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Chapter 1
General theory of Dirichlet forms

1.1 Semigroups theory and quadratic forms on Hilbert spaces
Let H be a real Hilbert space with scalar product 〈·, ·〉H and norm ‖ · ‖H .

A strongly continuous semi-group of linear operator is a family (Tt)t>0 of linear bounded operators
Tt : H → H s.t.

1. D(Tt) = H for all t > 0,

2. Tt+s = TtTs for all t, s > 0

3. limt→0 ‖Ttf − f‖H = 0 for all f ∈ H.

Moreover, it’s contractive if ‖Ttf‖H ≤ ‖f‖H for all f ∈ H and all t > 0. It’s called symmetric if

〈Ttf, g〉H = 〈f, Ttg〉H ,

for all f, g ∈ H and all t > 0.

Definition 1.1.

Example

Take H = L2(Rd) and for all f ∈ L2(Rd), define

Ttf(x) =

∫
Rd
pt(x− y)f(y) dy = (pt ∗ f)(x),

where
pt(x) =

1

(2πt)
d
2

e−
|x|2
2t .

Then, (Tt)t>0 is strongly continuous, symmetric and contractive on L2(Rd). It’s called the Gaussian
Weierstrass semigroup.

Let (Tt)t>0 be a strongly continuous semigroup on H. Then, there exist M ≥ 1 and ω ∈ R s.t.

‖Tt‖ ≤Meωt,

for all t > 0.

Lemma 1.2.
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Proof.

Step 1 : Let show that there is τ > 0 s.t. k = sup
0≤t≤τ

‖Tt‖ <∞. Suppose it’s not true. Then, there is (tn)n≥0

s.t. tn → 0 and ‖Ttn‖ → ∞. Then, there is f ∈ H s.t. ‖Ttnf‖ → ∞ (by Banach-Steinhauser),
which contradict strong continuity.

Step 2 : Given t ≥ 0, write t = nτ + θ with suitable n ∈ N and θ ∈ [0, τ). Then,

‖Tt‖ ≤ ‖Tτ‖n‖Tθ‖ ≤ kn+1 ≤ k(k
1
τ )t.

Note that n ≤ t
τ and k ≥ lim

ε→0+
‖Tε‖ = 1. Consequently, we can use M = k and ω = log(k)

τ .

Remark

1. Apparently (Tt)t≥0 is contractive if we can use M = 1 and ω = 0.

2. If (Tt)t>0 is strongly continuous, then for any α > 0 (actually α ∈ R), (e−αtTt)t>0 is a strongly
continuous semigroup.

Example

Look at
Ttf(x) = f(x+ t), t > 0.

It form a strongly continuous semigroup on L2(R) but it’s not symmetric. At least for good function;
say f ∈ C1(R) ∩ L2(R); we have

d+f

dx
(x) := lim

h→0+

f(x+ h)− f(x)

h
= lim
h→0+

Thf(x)− f(x)

h
.

This idea works more generally. The (infinitesimal) generator A of a strongly continuous semigroup
(Tt)t>0 is defined by

D(A) =

{
f ∈ H | lim

t→0+

Ttf − f
h

exist in the strong sense in H
}
,

and
Af := lim

t→0+

Ttf − f
t

, f ∈ D(A).

For example, for the translation semigroup above, C1(R) ∩ L2(R) ⊂ D(A) and Af = d+

dx f for f ∈
C1(R)∩L2(R). In the following, we use Bochner integration (Lebesgue integral on Hilbert spaces).
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Let (Tt)t>0 be a strong and continuous semigroup with generator (A,D(A)). Then,

1.
∫ t

0

Tsf ds ∈ D(A) for all f ∈ H and all t > 0 and we have that

A

(∫ t

0

Tsf ds

)
= Ttf − f.

2. Tt(D(A)) ⊂ D(A) for all t > 0,

3. For all t > 0 and all f ∈ D(A),

TtAf = ATtf =
d+

dt
Ttf.

In particular, the continuous function u : [0,∞) → H defined by u(0) := f and u(t) = Ttf
solve (uniquely) the Cauchy problem{

d+u
dt (t) = Au(t) t > 0

u(0) = f
.

4. For all t > 0 and all f ∈ D(A),

Ttf − f =

∫ t

0

Tsf ds.

Lemma 1.3.

Remark

If (Tt)t>0 is symmetric, then it has better ("regularization") properties, because it’s (essentially) an
"analytic semigroup". In this case, we have 2.’ Tt(H) ⊂ D(A) for all t > 0, and the Cauchy problem in
3. can be solved (uniquely) for any f ∈ H.

Example

The generator of the Gaussian Weierstrass semigroup is
(

1
2∆, H2(Rd)

)
. Let us first check that D(A) ⊃

H2(Rd). We have that pt ∈ S(Rd) for all t > 0, so Tt(S(Rd)) ⊂ S(Rd) for all t > 0. Let prove that

lim
h→0

ph ∗ f − f
h

=
1

2
∆f, f ∈ S(Rd).

Using Plancherel, the claim is equivalent to

lim
h→0

1

(2π)
d
2

p̂hf̂ − f̂
h

=
1̂

2
∆f,

where
f̂(ξ) =

1

(1pi)
d
2

∫
Rd
e−iξ·xf(x) dx.

Since
p̂t(ξ) = e−

tξ2

2 and ∆̂f(ξ) = −ξ2f̂(ξ),

the claim is equivalent to

lim
h→0

ehψg − g
h

= ψg, g ∈ S(Rn), (1.1)
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where ψ(ξ) = − ξ
2

2 . To see this last statement, consider

Φ(z) :=
ez − 1

z
=

∞∑
n=2

zn−1

n!
.

Then, ∥∥∥∥eψhg − gh
− ψg

∥∥∥∥2

L2

= ‖Φ ◦ (hψ) · ψg‖2L2 =

∫
Rd

∣∣∣∣Φ(−hξ2

2

)∣∣∣∣2 ∣∣∣∣ξ2

2
g(ξ)

∣∣∣∣2 dξ −→
h→0

0,

by dominated convergence theorem. Note that −1 ≤ Φ(z) ≤ 0 for all z ≤ 0. Moreover (1.1) remain valid
for all f ∈ L2(Rd) s.t. ψf̂ ∈ L2(Rd), that is for all f ∈ H2(Rd). Consequently, H2(Rd) ⊂ D(A) and

Af =
1

2
∆f, f ∈ H2(Rd).

Exercices

If (A,D(A)) is the generator of (Tt)t>0, find the generator of (e−αtTt)t>0 ?

Remark

The operators that can occur as generator of strongly continuous semigroup can be caracterized (actually,
this work on any Banach space). An interesting example would be the Gaussian-Weierstrass semigroup
respectively − 1

2∆ in C0(Rd), the Banach space of continuous function that vanish at infinity.

An operator (A,D(A)) is a generator of a strongly continuous semigroup if and only if the following
conditions hold :

1. D(A) is dense in H,

2. (A,D(A)) is a closed operator,

3. There are ω ∈ R and M ≥ 1 s.t. (ω,∞) is in the resolvent set of (A,D(A)) and

‖(λ− ω)n(λ−A)−n‖ ≤M,

for all λ > ω and all n ∈ N.

In this case, the corresponding semigroup satisfies ‖Tt‖ ≤Meωt for all t > 0 with ω as in 3..

Theorem 1.4 (Hille-Yoshida).

We just verified that generators are closed operators, i.e. operators (A,D(A)) on H for which

Γ(A) = {(f,Af) | f ∈ D(A)},

is a closed subspace of H ×H, or equivalently, that D(A) is a Hilbert space with graph norm

‖f‖D(A) := ‖f‖+ ‖Af‖.

The generator (A,D(A)) of a strongly continuous semigroup is a closed operator.

Lemma 1.5.
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Proof. Let (fn) a sequence of D(A) s.t. fn → f in H and Afn → g in H for some f, g ∈ H. Then, we
have Af = g. For any t > 0,

Ttf − f = lim
n→∞

(Ttfn − fn) = lim
n→∞

∫ t

0

TsAfn ds =

∫ t

0

TsAg ds,

and thus

lim
t→0

Ttf − f
t

= lim
t→0

∫ t

0

Tsg ds = g.

Therefore, f ∈ D(A) and Af = g.

Example

Let A = 1
2∆ (Gauss-Wierstrass operator). Then the graph norm in D(A) is equivalent to ‖ · ‖H2 (c.f.

Fourier), and S(Rd) ⊂ D(A). So, by closedness, we must have H2(Rd) ⊂ D(A) (by the density of S(Rd)
in H2(Rd)). Combining with other implications, D(A) = H2(Rd).

The following notion is very much related to Hille-Yoshida theorem.

A strongly continuous resolvent (with constant ω ≥ 0) on H is a family (Gα)α>ω of linear operators
of H s.t.

1. D(Gα) = H for all α > ω,

2. Gα −Gβ + (α− β)GαGβ = 0 for all α, β > ω,

3. lim
α→∞

‖αGαf − f‖ = 0 for all f ∈ H,

4. There is M ≥ 1 s.t.
‖(α− ω)Gαf‖ ≤M‖f‖,

for all α > ω and all f ∈ H.

Moreover, (Gα)α>ω is called contractive if M = 1 and ω = 0 and is called symmetric if 〈Gαf, g〉 =
〈f,Gαg〉 for all f, g ∈ H and all α > ω.

Definition 1.6.

Given a strongly continuous semigroup (Tt)t>0, we can define a strongly continuous resolvent
(Gα)α>ω by taking the Laplace transform,

Gαf =

∫ ε

0

e−αtTtf dt, f ∈ H, (1.2)

where ω is as in the definition of strong continuity. If (Tt)t>0 is symmetric (or contractive), then
so is (Gα)α>ω. We call (Gα)α>ω defined in (1.2) the resolvent of the semigroup (Tt)t>0.

Lemma 1.7.

Proof. It’s easy to show that (Gα)α>ω defined in (1.2) has all the properties defined in the definition
1.6.

Example

Gauss-Weierstrass semigroup on L2(Rd) is a strong continuous, contractive and symmetric resolvent.
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Remark

1. From Hille-Yoshida or 4. of the definition 1.6, we would expect that Gα should be (α−A)−1 if A
is the generator of a semigroup. We’ll make this precise.

2. Given a strongly continuous resolvent (Gα)α>ω onH, assume that for some α > ω we haveGαu = 0.
Then, Gβu = 0 for all β > ω by resolvent equation and u = lim

β→∞
βGβu = 0 by strong continuity.

This mean that Gα is invertible. We set{
D(A) := Gα(H),

Au := αu−G−1
α u

, α > ω. (1.3)

The definition is correct, i.e. doesn’t depend on the choice of α > ω. The operator (A,D(A)) is called
the generator of the resolvent (Gα)α>ω.

The generator of a strongly continuous semigroup is equal to the generator of its resolvent.

Lemma 1.8.

Proof. Given (Tt)t>0 and (Gα)α>ω as annonced. Let A and A′ there generators respective. If f ∈ D(A′),
thn f = Gαϕ for some ϕ ∈ H and

e−αtTtf − f
t

= −1

t

∫ t

0

e−αsTsϕds −→
t→0

ϕ, in H,

and thus f ∈ D(A) and
Af = αf − ϕ = A′f.

Let f ∈ D(A) and set

ϕ := lim
t→0

e−αtTtf − f
t

and ψ := f −Gαϕ.

Step 1 : We show that ψ = 0. If we prove that Gβψ = 0, the claim follow because ψ = lim
β→∞

βGβψ = 0. So

let prove that Gβψ = 0. By resolvent equation,

Gβψ = Gβf −
1

α− β
(Gβ −Gα)ϕ.

Now

(Gβ −Gα)ϕ = − lim
t→0

1

t

[
e−αt

∫ ∞
0

(e−βs − e−αs)Ts+tf ds−
∫ ∞

0

(e−βs − e−αs)Tsf ds

]
= − lim

t→0

[
e−αt

∫ ∞
t

(e−β(u−t) − e−α(u−t))Tuf du−
∫ ∞

0

(e−βu − e−αu)Tuf du

]
= − lim

t→0

1

t

[∫ t

0

e−αuTuf du+ e−(α−β)t

∫ ∞
t

e−βuTuf du−
∫ ∞

0

e−βuTuf du

]
= − lim

t→0

1

t

[∫ t

0

e−αuTuf du+ (e−(α−β)t − 1)

∫ ∞
t

e−βuTuf du−
∫ t

0

e−βuTuf du

]
= f + (α− β)Gβf − f = (α− β)Gβf.

Step 2 : By previous step ψ = 0. This implies that f = Gαϕ ∈ Gα(H) = D(A′) and A′f = αf − ϕ = Af.

what implies f = Gαϕ ∈ Gα(H) = D(A′) and A′f = αf − ϕ = Af.
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The generator (A,D(A)) of a strongly continuous semigroup (or strongly continuous resolvent) is
densely defined on H, i.e. D(A) is dense in H.

Corollary 1.9.

Proof. D(A) = Gα(H) for all α > ω, but due to strong continuity, D(A) must be dense in H, because

lim
α→∞

‖αGαf︸ ︷︷ ︸
∈D(A)

−f‖ = 0.

• There is also a way back from a resolvent to a semigroup : If (Gα)α>ω is a strongly continuous
resolvent, then

Ttf := lim
β→∞

e−tβ
∞∑
n=0

(tβ)n

n!
(βGβ)nf, f ∈ H,

define a strongly continuous semigroup which has resolvent (Gα)α>ω.

• We now look at stucture of generators in the symmetric case. Recall that (A,D(A)) on H is called
symmetric if

〈Af, g〉 = 〈f,Ag〉 ,

for all f, g ∈ D(A). We could think that this notion generalize the notion of symmetric matrix,
but unfortunately it doesn’t : we have to find the correct domain.

• Given an unbounded linear operator (A,D(A)) on H with dense domain, we can define the adjoint
operator (A∗,D(A∗)) where

D(A∗) = {f ∈ H | ∃u ∈ H : ∀g ∈ D(A), 〈u, g〉 = 〈f,Ag〉},

and
u := A∗f, f ∈ D(A∗).

(A∗,D(A∗)) is a closed operator.

Lemma 1.10.

Proof. Let (fn) a sequence of D(A∗) s.t. fn → f in H and A∗fn → g in H for a certain f ∈ H and a
certain g ∈ H. For all ϕ ∈ D(A), we have

〈Aϕ, g〉 = lim
n→∞

〈Afn, f〉 = lim
n→∞

〈fn, A∗f〉 = 〈ϕ, g〉 ,

i.e. ϕ 7→ 〈Aϕ, f〉 is bounded. Consequently, f ∈ D(A∗) and A∗f = g.

• A densely defined operator (A,D(A)) on H is called self adjoint if D(A∗) = D(A) and A∗f = Af
on D(A). There is a "hidden closure process" in the definition of the adjoint, dictates the "correct
domain".

• By Lemma 1.10, we know that a self adjoint operator is closed. Also, it’s symmetric. A symmetric
operator is self adjoint if D(A) = H, but it’s not true in general.
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Example

A := i d
dx , H = L2(−1, 1) and

D(A) = {f ∈ C1([−1, 1]) | f(−1) = f(1) = 0}.

Then, A is densely defined and symmetric. But it’s not closed and thus not self adjoint. Indeed, consider

fn(x) =

(
x2 +

1

n

) 1
2

, f(x) = |x| and g(x) = sgn(x),

with the convention that sgn(0) = 0. Then, fn → f in L2(−1, 1) (the convergence is actually uniform
on [−1, 1]), Afn → ig in L2 but f /∈ D(A).

• The notion of self-adjoint operator is the "domain-wise correct" generalization of the notion of
symmetric matrix.

Remark

For a densely operator (A,D(A)), we have

1. A symmetric if and only if A ⊂ A∗ (i.e. D(A) ⊂ D(A∗) and Af = A∗f for all f ∈ D(A)). In this
case, A∗∗ = (A∗)∗ can be defined as the smallest closed extension of A, and we have A ⊂ A∗∗ ⊂ A∗.

2. A is closed and symmetric, i.e. A = A∗∗ ⊂ A∗.

3. A is self adjoint if and only if A = A∗∗ = A∗. This is the case if and only if the adjoint A∗ is a
symmetric operator.

Example

Consider again A = i d
dx on L2(−1, 1) with a domain that makes it closed, namely

D(A) = {f ∈ L2(−1, 1) | f is equal to an absolute continuous function f̃ a.e. on [−1, 1] and s.t. f̃(−1) = f̃(1) = 0}.

Then A is symmetric an

D(A∗) =

{
f ∈ L2(−1, 1) | t is equal to an absolute continuous function f̃ a.e. on [−1, 1] s.t.

∫ 1

−1

|f̃ |2 <∞
}
,

and A∗ = i d
dx . Then, A∗ is not symmetric because e−x ∈ D(A∗) but A∗e−x = −ie−x, i.e. −i is a non

zero imaginary imaginary part eigenvalue, which is impossible for a symmetric operator.

A symmetric operator (A,D(A)) is called semi-bounded if there is C ≥ 0 s.t.

〈−Af, f〉 ≥ −C‖f‖2,

for all f ∈ D(A). If 〈−Af, f〉 ≥ 0, then it’s called non-positive definite.

Definition 1.11.

The generator of a symmetric strongly continuous resolvent (or symmetric strongly continuous semi-
group) on H is a semi-bounded self-adjoint operator if the resolvent (or semi-group) is contractive.
Then, its generator is non positive definite.

Lemma 1.12.
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Proof. Since Gα is symmetric and defined on a all H, it’s therefore self-adjoint. By the spectral theorem
(see below) also G−1

α is self adjoint, and then so is A. Set ϕ(α) := 〈f,Gαf〉, where f ∈ D(A) and α > ω.
By the resolvent equation,

Gα+εf −Gα = εGα+εGαf,

so that
ϕ′(α) = −〈Gαf,Gαf〉 ≤ 0.

By 4. of the definition of a resolvent,

|ϕ(α)| ≤ M

α
‖f‖2 −→

α→∞
0.

Therefore ϕ(α) ≥ 0 for all α > ω and thus, Gα is non-negative definite. Then, for all f ∈ D(A),
(D(A) = Gα(H) for all α > ω),

〈(ω − α)f, f〉 = lim
α→ω

〈−Af + αf, f〉 = lim
α→ω

〈
G−1
α f, f

〉
= 0.

So,
〈−Af, f〉 ≥ −ω‖f‖2,

for all f ∈ D(A).

We now gives two version of the spectral theorem (without proof).

Let −A : H → H be self adjoint with domain D(A). Then, there is a spectral measure (spectral
family) (Eλ)λ∈R s.t.

−〈Af, g〉 =

∫
R
λ d 〈Eλf, g〉 , f ∈ D(A), g ∈ H,

and given a measurable function ϕ : R→ R and setting

D
(
ϕ(−1)

)
=

{
f ∈ H |

∫
R
|ϕ(λ)|d 〈Eλf, f〉 <∞

}
,

then ϕ(−A) defined by

〈ϕ(−A)f, f〉 =

∫
R
ϕ(λ) d 〈Eλf, g〉 , f ∈ D(A), g ∈ H,

define a self adjoint operator
(
ϕ(−A), D

(
ϕ(−A)

))
. For ϕ = id, we recover

D(A) =

{
f ∈ H |

∫
R
λ2 d 〈Eλf, f〉 <∞

}
.

Theorem 1.13 (Spectral decomposition).

Example

1. In many application, one encounters the situation that

D(A) =

{
f ∈ H |

∞∑
i=0

λ2
i | 〈ϕi, f〉 |2 <∞

}
,

with a sequence of real numbers (λi)i∈R and a complete orthonormal system (ϕi)i∈N in H, and

Af =

∞∑
i=0

λi 〈ϕi, f〉ϕi, f ∈ D(A).

This is for instance the case if "A has a pure point spectrum" to the λi, one refers as eigenvalues
of A and to the ϕi as eigenfunctions (e.g. second order operators on bounded domain).
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2. Given a non positive definite self-adjoint operator (A,D(A)), we can use the spectral theorem to
define fractional power of −A by looking at ϕ(λ) = λα, α ∈ R

As this version of the spectral theorem shows : all self-adjoint operator are multiplication operator up
to a unitary transformation.

Let −A : H → H be self-adjoint with domain D(A). Then, there exist a measure space (Ω,F , µ),
a measurable function Φ : Ω → R and a unitary operator U : H → L2(Ω, µ) s.t. f ∈ D(A) if and
only if Φ · Uf ∈ L2(Ω, µ). Moreover, defining

D(MΦ) = {ϕ ∈ L2(Ω, µ) | Φ · Uf ∈ L2(Ω, µ)},

and
MΦ(g) := Φ · g, g ∈ D(MΦ),

the operator (MΦ, D(MΦ)) is self-adjoint on L2(Ω, µ) and

MΦ(g) = U(−A)U∗g, g ∈ D(MΦ).

Theorem 1.14 (Spectral theorem).

The spectral theorem is also a way to construct (symmetric) semigroup and resolvent from self adjoint
operator.

Let (A,D(A)) semi-bounded self-adjoint operator on H (with constant ω, i.e. 〈−Af, f〉 ≥ −ω‖f‖2),

1. Setting Tt := etA (i.e. ϕ(λ) = eλt), t > 0 and Gα := (α − A)−1 (i.e. ϕ(λ) = 1
α+λ),

α > ω, we obtain a symmetric strongly continuous semigroup (Tt)t>0 and a symmetric strongly
continuous resolvent (Gα)α>ω on H.

2. The generator of (Tt)t>0 is A and (Tt)t>0 is the only semigroup with this generator. Similarly
for the resolvent.

Lemma 1.15.

Proof. 1. Follows directly from spectral theorem : for ϕ,ψ : [−c,∞)→ R continuous, we have

〈ϕ(−1)u, ψ(−A)v〉 =

∫
[−c,∞)

ϕ(λ)ψ(λ) d 〈Eλu, v〉 ,

for all u ∈ D(ϕ(−A) and v ∈ D(ψ(−A)). We apply this to λ 7→ e−tλ and λ 7→ 1
α+λ . For instance,

writing in symbolic notation ("operator calculus"), αG−1
α =

∫
[−c,∞)

(
α

α+λ − 1
)

dEλ implies

〈αGαu− u, αGαu− u〉 =

∫
[−c,∞)

(
α

α+ λ
− 1

)2

d 〈Eλu, u〉 −→
α→∞

0,

for any u ∈ H. Tis show the strong continuity of (Gα)α>c.

2. For any f ∈ H and α > c, we have∫
[−c,∞)

λ2 d 〈EλGαf,Gαf〉 =

∫
[−c,∞)

λ2

(α+ λ)2
d 〈Eλf, f〉 <∞,

i.e. Gα(H) ⊂ D(A). Since (α − A)Gαg = f , f ∈ H and Gα(α − A)f = f , f ∈ D(A) (also to be
seen via spectral theorem), we see that A is the generator of (Gα)α>c. Let (G′α)α>c be a strongly
continuous resolvent generated by A. Given f ∈ H, consider

w = Gαf −G′αf =⇒ (α−A)w,
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for all α > c. Since c− A is non negative definite and α > c, we get w = 0. This shows G′α = Gα
for α > c. The uniqueness of the semigroup follow from the right continuity of t 7→ 〈Ttf, g〉 and
the uniqueness theorem for Laplace transformation.

After having looked at semigroups, resolvents and generators, we add another perpective :

A densely defined bilinear form (Q,D(Q)) on H is a bilinear map Q : D(Q) × D(Q) → R where
D(Q) is a dense subspace of H. If Q(f, g) = Q(g, f) for all f, g ∈ D(Q), we say that (Q,D(Q)) is
symmetric. It’s called semi-bounded if there is C ≥ 0 s.t.

Q(f, f) ≥ −C‖f‖2,

for all f ∈ D(Q) and non-negative definite if this is true for C = 0. A semi-bounded form is closed
if D(Q) is a Hilbert space with norm

‖f‖Q,α :=
√
Qα(f, f), f ∈ D(Q),

for some α > c where
Qα(f, g) := Q(f, g) + α 〈f, g〉 , f, g ∈ D(Q).

Definition 1.16.

Remark

1. If this hold for one α > c, then it holds for all α > c and the Hilbert norms ‖ · ‖Q,α, α > c are
equivalents norms.

2. Some author refer to a densely defined symmetric closed form as "closed quadratic form".

Any semi-bounded self-adjoint operator generates such a form :

Let (A,D(A)) be a semi-bounded self adjoint operator on H with spectral representation

〈−Af, g〉 =

∫
[−c,∞)

λ d 〈Eλf, g〉 , f ∈ D(A), g ∈ H,

and

D(A) =

{
f ∈ H |

∫
[−c,∞)

λ2 d 〈Eλf, f〉 <∞

}
.

Then
Q(f, g) :=

∫
[−c,∞)

λ d 〈Eλf, g〉 , f, g ∈ D(Q),

D(Q) =

{
f ∈ H |

∫
[−c,∞)

λ d 〈Eλf, f〉 <∞

}
,

defined a densely defined symmetric semi-bounded and closed form (Q,D(Q)) with

Q(f, f) ≥ −C‖f‖2, f ∈ D(Q).

If A is non-positive definite (i.e. −A is positive definite), then (Q,D(Q)) is non-negative definite
and D(Q) = D(

√
−A),

Q(f, g) =
〈√
−Af,

√
−Ag

〉
.

Lemma 1.17.
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Proof. It suffice to consider the case that A is non-positive definite (otherwise look at A− α). We need
to verify density of D(Q) and closedness. But

√
−A is a (non-negative defnite) self-adjoint operator.

In particular, densely defined and closed. Clearly, D(Q) is dense, and the closedness follows from the
closedness of

√
−A.

For the strongly continuous resolvent (Gα)α>c generated by (A,D(A)), we have Gα(H) ⊂ D(Q),
α > c, and

Qα(Gαf, g) = 〈f, g〉 , f ∈ H, g ∈ D(Q). (1.4)

If A is non-positive definite, then this holds for all α > 0. The form (Q,D(Q)) is characterized by

D(A) ⊂ D(Q) and Q(f, g) = 〈−Af, g〉 , f ∈ D(A), g ∈ D(Q). (1.5)

Corollary 1.18.

Remark

The formula (1.5) is called "abstract Gauss-Green formula".

The power of closed quadratic form is that, unlike for operators, it cannot happen that they are
symmetric and closed "but not self-adjoint". In other words, the following holds :

Given a closed quadratic form (Q,D(Q)) on H, there exists a unique self-adjoint operator (A,D(A))
s.t. (1.5) holds. This operator is semi-bounded, it is non-positive definite if and only if (Q,D(Q))
is non-negative definite.

Lemma 1.19.

Proof. For any α > c and any u ∈ H, there is a unique element Gαu ∈ D(A) s.t.

Qα(Gαu, v) = 〈u, v〉 , v ∈ D(Q). (1.6)

By Riesz representation theorem. One can see that (Gα)α>c, where Gα is the operator u 7→ Gαu, u ∈ H,
is a symmetric strongly continuous resolvent :

(α− c)‖Gαu‖2 ≤
semibd.

Qα(Gαu,Gαu) = 〈u,Gαu〉 ≤ ‖u‖‖Gαu‖,

which implies the bound 4. in the definition. To see strong continuity, we can use boundedness 4. and
density of D(Q) in H to restrict attention to the question wether

βGβu→ u as β →∞,

for u ∈ D(Q). This follow from

(β − c)‖βGβu− u‖2 ≤ Qβ(βGβu− u, βGβu− u)

= β 〈βGβu, u〉 − 2β 〈u, u〉+Q(u, u) ≤ Qc(u, u),

which implies convergence and therefore 3. in the definition of the resolvent. To see the resolvent
equation 2., suppose α, β > c. Then

Qα(Gβu− (α− β)GαGβu, v) = Qβ(Gβu, v) + (α− β) 〈Gβu, v〉 − (α− β) 〈Gβu, v〉
= 〈u, v〉 = Qα(Gαu, v),

where u ∈ H and v ∈ D(Q). Let (A,D(A)) be the generator (Gα)α>c. Since A is semi-bounded and
self-adjoint, it generates a closed quadratic form (Q′, D(Q′)) satisfying (1.5). We claim that Q′ = Q.
The formula (1.4) for Q′ implies that Gα(H) ⊂ D(Q′) and

Q′α(Gαu,Gαv) = 〈u,Gαv〉 = Qα(Gαu,Gαv), u, v ∈ H.

13



Therefore Q′ = Q on Gα(H)×Gα(H). Since by (1.4) and (1.6), Gα(H) is dense (because D(A) is dense)
both in D(Q) qnd D(Q′), we get Q′ = Q. For a given Q, the self-adjoint operator satisfying (1.5) is
unique, because the resolvent satisfy (1.4) and it determines (Gα)α>c uniquely and therefore also A.

As a consequence, we have the following

There is a one-to-one correspondance between the family of non-negative definite closed quadratic
forms and the family of non-positive definite self-adjoint operator, it is given by (1.5).

Theorem 1.20.

(A,D(A)) is a non-positive self-adjoint operator if and only if (Q,D(Q)) is a non-negative definite
closed quadratic form, where is equivalnce is given by the spectral theorem. Spectral theorem also provide
approximation formulas.

Let (Q,D(Q)) a non-negative definite closed quadratic form and let (A,D(A)) be it’s generator. Let
(Tt)t>0 and (Gα)α>0 be the associated semigroup and resolvent (strongly continuous, symmetric
and contractive). Then,

1. For all t > 0, Tt(H) ⊂ D(Q)a and

Q(Ttu, Ttu) ≤ 1

2t

(
〈u, u〉 − 〈Ttu, Ttu〉

)
≤ Q(u, u), u ∈ D(Q).

2. For all α > 0, Gα(H) ⊂ D(Q), and

Qα(Gαu, v) = 〈u, v〉 , u ∈ H, v ∈ D(Q).

3. Given u ∈ D(Q), we have
Ttu −→

t→0+
u,

1

t

(
G1u− e−tG1Ttu

)
=

1

t

(
G1u− e−tTtG1u

)
−→
t→0+

u,

and
αGαu −→

α→∞
u,

all strongly in D(Q).

aThink for example Tt(L2) ⊂ H1.

Lemma 1.21.

Proof. Via spectral theorem.

Another, practically important type of approximation is as follow : define symmetric bilinear form
on H by

Q(t)(u, v) :=
1

t
〈u− Ttu, v〉 , u, v ∈ H, t > 0,

and
Q(β)(u, v) := β 〈u− βGβu, v〉 , u, v ∈ H,β > 0.

14



Let Q, −A, Tt, Gα, Q(t) and Q(β) as above.

1. For any u ∈ H, Q(t)(u, u) is non-decreasing as t→ 0+, and

D(Q) =

{
u ∈ H | lim

→0+
Q(u, u) <∞

}
,

Q(u, v) = lim
t→0+

Q(t)(u, v), u, v ∈ D(Q).

2. For any u ∈ H, Q(β)(u, v) is non decreasing as β ↗∞ and

D(Q) =

{
u ∈ H | lim

β→∞
Q(u, u) <∞

}
,

Q(u, v) = lim
β→∞

Q(β)(u, v), u, v ∈ D(Q).

Lemma 1.22.

Proof. Via spectral theorem.

1.2 Markov semigroup and Dirichlet forms
From now on, assume that (X,X ,m) is a σ−finite measure space. Write Lp := Lp(m) = Lp(X,X ,m),
0 < p ≤ ∞. We consider the case H = L2 = L2(m). So, "we start to do probability".

A bounded symmetric operator P on L2 is called Markovian (or just Markov) if P is symmetric
and for all f ∈ L2 s.t. 0 ≤ f ≤ 1, m−a.e. we have 0 ≤ Pf ≤ 1, m−a.e.

Definition 2.23.

Remark

1. In particular, Markov operators are positivity preserving, i.e. Pf ≥ 0, m−a.e. whenever f ∈ L2 is
s.t. f ≥ 0, m−a.e.

2. In some text, the above operators are called sub-Markovian, and only operators satisfying P1X =
1X are called Markovian. But we’ll use the more general manner of speaking.

3. Passing via L1, we see that any Markov operator is contractive in L2.

Suppose f ∈ L1 ∩ L2. Then Pf ∈ L1 and ‖Pf‖L1 ≤ ‖f‖L1 .

Proposition 2.24.

Proof. Let f ∈ L1 ∩ L2 and ϕ ∈ L1 ∩ L∞, γ ≥ 0. Then∫
ϕ|Pf |dm ≤

∫
ϕP (|f |) dm ≤

∫
P (ϕ)|f |dm ≤ ‖ϕ‖L∞

∫
|f |dm.

Now, take a sequence (ϕn)n of function 0 ≤ ϕn ≤ 1 for all n, with ϕn ↗ 1X pointwise.

We can extend the restriction of P to L1 ∩L2 to a Markov contraction on L1. We denote this extension
P (1).
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Let f ∈ L2. Then (Pf)2 ≤ P (1)f2.

Proposition 2.25.

Proof. It suffices to prove the property for f ∈ L1 ∩L∞ (by boundedness of P and density). Let A ∈ X
with m(A) <∞. Since for all λ ∈ R we have

P (f + λ1A)2 ≥ 0, m− a.e.,

we obtain
[P (f1A)]

2 ≤ P (f2)P (1A) ≤ P (f), m− a.e.

By σ−finiteness, we can find An ∈ X s.t. 1An ↗ 1X pointwise. Dominated convergence theorem gives
the result.

A function F : Rn → R with

|F (x)− F (y)| ≤
n∑
i=1

|xi − yi|, x, y ∈ Rn,

and F (0) = 0 is called normal contraction.

Definition 2.26.

Given a Markov operator P on L2, we consider the quadratic form

Ep(f) := 〈f − Pf, f〉L2 , f ∈ L2.

Let F : Rp → R be a normal contraction, P a Markov operator and f1, . . . , fp ∈ L2. Then, writing
f = (f1, . . . , fp), we have

(Ep(F ◦ f))
1
2 ≤

p∑
i=1

(Ep(fi))
1
2 .

Proposition 2.27 (Implication of Markovity).

To prove the proposition, we use an elementary lemma :

Let A1, . . . , An ∈ X , pairwise disjoints of finite measure, and consider

ϕ =

n∑
i=1

αi1Ai ,

with αi ∈ R. Let

λi = m(Ai), εij =
〈
1Ai , P1Aj

〉
L2 and µj = λj −

n∑
i=1

aij .

Then µj ≥ 0 for all j and

Ep(ϕ) =

n∑
i=1

µiα
2
i +

1

2

∑
1≤i,j≤n

εij(αi − αj)2.

Lemma 2.28.
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Proof. The equality

µj =

〈
1Aj ,1− P

(
n∑
i=1

1Ai

)〉
L2

,

hold. Since the Ai’s are pairwise disjoints and P is Markov, the µj are non-negative. One have

Ep(ϕ) =
∑
i,j

〈
αi(1Ai − P1Ai), αj1Aj

〉
=
∑
i

α2
iµi −

∑
i,j

εijαiαj

=
∑
i

α2
iµi +

∑
i

α2
i

∑
j

εij −
∑
i,j

αiαjεij .
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