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Chapter

General theory of Dirichlet forms

1.1 Semigroups theory and quadratic forms on Hilbert spaces

Let H be a real Hilbert space with scalar product (-,-) 5 and norm || - || .

f—[Deﬁnition 1. 1.} N

A strongly continuous semi-group of linear operator is a family (Tt)i>o of linear bounded operators
T,: H— H s.t.

1. D(T;) = H for allt > 0,
2. Tyys =TT for allt,s >0
3. limy o |12 f — fllg =0 for all f € H.

Moreover, it’s contractive if | Ty f||g < ||fllz for all f € H and all t > 0. It’s called symmetric if

<thag>H = <f7Ttg>H7

forall f,g € H and all t > 0.

Example

Take H = L?(R%) and for all f € L?(R?), define

Tif(z) = /Rd pi(x —y) f(y) dy = (p: * f) (),

where

1 -
€
(2mt) %

Then, (T})s>0 is strongly continuous, symmetric and contractive on L2(R%). It’s called the Gaussian
Weierstrass semigroup.

~ Lemma 1.2. \

Let (T})i>0 be a strongly continuous semigroup on H. Then, there exist M > 1 and w € R s.t.

pi(z) =

HTtH < Me“Jt’

for allt > 0.




Proof.

Step 1 : Let show that there is 7 > 0s.t. k= sup ||T;|| < co. Suppose it’s not true. Then, there is (£,)n>0
0<t<r
st. t, = 0 and || T3, || = oo. Then, there is f € H s.t. ||T3, f|| = oo (by Banach-Steinhauser),

which contradict strong continuity.

Step 2 : Given t > 0, write t = n7 + 6 with suitable n € N and 6 € [0, 7). Then,

1T < T ™ I Toll < K< R(k7)"

Note that n < £ and k > lim+ IT-|| = 1. Consequently, we can use M =k and w = @.
e—0

Remark

1. Apparently (T});>0 is contractive if we can use M =1 and w = 0.

2. If (T})4o is strongly continuous, then for any o > 0 (actually o € R), (e~*'T});~¢ is a strongly
continuous semigroup.

Example

Look at
T:f(x) = f(x+t¢), t>0.

It form a strongly continuous semigroup on L?(R) but it’s not symmetric. At least for good function;
say f € CH(R) N L3(R); we have

df oo ferh)—f@) L Tif() - f(@)
T @)= lim e e = i e

This idea works more generally. The (infinitesimal) generator A of a strongly continuous semigroup
(T})¢>0 is defined by

T f—
D(A) = {f € H| lim of =7 exist in the strong sense in H} ,
t—0t h
and Tf f
Af == lim ~2—L  feD(A).
! t—1>%1+ t ! (4)

For example, for the translation semigroup above, C*(R) N L*(R) C D(A) and Af = %f for f €
CH(R)NL2(R). In the following, we use Bochner integration (Lebesgue integral on Hilbert spaces).



~— Lemma 1.3. N

Let (T})i>0 be a strong and continuous semigroup with generator (A, D(A)). Then,

t
1. / Tsfds € D(A) for all f € H and all t > 0 and we have that
0

A(/O Tsfds> =T.f - f.

2. T,(D(A)) C D(A) for allt >0,

3. For allt >0 and all f € D(A),

a+
TiAf = AT f = Eth-

In particular, the continuous function u : [0,00) — H defined by u(0) := f and u(t) = T,f
solve (uniquely) the Cauchy problem

4. For allt >0 and all f € D(A),

Remark
If (T})¢>0 is symmetric, then it has better ("regularization") properties, because it’s (essentially) an
"analytic semigroup". In this case, we have 2.” T;(H) C D(A) for all ¢t > 0, and the Cauchy problem in

3. can be solved (uniquely) for any f € H.

Example
AH )) Let us first check that D(A) D

The generator of the Gaussian Weierstrass semigroup is (é
R%)) C ( 4) for all t > 0. Let prove that

H?(R%). We have that p; € S(R?) for all ¢ > 0, so T3(S(

ALoph*;{ ! 1Af, f e S®RY).

Using Plancherel, the claim is equivalent to

h=0 (27)2  h 2
where )
floy =1 / e f(2) de.
(Ipi)z JRrd
Since )
~ _ g
Pe(§) =7 and Af(&) =—€*f(9),
the claim is equivalent to
g —g n
lm ———==14g, g€SR"), (1.1)



where ¥(§) = —%. To see this last statement, consider

et -1 XXl

D(z2) := = E .
|
z — nl

*(-5)
da 2

by dominated convergence theorem. Note that —1 < ®(z) < 0 for all z < 0. Moreover (1.1) remain valid
for all f € L2(RY) s.t. ¢f € L2(RY), that is for all f € H?>(R?). Consequently, H%(R%) C D(A) and

Then,

2 2

52

ehg—yg

Y — g

= ||® o (ha)) - 2, =
1@ o () - vgl2 /

2
L2

Af = %Af, f e H*(RY).

Exercices

If (A,D(A)) is the generator of (T})¢>0, find the generator of (e=*'T});~o 7

Remark

The operators that can occur as generator of strongly continuous semigroup can be caracterized (actually,
this work on any Banach space). An interesting example would be the Gaussian-Weierstrass semigroup
respectively f%A in Co(R9), the Banach space of continuous function that vanish at infinity.

,—[Theorem 1.4 (Hille-Yoshida) ] \

An operator (A, D(A)) is a generator of a strongly continuous semigroup if and only if the following
conditions hold :

1. D(A) is dense in H,
2. (A,D(A)) is a closed operator,
3. There are w € R and M > 1 s.t. (w,00) is in the resolvent set of (A, D(A)) and
A =) (A=A~ < M,
for all A > w and all n € N.

In this case, the corresponding semigroup satisfies | T;|| < Me“t for all t > 0 with w as in ..

We just verified that generators are closed operators, i.e. operators (4, D(A)) on H for which

I(A) ={(f,Af) | f e D(A)},

is a closed subspace of H x H, or equivalently, that D(A) is a Hilbert space with graph norm

[fllpcay = IF1 + [AF]-

Lemma 1.5.

The generator (A, D(A)) of a strongly continuous semigroup is a closed operator.




Proof. Let (f,) a sequence of D(A) s.t. f, — fin H and Af, — g in H for some f,g € H. Then, we
have Af = ¢g. For any t > 0,

t t
T.f — f = lim (Tyf, — fn) = lim / TsAf,ds = / TsAgds,

and thus .
T f _
lim if =1 = lim Tsgds =g.
t—0 t t—0 Jq
Therefore, f € D(A) and Af = g. O
Example

Let A = A (Gauss-Wierstrass operator). Then the graph norm in D(A) is equivalent to || - || g2 (c.f.
Fourier), and S(R?) € D(A). So, by closedness, we must have H?(R?) C D(A) (by the density of S(R?)
in H%(R%)). Combining with other implications, D(A) = H?(R?).

The following notion is very much related to Hille-Yoshida theorem.

f—[Deﬁnition 1.6.} N

A strongly continuous resolvent (with constant w > 0) on H is a family (G4 )a>w of linear operators
of H s.t.

1. D(G,) = H for all a > w,
2. Go —Gg + (a— B)GoaGp =0 for all a, B > w,
3. h_}m laGof — fll =0 forall f € H,

4. There is M > 1 s.t.
(e = w)Gafl < MI|f],
forallaa>w and all f € H.

Moreover, (Gy)a>w is called contractive if M =1 and w = 0 and is called symmetric if (G f,g) =
(f,Gag) forall fyg€ H and all a > w.

\ J

~— Lemma 1.7. \

Given a strongly continuous semigroup (T;)i~o0, we can define a strongly continuous resolvent
(Ga)a>w by taking the Laplace transform,

Gof = /OE e T fdt, fe€H, (1.2)

where w is as in the definition of strong continuity. If (T})i=o is symmetric (or contractive), then
50 18 (Ga)a>w- We call (Go)asw defined in (1.2) the resolvent of the semigroup (T})iso-

\. J

Proof. It’s easy to show that (G, )a>w defined in (1.2) has all the properties defined in the definition
1.6. O

Example

Gauss-Weierstrass semigroup on L?(R9) is a strong continuous, contractive and symmetric resolvent.



Remark

1. From Hille-Yoshida or 4. of the definition 1.6, we would expect that G,, should be (o — A)~! if A
is the generator of a semigroup. We’ll make this precise.

2. Given a strongly continuous resolvent (G4, )a>w on H, assume that for some o > w we have G,u = 0.
Then, Ggu = 0 for all 8 > w by resolvent equation and u = ﬁlim BGgu = 0 by strong continuity.
— 00
This mean that G, is invertible. We set

{D(A) = Gqo(H),  a>w (1.3)

Au = ou — G lu

The definition is correct, i.e. doesn’t depend on the choice of o > w. The operator (A4, D(A)) is called
the generator of the resolvent (G )a>w-

Lemma 1.8.

The generator of a strongly continuous semigroup is equal to the generator of its resolvent.

Proof. Given (T})1>0 and (G4)a>w as annonced. Let A and A’ there generators respective. If f € D(A’),
thn f = G, for some p € H and

T, f — 1 [
Ty | f:_i/ e “Tspds — ¢, in H,
t tJo t—0

and thus f € D(A) and
Af=af —p=A'f.
Let f € D(A) and set

@ := lim S f
' t

and ¥ :=f — Gup.

Step 1 : We show that ¢ = 0. If we prove that Gzt = 0, the claim follow because 1 = ﬁlim BGy = 0. So
—00
let prove that Gz = 0. By resolvent equation,

1

Gﬂ%b:Gﬁf—m

(Gﬁ - Ga)‘ﬂ-

Now

t—0 ¢

= —lim [eo‘t / (e Plu=t) _ gmalu=t T £y — / (e P — e )T, f du}
t—0 ¢ 0
1 t [ee] 00
= —lim ~ {/ e OUT, f du 4 e~ (@A / e P, f du — / e AT, f du]
t—0 ¢ 0 ¢ 0

= _}ii%% [/Ot e T, fdu 4 (e~ @At _ 1) /too e P, fdu — /Ot e_ﬁ"Tufdu}
=f+(a=B)Gsf - [=(a—PB)Gsf.

(Gg— Gq)p = —lim ! {eo‘t/ (7P —e )T,y fds — / (e7Ps — e T, f ds]
0 0

Step 2 : By previous step ¢ = 0. This implies that f = Gop € Go(H) = D(A") and A’ f = af —p = Af.
what implies f = Gop € Go(H) = D(A") and A'f = af —p = Af. O



Corollary 1.9.

The generator (A, D(A)) of a strongly continuous semigroup (or strongly continuous resolvent) is

densely defined on H, i.e. D(A) is dense in H.

Proof. D(A) = G, (H) for all & > w, but due to strong continuity, D(A) must be dense in H, because
lim ||aGaf—f|| =0.
a— 00 W—/
€D(A)

O

e There is also a way back from a resolvent to a semigroup : If (G4)a>w is a strongly continuous
resolvent, then

th = 511>H;o e_tﬁ Z %(BGﬁ)nfa f € H7
n=0 :

define a strongly continuous semigroup which has resolvent (G,)a>w-

e We now look at stucture of generators in the symmetric case. Recall that (A, D(A)) on H is called
symmetric if

(Af,g) = ([, Ag),

for all f,g € D(A). We could think that this notion generalize the notion of symmetric matrix,
but unfortunately it doesn’t : we have to find the correct domain.

e Given an unbounded linear operator (A, D(A)) on H with dense domain, we can define the adjoint
operator (A*,D(A*)) where

D(A") ={f € H|3ue H:Vg € D(A),(u,9) = (f, Ag)},

and
u:=A*f, feDA").

Lemma 1.10.

(A*, D(A*)) is a closed operator.

Proof. Let (f,) a sequence of D(A*) s.t. f,, — fin H and A*f,, — ¢ in H for a certain f € H and a
certain g € H. For all ¢ € D(A), we have

(Ap.g) = lim (Afy, f) = lim {fo, A°f) = (p.9),
ie. ¢ = (Ap, f) is bounded. Consequently, f € D(A*) and A*f = g. O

e A densely defined operator (A, D(A)) on H is called self adjoint if D(A*) = D(A) and A*f = Af
on D(A). There is a "hidden closure process" in the definition of the adjoint, dictates the "correct
domain".

e By Lemma 1.10, we know that a self adjoint operator is closed. Also, it’s symmetric. A symmetric
operator is self adjoint if D(A) = H, but it’s not true in general.



Example

A=il H=1L*-1,1) and

D(A) ={feC([-L,1)) | f(-1) = f(1) = 0}.

Then, A is densely defined and symmetric. But it’s not closed and thus not self adjoint. Indeed, consider

fn($)=($2+711>;, f@) = 2| and g(x) = sgn(a),

with the convention that sgn(0) = 0. Then, f, — f in L?(—1,1) (the convergence is actually uniform
n [—-1,1]), Af, — ig in L? but f ¢ D(A).

e The notion of self-adjoint operator is the "domain-wise correct" generalization of the notion of
symmetric matrix.
Remark

For a densely operator (A, D(A)), we have

1. A symmetric if and only if A C A* (i.e. D(A) C D(A*) and Af = A*f for all f € D(A)). In this
case, A** = (A*)* can be defined as the smallest closed extension of A, and we have A C A*™* C A*.

2. A is closed and symmetric, i.e. A = A** C A*.

3. A is self adjoint if and only if A = A** = A*. This is the case if and only if the adjoint A* is a
symmetric operator.

Example

Consider again A =i<L on L?*(—1,1) with a domain that makes it closed, namely
D(A) = {f € L*(—1,1) | f is equal to an absolute continuous function f a.e. on [~1,1] and s.t. f(—1) = f(1) = 0}.

Then A is symmetric an

D(AY) = {f € L?(—1,1) | t is equal to an absolute continuous function f a.e. on [~1,1] s.t. /1 1f1? < o0 } ,
—1

and A* =il Then, A* is not symmetric because e~* € D(A*) but A*e™® = —ie™®, i.e. —i is a non
zero imaginary imaginary part eigenvalue, which is impossible for a symmetric operator.
f—[Deﬁnition 1.11.] N

A symmetric operator (A, D(A)) is called semi-bounded if there is C > 0 s.t.

(—Af ) = =C|IfI1%,
for all f € D(A). If (—Af, f) >0, then it’s called non-positive definite.

~ Lemma 1.12. \

The generator of a symmetric strongly continuous resolvent (or symmetric strongly continuous semi-
group) on H is a semi-bounded self-adjoint operator if the resolvent (or semi-group) is contractive.
Then, its generator is mon positive definite.




Proof. Since G, is symmetric and defined on a all H, it’s therefore self-adjoint. By the spectral theorem
(see below) also G is self adjoint, and then so is A. Set ¢(a) := (f, G f), where f € D(A) and a > w.
By the resolvent equation,

Ga+ef —Go= 5Ga+eG(xf7

so that
¢'(a) = = (Gaf,Gaf) < 0.
By 4. of the definition of a resolvent,
M
EOEET
Therefore () > 0 for all & > w and thus, G, is non-negative definite. Then, for all f € D(A),
(D(A) = G4 (H) for all a > w),

(@=a)f, f) = lim (—Af +af, f) = lim (GZ1f, f) =0.

So,
(—Af, f) = —wllfII%,
for all f € D(A). O
We now gives two version of the spectral theorem (without proof).
,—[Theorem 1.13 (Spectral decomposition).] \

Let —A : H — H be self adjoint with domain D(A). Then, there is a spectral measure (spectral
family) (Ex)xer $-t.

—<Af’9>=/R)\d<E/\fyg>a feDA)geH,

and given a measurable function ¢ : R — R and setting
Dp(-v) ={7 e | [ leWla(Brs.f) <o},
R
then p(—A) defined by

(o(~A)f, f) = / o\ d(Erf.g), feDA)geH,

define a self adjoint operator (go(—A), D(go(—A))). For ¢ = id, we recover

)= {reH| [ Ra(Ersf <oof.

Example

1. In many application, one encounters the situation that

D(A) = {fEHIZA§I<%f> ° <OO},

=0

with a sequence of real numbers (\;);cg and a complete orthonormal system (¢;);en in H, and
oo
Af:ZAl <@1af><pla feD(A)
i=0

This is for instance the case if "A has a pure point spectrum" to the A;, one refers as eigenvalues
of A and to the ¢; as eigenfunctions (e.g. second order operators on bounded domain).

10



2. Given a non positive definite self-adjoint operator (A, D(A)), we can use the spectral theorem to
define fractional power of —A by looking at p(A) = A%, a € R

As this version of the spectral theorem shows : all self-adjoint operator are multiplication operator up
to a unitary transformation.

,—[Theorem 1.14 (Spectral theorem).] N
Let —A : H — H be self-adjoint with domain D(A). Then, there exist a measure space (0, F, i),
a measurable function ® : Q — R and a unitary operator U : H — L?(Q, u) s.t. f € D(A) if and
only if ® - Uf € L?(Q, u). Moreover, defining

D(Ms) ={p € L*(Q,u) | @-Uf € L*(Q, p)},

and
Mg (g) :=®-g, g€ D(Ms),

the operator (Mg, D(Mg)) is self-adjoint on L*(Q, 1) and

Ms(g) =U(-A)U"g, g€ D(Ms).

\. J

The spectral theorem is also a way to construct (symmetric) semigroup and resolvent from self adjoint
operator.

~ Lemma 1.15. \

Let (A, D(A)) semi-bounded self-adjoint operator on H (with constant w, i.e. (—Af, f) > —wl|f||?),

1. Setting Ty = et (ie. o) = €M), t > 0 and Gy = (a — A)7! (ie. p(\) = o%i-)\)’
o > w, we obtain a symmetric strongly continuous semigroup (T )10 and a symmetric strongly
continuous resolvent (Go)a>w on H.

2. The generator of (T3)i>0 is A and (T})i>o is the only semigroup with this generator. Similarly
for the resolvent.

\.

Proof. 1. Follows directly from spectral theorem : for ¢, : [—¢,00) — R continuous, we have
(D) = [ ) d Byo),

for all u € D(p(—A) and v € D(y)(—A)). We apply this to A+ e~ and A — a%r)\

writing in symbolic notation ("operator calculus"), aG;t = f[fc 00) (L — 1) dF) implies

For instance,

a+A

(aGau — u,aGou — u) = /

[—¢,00)

2
a
<a+)\ - 1) d (E\u, u) e 0,

for any w € H. Tis show the strong continuity of (G4 )ase-
2. For any f € H and a > ¢, we have
/ >\2d<EAGafGaf>:/ A72d<EAff><oo
[~e,00) ’ [es00) (0 A)2 ’ ’

ie. Go(H) C D(A). Since (o — A)Gog = f, f € H and Go(a — A)f = f, f € D(A) (also to be
seen via spectral theorem), we see that A is the generator of (Gy)a>c. Let (GL)asc be a strongly
continuous resolvent, generated by A. Given f € H, consider

w=Gof —GLf = (a— A)w,

11



for all @ > ¢. Since ¢ — A is non negative definite and « > ¢, we get w = 0. This shows G, = G,
for & > ¢. The uniqueness of the semigroup follow from the right continuity of ¢t — (T:f, g) and

the uniqueness theorem for Laplace transformation.
O

After having looked at semigroups, resolvents and generators, we add another perpective :

f—[Deﬁnition 1. 16.] N

A densely defined bilinear form (Q,D(Q)) on H is a bilinear map Q : D(Q) x D(Q) — R where

D(Q) is a dense subspace of H. If Q(f,g) = Q(g, f) for all f,g € D(Q), we say that (Q,D(Q)) is
symmetric. It’s called semi-bounded if there is C > 0 s.t.

Q(f. 1) = =CllfI%

for all f € D(Q) and non-negative definite if this is true for C = 0. A semi-bounded form is closed
if D(Q) is a Hilbert space with norm

”fHQ,a =V Qa(faf)? IS D(Q)>

for some a > ¢ where

Qu(f,9):=Qf,9) +alf,9), [,9€D@Q).

Remark

1. If this hold for one o > ¢, then it holds for all & > ¢ and the Hilbert norms || - ||g,o, & > ¢ are
equivalents norms.

2. Some author refer to a densely defined symmetric closed form as "closed quadratic form".

Any semi-bounded self-adjoint operator generates such a form :

~ Lemma 1.17. \

Let (A, D(A)) be a semi-bounded self adjoint operator on H with spectral representation

<—Af,g>=/[_ MB0), feD(A),g e,

and

D(A){f€H| /\2d<E,\f,f><oo}.

[7‘:»00)
Then
o= [ AaBLe, Lo<D@,

D(Q)_{f€H| )\d<E)\f,f><OO},

[70700)
defined a densely defined symmetric semi-bounded and closed form (Q,D(Q)) with

If A is non-positive definite (i.e. —A is positive definite), then (Q,D(Q)) is non-negative definite

and D(Q) = D(V=A),
Qf.9) = <\/ﬂf, \/jg>~

12



Proof. Tt suffice to consider the case that A is non-positive definite (otherwise look at A — ). We need
to verify density of D(Q) and closedness. But v/—A is a (non-negative defnite) self-adjoint operator.
In particular, densely defined and closed. Clearly, D(Q) is dense, and the closedness follows from the
closedness of v—A. O

,—[Corollary 1.18.} \

For the strongly continuous resolvent (Go)asc generated by (A, D(A)), we have G, (H) C D(Q),
a>c, and

Qa(Gaf.9) =(f,9), fe€H,geDQ). (1.4)
If A is non-positive definite, then this holds for all o > 0. The form (Q,D(Q)) is characterized by
D(A) cD(Q) and Q(f,9)=(-Af9), [fe€D(A),9€DQ). (1.5)

Remark

The formula (1.5) is called "abstract Gauss-Green formula".

The power of closed quadratic form is that, unlike for operators, it cannot happen that they are
symmetric and closed "but not self-adjoint". In other words, the following holds :

Lemma 1.19.

Given a closed quadratic form (Q,D(Q)) on H, there exists a unique self-adjoint operator (A, D(A))
s.t. (1.5) holds. This operator is semi-bounded, it is non-positive definite if and only if (Q,D(Q))
is mon-negative definite.

Proof. For any a > ¢ and any u € H, there is a unique element G,u € D(A) s.t.
Qa(Gau,@) = (u,v) , VE D(Q) (16)

By Riesz representation theorem. One can see that (G )asc, where G, is the operator u — Gou, u € H,
is a symmetric strongly continuous resolvent :

(@ =0)|Goul® <  QalGau, Gau) = (u, Gaw) < [lulf||Gaul],

semibd.

which implies the bound 4. in the definition. To see strong continuity, we can use boundedness 4. and
density of D(Q) in H to restrict attention to the question wether

BGgu —u as f — oo,
for u € D(Q). This follow from
(B —)BGsu —ul* < Qs(BGsu — u, BGau —u)
= B(BGu, u) — 26 (u,u) + Q(u,u) < Qc(u,u),

which implies convergence and therefore 3. in the definition of the resolvent. To see the resolvent
equation 2., suppose «, 3 > ¢. Then

Qa(Gpu — (o = B)GaGpu,v) = Qp(Gpu,v) + (a — B) (Gpu,v) — (a — B) (Gpu,v)
= <ua U> = Qa(Gau,v)y

where u € H and v € D(Q). Let (A, D(A)) be the generator (G4)a>c. Since A is semi-bounded and
self-adjoint, it generates a closed quadratic form (@', D(Q')) satisfying (1.5). We claim that Q' = Q.
The formula (1.4) for Q" implies that G, (H) C D(Q’) and

QL (Gau, Gov) = (u, Gov) = Qo (Gou, Gav), u,v € H.

13



Therefore Q' = Q on Go(H) x G, (H). Since by (1.4) and (1.6), G, (H) is dense (because D(A) is dense)
both in D(Q) qud D(Q’), we get @' = Q. For a given @, the self-adjoint operator satisfying (1.5) is
unique, because the resolvent satisfy (1.4) and it determines (G4 )as>c uniquely and therefore also A. [

As a consequence, we have the following

Theorem 1.20.}

There is a one-to-one correspondance between the family of non-negative definite closed quadratic
forms and the family of non-positive definite self-adjoint operator, it is given by (1.5).

(A, D(A)) is a non-positive self-adjoint operator if and only if (Q,D(Q)) is a non-negative definite
closed quadratic form, where is equivalnce is given by the spectral theorem. Spectral theorem also provide
approximation formulas.

~ Lemma 1.21. \

Let (Q,D(Q)) a non-negative definite closed quadratic form and let (A, D(A)) be it’s generator. Let
(Ty)i>0 and (Go)aso be the associated semigroup and resolvent (strongly continuous, symmetric
and contractive). Then,

1. Forallt >0, Ty(H) C D(Q)* and

Q(Tiu, Tiu) < ((u,u) — (Ttu,Ttu>) < Qu,u), u€DQ).

S

2. For alla >0, Go(H) C D(Q), and

Qo (Gau,v) = (u,v), uw€ H,veDQ).

3. Given u € D(Q), we have
Tiu — wu,
t—0t

1 1
E(Glu — e_tG1TtU) = E(Glu — e_tTtGlu) tjoi u,

and

aGau — u,
a—r 00

all strongly in D(Q).

%Think for example T;(L2) C H!.

\. J

Proof. Via spectral theorem. O

Another, practically important type of approximation is as follow : define symmetric bilinear form
on H by

1
QW (u,v) == n (u—Tyu,v), u,v€ H,t>0,

and
Q(B)(u,v) =B {u— BGpu,v), wu,veHB>0.
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~ Lemma 1.22. \

Let Q, —A, Ty, Go, QY and QP as above.

1. For any u € H, Q® (u,u) is non-decreasing as t — 0%, and
D(Q) = {u € H| lim Q(u,u) < oo} ,
—0+
Qu,v) = lim QW (u,v), u,veDQ).
t—0+

2. For anyu € H, Q¥ (u,v) is non decreasing as 3 /* co and
D(Q) = {u € H| ﬁlim Qu,u) < oo},
— 00

Q(u,v) = lim Q(B)(u,v), u,v € D(Q).

B—00

\. J

Proof. Via spectral theorem. O

1.2 Markov semigroup and Dirichlet forms

From now on, assume that (X, X', m) is a c—finite measure space. Write L? := LP(m) = LP(X, X, m),
0 < p < co. We consider the case H = L? = L?(m). So, "we start to do probability".

Definition 2.23.]

A bounded symmetric operator P on L? is called Markovian (or just Markov) if P is symmetric
and for all f € L? s.t. 0 < f <1, m—a.e. we have 0 < Pf <1, m—a.e.

Remark

1. In particular, Markov operators are positivity preserving, i.e. Pf > 0, m—a.e. whenever f € L? is
s.t. f>0, m—ae.

2. In some text, the above operators are called sub-Markovian, and only operators satisfying P1y =
1x are called Markovian. But we’ll use the more general manner of speaking.

3. Passing via L', we see that any Markov operator is contractive in L2.

Proposition 2.24.]

Suppose f € L* N L2. Then Pf € L' and |Pf|zr < || fllL:-

Proof. Let f € L*NL? and p € L' N L*>, v > 0. Then

[epsiam< [epiyan< [ Pe)lfidn < el [ |fidm

Now, take a sequence (@), of function 0 < ¢,, <1 for all n, with ¢,, / 1x pointwise. O

We can extend the restriction of P to L' N L? to a Markov contraction on L. We denote this extension
PO,

15



Proposition 2.25.}

Let f € L?. Then (Pf)? < PO f2,

Proof. Tt suffices to prove the property for f € L' N L> (by boundedness of P and density). Let A € X
with m(A) < co. Since for all A € R we have

P(f+X14)%>0, m—ae.,

we obtain
[P(f14)]° < P(f2)P(1a) < P(f), m —a.e.

By o—finiteness, we can find A, € X s.t. 14, ' 1x pointwise. Dominated convergence theorem gives
the result. O

~ Definition 2.26. .

A function F : R™ — R with
|F(x)_F(y)|§Z|xl_yz|v {E,yERn,
i=1

and F(0) = 0 is called normal contraction.

Given a Markov operator P on L2, we consider the quadratic form

gp(f) = <f*Pf7f>L2, fELQ.

,—[Proposition 2.27 (Implication of Markovity).] .

Let F : RP — R be a normal contraction, P a Markov operator and fi, ..., f, € L?. Then, writing

f=(f1,-.-, fp), we have

P

E(F o N <3 (E()

i=1

N

\. J

To prove the proposition, we use an elementary lemma :

~ Lemma 2.28. \

Let Ay, ..., A, € X, pairwise disjoints of finite measure, and consider

n
o= ZailA“
=il

with a; € R. Let
>\i = m(AZ), Eij = <1Ai7P1A]‘>L2 and Hi = )‘j — Zaij.
i=1
Then p; > 0 for all j and

n
1
Ep(p) = Zﬂia? T3 Z £ij(e — a5)°.
=1

1<i,j<n
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Proof. The equality

Hy = <1AJ,1—P (Zui>> ,
i=1 L2

hold. Since the A;’s are pairwise disjoints and P is Markov, the 1; are non-negative. One have

Eplp) = Z (@i(la, — Pla,),a;la,)
6]
= Za?ui — Zsijaiaj
% 9,
= Z 04?/% + Z 0&12 Z Eij — Z QOGEGj.
4 i J i,
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