}$ $\exists \delta > 0 : \forall \xi : \|\bar{x}(t_0) - \Phi^{t_0}(\xi)\| < \delta \implies \lim_{t \to \infty} \operatorname{dist}(\Phi^{t,t_0}(\xi), \mathcal{O}^+(x_0, t_0)) = 0.$

How to test Lyapunov or asymptotic stability ? Consider the problem $\dot{x} = f(x)$. Let $f(\bar{x}) = 0$, i.e. \bar{x} is a stationary solution. Let x a orbitrary solution (orbitrary ?) of $\dot{x} = f(x)$. Set $y_t := x_t - \bar{x}$, i.e.

$$\dot{y}_t = \dot{x}_t = f(x_t) = f(\bar{x} + y_t) \underset{\text{Taylor}}{=} \underbrace{f(\bar{x})}_{=0} + Df(\bar{x})y_t + \underbrace{\mathcal{R}(y_t)}_{=\mathcal{O}(||y_t||^2) \text{ for } f \in \mathcal{C}}$$

The PDE $\dot{y}_t = \nabla f(\bar{x})y_t + \mathcal{R}(y_t)$ describes deviation from \bar{x} . As long as $||y_t||$ is small, the linearization $\dot{y}_t^0 = Df(\bar{x})y_t^0$ provides a good approximation. For linearization,

$$y_t^0 = e^{Df(\bar{x})t} y_0.$$

Two steps :

1. Is $y_t^0 = 0$ stable for the linearized equation ?

2. Sho : If $y_t^0 \equiv 0$ is stable for linear equation, then \bar{x} is stable for $\dot{x} = f(x)$:

$$y^0$$
 stable $\implies \bar{x}$ stable.

1. Easy (Homework). If all eigenvalues λ_i of $Df(\bar{x})$ satisfy $\Re(\lambda_i) < 0$, then $y^0 = 0$ is asymptotically stable. It's obvious for n = 1 since $y_t^0 = y_0 e^{\lambda t} \xrightarrow[t \to \infty]{} 0$ whenever $\lambda < 0$. If $\dot{x} = f(x)$ is not autonomous, even step 1 can be hood. There is no general analytical method if $Df(\bar{x}_t)$ depend on t.

2.

Théorème 1.9 (Stability in non-linear systems).

Assume $\Re(\lambda_i) < 0$ for all eigenvalue λ_i of $Df(\bar{x})$. Then $x_t = \bar{x}$ is asymptotically stable.

Proof. We'll use Lyapunov function. Let $y = \varepsilon u$ with $\varepsilon \in (0, 1)$. Then

$$\begin{split} \dot{u} &= \frac{1}{\varepsilon} \dot{y} + \frac{1}{2} Df(\bar{x}) y + \frac{1}{\varepsilon} \mathcal{R}(y) \\ &= Df(\bar{x}) u + \frac{1}{\varepsilon} \mathcal{R}(\varepsilon u), \end{split}$$

where

$$\|\mathcal{R}(\varepsilon u)\| \leq \frac{1}{\varepsilon}\mathcal{O}(\varepsilon^2 \|u\|^2) = \varepsilon \mathcal{O}(\|u\|^2).$$

Let $\mathcal{V}(u) = \frac{1}{2} ||u||^2$. It's a Lyapunof function at u = 0 since $\mathcal{V}(0) = 0$, V(u) > 0 for $u \neq 0$ and

$$\dot{\mathcal{V}}(u) = \langle \nabla V(u), \dot{u} \rangle = \langle u, Df(\bar{x})u \rangle + \underbrace{\left\langle u, \frac{1}{\varepsilon} \mathcal{R}(\varepsilon u) \right\rangle}_{|\cdot| \le \varepsilon ||u||^3}.$$

We have that

$$|\langle u, Df(\bar{x})u\rangle| \le -K ||u||^2$$

for all u and some K > 0 (c.f. Arnol's : Differential equation, dynamical systems and an introduction to chaos). The idea is to write $Df(\bar{x})$ into a matrix of the form of $\text{Diag}(\lambda_1, \ldots, \lambda_n) + \mathcal{N}$ where \mathcal{N} is nilpotent, i.e. upper triangular with zero on the diagonal and so that $|(\mathcal{N})_{i < j}| < \varepsilon$.

Therefore $\dot{V}(u) < 0$ for u from any bounded set and small enough ε .

Warning : This approche doesn't work in the non-autonomous case.

Example

1. Consider $\dot{x} = A(t)x$ with

$$A(t) = \begin{pmatrix} -1 + \frac{3}{2}\cos^2(t) & 1 - \frac{3}{2}\cos(t)\sin(t) \\ -1 - \frac{3}{2}\cos(t)\sin(t) & -1 + \frac{3}{2}\sin^2(t) \end{pmatrix}$$

Then,

$$\lambda_{1,2}(t) = \frac{1}{4}(-1 \pm i\sqrt{7}),$$

for all t, and thus $\Re(\lambda_i) = -\frac{1}{4} < 0$ for all i. But $\bar{x} = 0$ is not asymptotically stable. Indeed, linear independent solutions are given by

$$v_1 = \begin{pmatrix} -\cos(t)\\\sin(t) \end{pmatrix} e^{\frac{t}{2}}$$
 and $v_{"}(t) = \begin{pmatrix}\sin(t)\\\cos(t) \end{pmatrix} e^{-t}$

Observe that for small $\varepsilon > 0$, $\varepsilon v_1(t)$ is close to $\bar{x} = 0$, but $\|\varepsilon v_1(t)\| \xrightarrow[t \to \infty]{} \infty$.

2. Also, if $y^0 = 0$ is stable for linear system, it doesn't implies that \bar{x} is stable for $\dot{x} = f(x)$. Take

$$\begin{cases} \bar{x} = -y + x(x^2 + y^2) \\ \bar{y} = x + y(x^2 + y^2) \end{cases}$$

Then, $(\bar{x}, \bar{y}) = (0, 0)$ is a stationary solution. The system linearized is given by

$$\begin{cases} \dot{x}^0 = -y^0 \\ \dot{y}^0 = x^0 \end{cases}$$

(a), $Df(0) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and eigenvalues are $\pm i$. The origin is stable for the C.f. homework linearized system (but not asymptotically stable). For the nonlinear, original system, introduce polar coordinate, i.e. $(x, y) = (r \cos(\theta), r \sin(\theta))$. Then the system becomes

 $\begin{cases} \dot{r} = r^3 \\ \dot{\theta} = 1 \end{cases} .$

Therefore r is increasing for r(0) >0

eigenvalues with vanishing real part.

So, linearization doesn't help if we have

Définition 1.10 (Hyperbolic fixed point).

Let \bar{x} be a stationary point of $\dot{x} = f(x)$. Then \bar{x} is called hyperbolic if all eigenvalue λ_i of $Df(\bar{x})$ satisfy $\Re(\lambda_i) \neq 0$.

Let us return to the linearized system $\dot{y}_t^0 = A y_t^0$ with $A = D f(\bar{x})$. So

$$y_t^0 = e^{At} y_0.$$

Let λ_j be the eigenvalues of A.

- If v^j is a real eigenvecor with $Av^j = \lambda_j v^j$, then $e^{At}v^j = e^{\lambda t}v^j$. Span $\{v^j\}$ is invariant under the flow $\Phi^t_A(v^j) = e^{At}v^j$.
- If v^j is a complex eigenvector, the same hold for $\Re(v^j)$ and $\Im(v^j)$.

The eigenspaces are invariant under the flow Φ_A^t . We will look with generalized eigenvectors :

(Définition 1.11.)

1. A vector $v \neq 0$ is called a generalized eigenvector for A corresponding to λ , if

$$(A - \lambda I)^k = 0$$

for $a \ k \in \mathbb{N}$.

2. We define the stable subspace by

$$E^s = \operatorname{Span}\{v^1, \dots, v^{n_s}\},\$$

where v^1, \ldots, v^{n_s} are generalized eigenvectors with $\Re(\lambda_i) < 0$ for the associated eigenvalues.

3. We define the unstable subspace by

$$E^u = \operatorname{Span}\{u^1, \dots, u^{n_u}\},\$$

where u^1, \ldots, u^{n_u} are generalized eigenvectors with $\Re(\lambda_i) > 0$ for the associated eigenvalues.

4. We denote the center space by

$$E^c = \operatorname{Span}\{w^1, \dots, w^{n_c}\},\$$

where w^1, \ldots, w^{n_c} are generalized eigenvectors with $\Re(\lambda_i) = 0$ for the associated eigenvalues.

Remark 5. $n_s + n_u + n_c = n$.

Solutions in E^c shows the exponential decay (monotonic or oscillatory) and solutions in E^u show the exponential growth. What about E^c ?

1. If there is no multiple eigenvalues $\lambda = 0$, then the solution is constant. If $\lambda_{1,2} = \pm i\beta$ with $\beta \neq 0$,

0

then the oscillation has constant amplitude. C.f.

2. If there are multiple eigenvalues $\lambda = 0$, then if algebraic and geometric multiplicities differ, solutions in E^c may grow as in the following example.

Example

Let
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
, and thus $\lambda_{1,2} = 0$ and $v_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. All solutions are of the form
$$y_t = e^{At}y_0 = (I + At)y_0 = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} y_0.$$

We observe linear growth in the second component.

Let's go back to the non linear system $\dot{x} = f(x)$.

Théorème 1.12 (Hartman-Grobman).

Assume, \bar{x} is a hyperbolic fixed point. Then there exists a homeomorphism h defined on some neighborhood U of \bar{x} , which locally maps orbits of the nonlinear flow Φ^t of $\dot{x} = f(x)$ to those of $\Phi^t_{Df(\bar{x})}$ of the linearized system. The homeomorphism preserves the sense of orbits and can be chosen to preserve the parametrization of time. **Remark 6.** Under additional conditions (a non-resonance² conditions on the eigenvalues), h is a diffeomorphism.

²Eigenvalues $\lambda_1, \ldots, \lambda_n$ are called resonant if there exist $i \in \{1, \ldots, n\}$ and $m_i \in \mathbb{N}^*$ with $m_1 + \ldots + m_n \geq 2$ s.t. $\lambda_i = \sum_{j=1}^n m_j \lambda_j$.