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1 Deterministic dynamical systems in Rn

Let consider the ODE {
ẋt = f(xt, t;µ)

xt0 = x0

For now, µ is not revelent for us. We write ẋ = f(x, t).

Assume U ⊂ Rn open, and f : U −→ Rn locally Lipschitz, i.e. for all open set O ⊂ U s.t. O is
compact, there is γ = γ(O) s.t.

‖f(x)− f(y)‖ ≤ γ‖x− y‖,

for all x, y ∈ O. Then, for all x0 ∈ U , there is a r > 0 and a unique (xt)t∈(−r,r) s.t. (xt)t satisfy
the autonomous ODE ẋ = f(x) with initial condition x0.

Théorème 1.1 (Local existence and uniqueness).

Example

The theorem hold locally only. For example ẋ = 1 + x2 has solution xt = tan(t+ c) (where c is determi-
nate by initial conditions). The solution leaves any bounded set in finite time.

Given initial condition (t0, x0), we write (as needed) :

xt = x(t) = x(t, t0, x0) = x(t, t0, x0;µ) = x(t;µ).

We describe here different notions :

1. The phase space. Here Rn, but it can also be a cylinder, a sphere, any compact manifold...

2. The vector field f(x, t, µ) describes tangent vector at the point xt of the solution curve x = (xt)t,

3. O(x0) := {x(t, t0, x0) | t ∈ I} is the orbit through x0 ∈ U , i.e. the points in phase space which lie
on the solution curve / trajectory passing through x0. Note that O(x0) = O

(
x(T, t0, x0)

)
for all

T ∈ I.

Example

Consider {
ẋ = y

ẏ = −x
, (x, y) ∈ R2,

and the initial condition (x0, y0) = (1, 0). Then, (xt, yt) = (cos(t),− sin(t)). The graph of trajectory (or
integral curves) passing through (1, 0) at t = 0 are

{(cos(t),− sin(t), t) | t ∈ R}.

We see on the next picture
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The Orbit through (1, 0) is

{(cos(t),− sin(t)) | t ∈ R} = {(x, y) ∈ R2 | x2 + y2 = 1}.

As opposed to the graph, the orbit is merely a set of points in phase space.

Let define Φt,t0(x0) := x(t, t0, x0) or for autonomous systems ẋ = f(x), Φt(x0) := x(t, t0). Let
consider autonomous vector field ẋ = f(x).

The point x̄ ∈ U is called a stationary point if f(x̄) = 0.

Définition 1.2 (stationary point).

If a stationary point x̄ is an initial condition, then the solution of ẋ = f(x) doesn’t change over time.

1.1 Stability of trajectories
Let x̄ = (x̄t)t be a solution of ẋ = f(x).

A trajectory x̄ is called stable if

∀ε > 0,∃δ = δ(ε) > 0 : ∀ξ, ‖x̄(t0)−ξ‖ < δ =⇒ ∀t > t0, ‖x̄(t)−Φt,t0(ξ)‖ = ‖Φt,t0(x̄(t0))−Φt,t0(ξ)‖ < ε,

where ξ above is an initial condition.

Définition 1.3 (Lyapunov stability / Local stability).

Remark 1.

1. ‖ · ‖ is any norm in Rn,

2. Existence of solution for all t is assumed implicitly,

3. Concept for trajectories : if x̂ is a stationary point, the concept can by applied as well, using that
x̂ = Φt,t0(x̂) for all t.

4. A trajectory is stable if all solutions starting in a sufficently small neighborhood stay close for ever,

5. If ẋ = f(x) has a unique solution given an arbitrary initial condition, then a stationary point
cannot be reached in finite time.

Homework

Does the following system has Lyapunov stable trajectories ?{
ẋ = y

ẏ = −x
, (x, y) ∈ R2.

Any trajectory that is not stable is called unstable

Définition 1.4 (Unstable trajectories).
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Example

A saddle {
ẋ = x

ẏ = −y
, (x, y) ∈ R2.

Since the system is not coupled, we may consider x and y separately :

1. x > 0 (resp. x < 0) if and only if x is locally increasing (resp. locally decreasing). Therefore, the
stationary point x̄ = 0 is clearly unstable. To picture the behaviour, take the advantage of the fact

that in R, any dynamic system is a gradient system : ẋ = −∇
(
−x

2

2

)
.

2. The opposite hold true for y : ȳ = 0 is a stable stationary point; yt → 0 for all initial condition.

ẏ = −∇
(
y2

2

)
3. If we combined 1. and 2. then (0, 0) is unstable.
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The solution of ẋ = f(x) is asymptotically stable if

1. x̄ is Lyapunov stable,

2. The δ from the definition 1.1 can be chosen small enough to guarantee

lim
t→∞

‖x̄(t)− Φt(ξ)‖ = 0

for all initial condition ξ with ‖x̄(t0)− ξ‖ < δ.

Définition 1.5 (Asymptotic stability).

Example

The part 2. of the previous definition can be satisfied even if 1. is violated. Consider the system in R2

in polar coordinate satisfying {
ṙ = r(1− r) r ≥ 0,

θ̇ = sin2
(
θ
2

)
θ ∈ [0, 2π).

This system is not coupled, r has a stationary point in 0 and 1. Moreover, ṙ > 0 ⇐⇒ r < 1 and
ṙ < 0 ⇐⇒ r > 1. Thus rt → 1 unless r0 = 0. Moreover, since θ > 0, we have θ̇ > 0 and thus θ is
increasing. Therefore θt → 2π (mod 2π). Thus θt ≡ 0 or θt → 2π (mod 2π) = 0. We conclude that
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either r0 = 0 and (rt, θt) → (0, 0) or r0 > 0 and (rt, θt) → (1, 0). If θ0 > 0, there is a long excursion
before approaching the stationary. Therefore, there is no Lyapunov stability.

Remark 2. In cartesian coordinate, the system is given by
ẋ = (1−

√
x2 + y2)x− 1

2

(
1− x√

x2+y2

)
y

ẏ = (1−
√
x2 + y2)y + 1

2

(
1− x√

x2+y2

)
x.

In pola coordinate the system is given by

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

5

6

The x−axis represent r and the y−axis represent θ. In cartesian coordinate, it’s given by
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Example

An example of asymptotically stable system :{
ẋ = −x− 2y

ẏ = 2x− y
, (x, y) ∈ R2.
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1.2 The use of Lyapunov functions
Basic idea : If x̄ is a stable stationary point, then there exist a neighborhood U of x̄ s.t. trajectories
remain in U once they entered. It’s true if vector field f at ∂U is pointing inwards or is tangential

This needs to remain true for smaller and smaller U shrinking to {x̄}.

Let x̄ be stationary for ẋ = f(x), W be a neighborhood of x̄ s.t. x̄ ∈ W ⊂ U and V : W −→ R a
differentiable function s.t. V(x̄) = 0, V(x) > 0 for all x 6= x̄ and V̇(x) ≤ 0 on W \ {x̄} where

V̇(x) = 〈∇V(x), f(x)〉 =
d

dt
V(xt),

is the derivative of V along the trajectory (xt)t. Then x̄ is stable. Moreover, if V̇(x) < 0, then x̄ is
asymptotically stable.

Théorème 1.6 (Lyapunov functions).

The function V is called a Lyapunov function.

Remark 3.

1. If the choice W = U is possible, then x̄ is globally asymptotically stable. As a consequence, all
solution remain bounded and satisfy xt → x̄ as t→∞. This allows to test stability and boundness
without solving the ODE.

2. The problem is that there is no general method to find Lyapunov functions.

3. For multiple stationary points, find local Lyapunov functions.

Proof.
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Step 1 : Let δ > 0 small enough to have Bδ(x̄) ⊂⊂ U1 Set

m := min{V(x) | ∂Bδ(x̄)}.

Define
U1 := {x ∈ Bδ(x̄) | V(x) < m},

and let x0 ∈ U1 \ {x̄}. Since ˙V(x) ≤ 0, then V(Φt(x0)) is non decreasing. By definition of U1, we
have that Φt(x0) remains in U1 for all t, and thus in Bδ(x̄). Since δ > 0 is unspecified, this show
the stability.

Step 2 : Assume now that the stronger hypothesis V̇(x) < 0 on W \ {x̄}. Then V (Φt(x0)) is strictly
decreasing for x0 ∈ U1. Let (tn)n an increasing sequence that diverge to ∞. Since Bδ(x̄) is
compact, (Φtn(x0))n has a convergent subsequence (Φtnk (x0))k satisfying

Φtnk (x0) −→
k→∞

x̂ ∈ Bδ(x̄).

Step 3 : By contradiction, suppose x̂ 6= x̄. Then, there is ε > 0 s.t. x̄ /∈ Bε(x̄) ⊂ U1. As in the step 1, let
Ũ1 a neighborhood of x̄ s.t. x̄ ∈ Ũ1 ⊂ Bε(x̄) and Φt(ξ) ∈ Bε(x̄) for all ξ ∈ Ũ1.

Consequently, Φtnk (x0) can never enter in Ũ1. Thus, Φt(x0) canot enter in Ũ1 neither, (otherwise
we could choose all tn s.t. Φtn(x0) ∈ Bε(x̄) leading to a contradiction). So far, we established that
x = (xt)t start and remains forever in U1 while avoiding Ũ1. Since V̇(x) < 0, we finally have that
there is K s.t. V̇(x) < −K and thus

V(Φtnk (x0))− V(x0) =

∫ tnk

0

(V̇(Φs(x0)) ds ≤ −Ktnk
.

Therefore
V(Φtnk (x0)) ≤ V(x0)−Ktnk

−→
k→∞

−∞,

and thus, there is k0 s.t. for all k ≥ k0,

V(Φtnk (x0)) < 0,

which is a contradiction since a Lyapunov function is non-negative.

Example

1. Consider {
ẋ = y

ẏ = x+ γx2y
, (x, y) ∈ R2.

There is a stationary point at (0, 0). A Lyapunov function is given by

V(x, y) =
1

2
‖(x, y)‖2.

1 U ⊂⊂ V mean that U ⊂ V .
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It’s a Lyapunov function since V (0, 0) = 0, V (x, y) > 0 whenever (x, y) 6= (0, 0) and

V̇(x, y) =

〈
∇V(x, y),

(
ẋ
ẏ

)〉
=

〈(
x
y

)
,

(
y

−x+ γx2y

)〉
= γx2y ≤

γ<0
0.

Therefore, for γ < 0, (0, 0) is globally stable. We would have to work harder to show that (0, 0) is
even (globally) asymptotically stable (previous theorem doesn’t help here).

2. A particle of mass m attached to a spring of stiffness k(x+ x3). The ODE for the displacement of
the particle is given by

mẍ+ k(x+ x3) = 0, k > 0.

Rewrinting with y = ẋ gives {
ẋ = y

ẏ = − k
m (x+ x3).

It has a unique stationary point at (0, 0). The total energy is given by

E(x, y) = m
y2

2
+ k

(
x2

2
+
x4

4

)
.

It’s a Lyapunov function since E ≥ 0 and E(x, y) = 0 if and aonly if (x, y) = (0, 0) and

Ė(x, y) =

〈
∇E(x, y),

(
ẋ
ẏ

)〉
=

〈(
k(x+ x3)

my

)
,

(
y

− k
m (x+ x3)

)〉
= 0.

Therefore (0, 0) is stable. Is (0, 0) asymptotically stable ? (homework). For k = 1 et m = 4, we
have the following trajectories :

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

3. Same system than 2. with a damping term added{
ẋ = y

ẏ = − k
m (x+ x3)− αy.

Use the same Lyapunov function as before

Ė(x, y) = −αmy2 and Ė(x, 0) = 0.

So we don’t have information on the asymptotical stability. We modify the Lyapunov function and
we consider

V(x, y) = m
y2

2
+ k

(
x2

2
+
x4

4

)
+ β(xy + α

x2

2
),

for some β ∈ R. We have
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• V(0, 0) = 0,

• V(x, y) > 0 for (x, y) 6= (0, 0) and β > 0 small enough (using 2|xy| ≤ x2 + y2).

• V̇(x, y) = −β k
m (x2 + x4)− (αm− β)y2 < 0 for (x, y) 6= (0, 0) and β small.

Therefore, for α > 0, (0, 0) is globally asymptotically stable. How does the vector field change
when we introduce the damping α > 0 ?

1.3 Further concept of stability

x̄ = (x̄t)t is orbitally stable if

∀ε > 0,∃δ > 0 : ‖x̄(t0)− Φt0(ξ)‖ < δ =⇒ ∀t > t0,dist(Φt,t0(ξ),O+(x0, t0)) < ε,

whose O+(x0, t0) = {Φt,t0(x0) | t ≥ t0} (orbit, forward in time).

Définition 1.7 (Orbital stability).

Remark 4. In other word, if the trajectory Φt(ξ) is close to orbit O(x0, t0) at time t0, then the distance
of trajectory remains close to the orbit forward in time.

The idea is it allow for different speeds.

x̄ = (x̄t)t is asymptotically orbitally stable if x̄ is orbitally stable and

∃δ > 0 : ∀ξ : ‖x̄(t0)− Φt0(ξ)‖ < δ =⇒ lim
t→∞

dist(Φt,t0(ξ),O+(x0, t0)) = 0.

Définition 1.8 (asymptotical orbital stability).

How to test Lyapunov or asymptotic stability ? Consider the problem ẋ = f(x). Let f(x̄) = 0, i.e. x̄ is
a stationary solution. Let x a orbitrary solution (orbitrary ?) of ẋ = f(x). Set yt := xt − x̄, i.e.

ẏt = ẋt = f(xt) = f(x̄+ yt) =
Taylor

f(x̄)︸︷︷︸
=0

+Df(x̄)yt + R(yt)︸ ︷︷ ︸
=O(‖yt‖2) for f ∈ C2

.

The PDE ẏt = ∇f(x̄)yt +R(yt) describes deviation from x̄. As long as ‖yt‖ is small, the linearization
ẏ0
t = Df(x̄)y0

t provides a good approximation. For linearization,

y0
t = eDf(x̄)ty0.

Two steps :

1. Is y0
t = 0 stable for the linearized equation ?

2. Sho : If y0
t ≡ 0 is stable for linear equation, then x̄ is stable for ẋ = f(x) :

y0 stable =⇒ x̄ stable.

1. Easy (Homework). If all eigenvalues λi of Df(x̄) satisfy <(λi) < 0, then y0 = 0 is asymptotically
stable. It’s obvious for n = 1 since y0

t = y0e
λt −→

t→∞
0 whenever λ < 0. If ẋ = f(x) is not

autonomous, even step 1 can be hood. There is no general analytical method if Df(x̄t) depend on
t.

2.
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Assume <(λi) < 0 for all eigenvalue λi of Df(x̄). Then xt = x̄ is asymptotically stable.

Théorème 1.9 (Stability in non-linear systems).

Proof. We’ll use Lyapunov function. Let y = εu with ε ∈ (0, 1). Then

u̇ =
1

ε
ẏ +

1

2
Df(x̄)y +

1

ε
R(y)

= Df(x̄)u+
1

ε
R(εu),

where
‖R(εu)‖ ≤ 1

ε
O(ε2‖u‖2) = εO(‖u‖2).

Let V(u) = 1
2‖u‖

2. It’s a Lyapunof function at u = 0 since V(0) = 0, V (u) > 0 for u 6= 0 and

V̇(u) = 〈∇V (u), u̇〉 = 〈u,Df(x̄)u〉+

〈
u,

1

ε
R(εu)

〉
︸ ︷︷ ︸
|·|≤ε‖u‖3

.

We have that
| 〈u,Df(x̄)u〉 | ≤ −K‖u‖2

for all u and some K > 0 (c.f. Arnol’s : Differential equation, dynamical systems and an intro-
duction to chaos). The idea is to write Df(x̄) into a matrix of the form of Diag(λ1, . . . , λn) +N
where N is nilpotent, i.e. upper triangular with zero on the diagonal and so that |(N )i<j | < ε.

Therefore V̇ (u) < 0 for u from any bounded set and small enough ε.

Warning : This approche doesn’t work in the non-autonomous case.

Example

1. Consider ẋ = A(t)x with

A(t) =

(
−1 + 3

2 cos2(t) 1− 3
2 cos(t) sin(t)

−1− 3
2 cos(t) sin(t) −1 + 3

2 sin2(t)

)
.

Then,

λ1,2(t) =
1

4
(−1± i

√
7),

for all t, and thus <(λi) = − 1
4 < 0 for all i. But x̄ = 0 is not asymptotically stable. Indeed, linear

independent solutions are given by

v1 =

(
− cos(t)
sin(t)

)
e

t
2 and v”(t) =

(
sin(t)
cos(t)

)
e−t.

Observe that for small ε > 0, εv1(t) is close to x̄ = 0, but ‖εv1(t)‖ −→
t→∞

∞.

2. Also, if y0 = 0 is stable for linear system, it doesn’t implies that x̄ is stable for ẋ = f(x). Take{
x̄ = −y + x(x2 + y2)

ȳ = x+ y(x2 + y2)
.
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Then, (x̄, ȳ) = (0, 0) is a stationary solution. The system linearized is given by{
ẋ0 = −y0

ẏ0 = x0
.

C.f. homework , Df(0) =

(
0 −1
1 0

)
and eigenvalues are ±i. The origin is stable for the

linearized system (but not asymptotically stable). For the nonlinear, original system, introduce
polar coordinate, i.e. (x, y) = (r cos(θ), r sin(θ)). Then the system becomes{

ṙ = r3

θ̇ = 1
.

Therefore r is increasing for r(0) > 0 . So, linearization doesn’t help if we have
eigenvalues with vanishing real part.

Let x̄ be a stationary point of ẋ = f(x). Then x̄ is called hyperbolic if all eigenvalue λi of Df(x̄)
satisfy <(λi) 6= 0.

Définition 1.10 (Hyperbolic fixed point).

Let us return to the linearized system ẏ0
t = Ay0

t with A = Df(x̄). So

y0
t = eAty0.

Let λj be the eigenvalues of A.

• If vj is a real eigenvecor with Avj = λjv
j , then eAtvj = eλtvj . Span{vj} is invariant under the

flow ΦtA(vj) = eAtvj .

• If vj is a complex eigenvector, the same hold for <(vj) and =(vj).

The eigenspaces are invariant under the flow ΦtA. We will look with generalized eigenvectors :
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1. A vector v 6= 0 is called a generalized eigenvector for A corresponding to λ, if

(A− λI)k = 0,

for a k ∈ N.

2. We define the stable subspace by

Es = Span{v1, . . . , vns},

where v1, . . . , vns are generalized eigenvectors with <(λi) < 0 for the associated eigenvalues.

3. We define the unstable subspace by

Eu = Span{u1, . . . , unu},

where u1, . . . , unu are generalized eigenvectors with <(λi) > 0 for the associated eigenvalues.

4. We denote the center space by

Ec = Span{w1, . . . , wnc},

where w1, . . . , wnc are generalized eigenvectors with <(λi) = 0 for the associated eigenvalues.

Définition 1.11.

Remark 5. ns + nu + nc = n.

Solutions in Ec shows the exponential decay (monotonic or oscillatory) and solutions in Eu show the
exponential growth. What about Ec ?

1. If there is no multiple eigenvalues λ = 0, then the solution is constant. If λ1,2 = ±iβ with β 6= 0,

then the oscillation has constant amplitude. C.f.

2. If there are multiple eigenvalues λ = 0, then if algebraic and geometric multiplicities differ, solutions
in Ec may grow as in the following example.

Example

Let A =

(
0 0
1 0

)
, and thus λ1,2 = 0 and v1 =

(
0
1

)
. All solutions are of the form

yt = eAty0 = (I +At)y0 =

(
1 0
t 1

)
y0.

We observe linear growth in the second component.

Let’s go back to the non linear system ẋ = f(x).

Assume, x̄ is a hyperbolic fixed point. Then there exists a homeomorphism h defined on some
neighborhood U of x̄, which locally maps orbits of the nonlinear flow Φt of ẋ = f(x) to those of
ΦtDf(x̄) of the linearized system. The homeomorphism preserves the sense of orbits and can be
chosen to preserve the parametrization of time.

Théorème 1.12 (Hartman-Grobman).
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Remark 6. Under additional conditions (a non-resonance2 conditions on the eigenvalues), h is a diffeo-
morphism.

2Eigenvalues λ1, . . . , λn are called resonant if there exist i ∈ {1, . . . , n} and mi ∈ N∗ with m1 + . . . + mn ≥ 2 s.t.
λi =

∑n
j=1mjλj .
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