Dirichlet form

Prof. M. Hinz

May 2, 2019

Contents

1 General theory of Dirichlet forms 2
1.1 Semigroups theory and quadratic forms on Hilbert spaces 2
1.2 Markov semigroup and Dirichlet forms . 15

General theory of Dirichlet forms

1.1 Semigroups theory and quadratic forms on Hilbert spaces

Let H be a real Hilbert space with scalar product $\langle\cdot, \cdot\rangle_{H}$ and norm $\|\cdot\|_{H}$.

Definition 1.1.

A strongly continuous semi-group of linear operator is a family $\left(T_{t}\right)_{t>0}$ of linear bounded operators $T_{t}: H \rightarrow H$ s.t.

1. $D\left(T_{t}\right)=H$ for all $t>0$,
2. $T_{t+s}=T_{t} T_{s}$ for all $t, s>0$
3. $\lim _{t \rightarrow 0}\left\|T_{t} f-f\right\|_{H}=0$ for all $f \in H$.

Moreover, it's contractive if $\left\|T_{t} f\right\|_{H} \leq\|f\|_{H}$ for all $f \in H$ and all $t>0$. It's called symmetric if

$$
\left\langle T_{t} f, g\right\rangle_{H}=\left\langle f, T_{t} g\right\rangle_{H}
$$

for all $f, g \in H$ and all $t>0$.

Example

Take $H=L^{2}\left(\mathbb{R}^{d}\right)$ and for all $f \in L^{2}\left(\mathbb{R}^{d}\right)$, define

$$
T_{t} f(x)=\int_{\mathbb{R}^{d}} p_{t}(x-y) f(y) \mathrm{d} y=\left(p_{t} * f\right)(x)
$$

where

$$
p_{t}(x)=\frac{1}{(2 \pi t)^{\frac{d}{2}}} e^{-\frac{|x|^{2}}{2 t}} .
$$

Then, $\left(T_{t}\right)_{t>0}$ is strongly continuous, symmetric and contractive on $L^{2}\left(\mathbb{R}^{d}\right)$. It's called the Gaussian Weierstrass semigroup.

Lemma 1.2.

Let $\left(T_{t}\right)_{t>0}$ be a strongly continuous semigroup on H. Then, there exist $M \geq 1$ and $\omega \in \mathbb{R}$ s.t.

$$
\left\|T_{t}\right\| \leq M e^{\omega t}
$$

for all $t>0$.

Proof.

Step 1 : Let show that there is $\tau>0$ s.t. $k=\sup _{0 \leq t \leq \tau}\left\|T_{t}\right\|<\infty$. Suppose it's not true. Then, there is $\left(t_{n}\right)_{n \geq 0}$ s.t. $t_{n} \rightarrow 0$ and $\left\|T_{t_{n}}\right\| \rightarrow \infty$. Then, there is $f \in H$ s.t. $\left\|T_{t_{n}} f\right\| \rightarrow \infty$ (by Banach-Steinhauser), which contradict strong continuity.

Step 2: Given $t \geq 0$, write $t=n \tau+\theta$ with suitable $n \in \mathbb{N}$ and $\theta \in[0, \tau)$. Then,

$$
\left\|T_{t}\right\| \leq\left\|T_{\tau}\right\|^{n}\left\|T_{\theta}\right\| \leq k^{n+1} \leq k\left(k^{\frac{1}{\tau}}\right)^{t}
$$

Note that $n \leq \frac{t}{\tau}$ and $k \geq \lim _{\varepsilon \rightarrow 0^{+}}\left\|T_{\varepsilon}\right\|=1$. Consequently, we can use $M=k$ and $\omega=\frac{\log (k)}{\tau}$.

Remark

1. Apparently $\left(T_{t}\right)_{t \geq 0}$ is contractive if we can use $M=1$ and $\omega=0$.
2. If $\left(T_{t}\right)_{t>0}$ is strongly continuous, then for any $\alpha>0$ (actually $\left.\alpha \in \mathbb{R}\right),\left(e^{-\alpha t} T_{t}\right)_{t>0}$ is a strongly continuous semigroup.

Example

Look at

$$
T_{t} f(x)=f(x+t), \quad t>0
$$

It form a strongly continuous semigroup on $L^{2}(\mathbb{R})$ but it's not symmetric. At least for good function; say $f \in \mathcal{C}^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$; we have

$$
\frac{\mathrm{d}^{+} f}{\mathrm{~d} x}(x):=\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0+} \frac{T_{h} f(x)-f(x)}{h} .
$$

This idea works more generally. The (infinitesimal) generator A of a strongly continuous semigroup $\left(T_{t}\right)_{t>0}$ is defined by

$$
\mathcal{D}(A)=\left\{f \in H \left\lvert\, \lim _{t \rightarrow 0^{+}} \frac{T_{t} f-f}{h}\right. \text { exist in the strong sense in } H\right\}
$$

and

$$
A f:=\lim _{t \rightarrow 0^{+}} \frac{T_{t} f-f}{t}, \quad f \in \mathcal{D}(A) .
$$

For example, for the translation semigroup above, $\mathcal{C}^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R}) \subset \mathcal{D}(A)$ and $A f=\frac{\mathrm{d}^{+}}{\mathrm{d} x} f$ for $f \in$ $\mathcal{C}^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$. In the following, we use Bochner integration (Lebesgue integral on Hilbert spaces).

Lemma 1.3.

Let $\left(T_{t}\right)_{t>0}$ be a strong and continuous semigroup with generator $(A, \mathcal{D}(A))$. Then,

1. $\int_{0}^{t} T_{s} f \mathrm{~d} s \in \mathcal{D}(A)$ for all $f \in H$ and all $t>0$ and we have that

$$
A\left(\int_{0}^{t} T_{s} f \mathrm{~d} s\right)=T_{t} f-f
$$

2. $T_{t}(\mathcal{D}(A)) \subset \mathcal{D}(A)$ for all $t>0$,
3. For all $t>0$ and all $f \in \mathcal{D}(A)$,

$$
T_{t} A f=A T_{t} f=\frac{\mathrm{d}^{+}}{\mathrm{d} t} T_{t} f
$$

In particular, the continuous function $u:[0, \infty) \rightarrow H$ defined by $u(0):=f$ and $u(t)=T_{t} f$ solve (uniquely) the Cauchy problem

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}^{+} u}{\mathrm{~d} t}(t)=A u(t) \quad t>0 \\
u(0)=f
\end{array} .\right.
$$

4. For all $t>0$ and all $f \in \mathcal{D}(A)$,

$$
T_{t} f-f=\int_{0}^{t} T_{s} f \mathrm{~d} s
$$

Remark

If $\left(T_{t}\right)_{t>0}$ is symmetric, then it has better ("regularization") properties, because it's (essentially) an "analytic semigroup". In this case, we have 2.' $T_{t}(H) \subset \mathcal{D}(A)$ for all $t>0$, and the Cauchy problem in 3. can be solved (uniquely) for any $f \in H$.

Example

The generator of the Gaussian Weierstrass semigroup is $\left(\frac{1}{2} \Delta, H^{2}\left(\mathbb{R}^{d}\right)\right)$. Let us first check that $\mathcal{D}(A) \supset$ $H^{2}\left(\mathbb{R}^{d}\right)$. We have that $p_{t} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ for all $t>0$, so $T_{t}\left(\mathcal{S}\left(\mathbb{R}^{d}\right)\right) \subset \mathcal{S}\left(\mathbb{R}^{d}\right)$ for all $t>0$. Let prove that

$$
\lim _{h \rightarrow 0} \frac{p_{h} * f-f}{h}=\frac{1}{2} \Delta f, \quad f \in \mathcal{S}\left(\mathbb{R}^{d}\right) .
$$

Using Plancherel, the claim is equivalent to

$$
\lim _{h \rightarrow 0} \frac{1}{(2 \pi)^{\frac{d}{2}}} \frac{\hat{p}_{h} \hat{f}-\hat{f}}{h}=\widehat{\frac{1}{2} \Delta f},
$$

where

$$
\hat{f}(\xi)=\frac{1}{(1 p i)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} e^{-i \xi \cdot x} f(x) \mathrm{d} x
$$

Since

$$
\hat{p}_{t}(\xi)=e^{-\frac{t \xi^{2}}{2}} \quad \text { and } \quad \widehat{\Delta f}(\xi)=-\xi^{2} \hat{f}(\xi)
$$

the claim is equivalent to

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{e^{h \psi} g-g}{h}=\psi g, \quad g \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{1.1}
\end{equation*}
$$

where $\psi(\xi)=-\frac{\xi^{2}}{2}$. To see this last statement, consider

$$
\Phi(z):=\frac{e^{z}-1}{z}=\sum_{n=2}^{\infty} \frac{z^{n-1}}{n!} .
$$

Then,

$$
\left\|\frac{e^{\psi h} g-g}{h}-\psi g\right\|_{L^{2}}^{2}=\|\Phi \circ(h \psi) \cdot \psi g\|_{L^{2}}^{2}=\int_{\mathbb{R}^{d}}\left|\Phi\left(-\frac{h \xi^{2}}{2}\right)\right|^{2}\left|\frac{\xi^{2}}{2} g(\xi)\right|^{2} \mathrm{~d} \xi \underset{h \rightarrow 0}{\longrightarrow} 0
$$

by dominated convergence theorem. Note that $-1 \leq \Phi(z) \leq 0$ for all $z \leq 0$. Moreover (1.1) remain valid for all $f \in L^{2}\left(\mathbb{R}^{d}\right)$ s.t. $\psi \hat{f} \in L^{2}\left(\mathbb{R}^{d}\right)$, that is for all $f \in H^{2}\left(\mathbb{R}^{d}\right)$. Consequently, $H^{2}\left(\mathbb{R}^{d}\right) \subset \mathcal{D}(A)$ and

$$
A f=\frac{1}{2} \Delta f, \quad f \in H^{2}\left(\mathbb{R}^{d}\right)
$$

Exercices

If $(A, \mathcal{D}(A))$ is the generator of $\left(T_{t}\right)_{t>0}$, find the generator of $\left(e^{-\alpha t} T_{t}\right)_{t>0}$?

Remark

The operators that can occur as generator of strongly continuous semigroup can be caracterized (actually, this work on any Banach space). An interesting example would be the Gaussian-Weierstrass semigroup respectively $-\frac{1}{2} \Delta$ in $\mathcal{C}_{0}\left(\mathbb{R}^{d}\right)$, the Banach space of continuous function that vanish at infinity.

Theorem 1.4 (Hille-Yoshida).

An operator $(A, \mathcal{D}(A))$ is a generator of a strongly continuous semigroup if and only if the following conditions hold :

1. $\mathcal{D}(A)$ is dense in H,
2. $(A, \mathcal{D}(A))$ is a closed operator,
3. There are $\omega \in \mathbb{R}$ and $M \geq 1$ s.t. (ω, ∞) is in the resolvent set of $(A, \mathcal{D}(A))$ and

$$
\left\|(\lambda-\omega)^{n}(\lambda-A)^{-n}\right\| \leq M
$$

for all $\lambda>\omega$ and all $n \in \mathbb{N}$.
In this case, the corresponding semigroup satisfies $\left\|T_{t}\right\| \leq M e^{\omega t}$ for all $t>0$ with ω as in 3 ..

We just verified that generators are closed operators, i.e. operators $(A, \mathcal{D}(A))$ on H for which

$$
\Gamma(A)=\{(f, A f) \mid f \in \mathcal{D}(A)\}
$$

is a closed subspace of $H \times H$, or equivalently, that $\mathcal{D}(A)$ is a Hilbert space with graph norm

$$
\|f\|_{\mathcal{D}(A)}:=\|f\|+\|A f\| .
$$

Lemma 1.5.

The generator $(A, \mathcal{D}(A))$ of a strongly continuous semigroup is a closed operator.

Proof. Let $\left(f_{n}\right)$ a sequence of $D(A)$ s.t. $f_{n} \rightarrow f$ in H and $A f_{n} \rightarrow g$ in H for some $f, g \in H$. Then, we have $A f=g$. For any $t>0$,

$$
T_{t} f-f=\lim _{n \rightarrow \infty}\left(T_{t} f_{n}-f_{n}\right)=\lim _{n \rightarrow \infty} \int_{0}^{t} T_{s} A f_{n} \mathrm{~d} s=\int_{0}^{t} T_{s} A g \mathrm{~d} s
$$

and thus

$$
\lim _{t \rightarrow 0} \frac{T_{t} f-f}{t}=\lim _{t \rightarrow 0} \int_{0}^{t} T_{s} g \mathrm{~d} s=g
$$

Therefore, $f \in \mathcal{D}(A)$ and $A f=g$.

Example

Let $A=\frac{1}{2} \Delta$ (Gauss-Wierstrass operator). Then the graph norm in $\mathcal{D}(A)$ is equivalent to $\|\cdot\|_{H^{2}}$ (c.f. Fourier), and $\mathcal{S}\left(\mathbb{R}^{d}\right) \subset \mathcal{D}(A)$. So, by closedness, we must have $H^{2}\left(\mathbb{R}^{d}\right) \subset \mathcal{D}(A)$ (by the density of $\mathcal{S}\left(\mathbb{R}^{d}\right)$ in $H^{2}\left(\mathbb{R}^{d}\right)$). Combining with other implications, $\mathcal{D}(A)=H^{2}\left(\mathbb{R}^{d}\right)$.

The following notion is very much related to Hille-Yoshida theorem.

Definition 1.6.

A strongly continuous resolvent (with constant $\omega \geq 0$) on H is a family $\left(G_{\alpha}\right)_{\alpha>\omega}$ of linear operators of H s.t.

1. $D\left(G_{\alpha}\right)=H$ for all $\alpha>\omega$,
2. $G_{\alpha}-G_{\beta}+(\alpha-\beta) G_{\alpha} G_{\beta}=0$ for all $\alpha, \beta>\omega$,
3. $\lim _{\alpha \rightarrow \infty}\left\|\alpha G_{\alpha} f-f\right\|=0$ for all $f \in H$,
4. There is $M \geq 1$ s.t.

$$
\left\|(\alpha-\omega) G_{\alpha} f\right\| \leq M\|f\|
$$

for all $\alpha>\omega$ and all $f \in H$.
Moreover, $\left(G_{\alpha}\right)_{\alpha>\omega}$ is called contractive if $M=1$ and $\omega=0$ and is called symmetric if $\left\langle G_{\alpha} f, g\right\rangle=$ $\left\langle f, G_{\alpha} g\right\rangle$ for all $f, g \in H$ and all $\alpha>\omega$.

Lemma 1.7.

Given a strongly continuous semigroup $\left(T_{t}\right)_{t>0}$, we can define a strongly continuous resolvent $\left(G_{\alpha}\right)_{\alpha>\omega}$ by taking the Laplace transform,

$$
\begin{equation*}
G_{\alpha} f=\int_{0}^{\varepsilon} e^{-\alpha t} T_{t} f \mathrm{~d} t, \quad f \in H \tag{1.2}
\end{equation*}
$$

where ω is as in the definition of strong continuity. If $\left(T_{t}\right)_{t>0}$ is symmetric (or contractive), then so is $\left(G_{\alpha}\right)_{\alpha>\omega}$. We call $\left(G_{\alpha}\right)_{\alpha>\omega}$ defined in (1.2) the resolvent of the semigroup $\left(T_{t}\right)_{t>0}$.

Proof. It's easy to show that $\left(G_{\alpha}\right)_{\alpha>\omega}$ defined in (1.2) has all the properties defined in the definition 1.6.

Example

Gauss-Weierstrass semigroup on $L^{2}\left(\mathbb{R}^{d}\right)$ is a strong continuous, contractive and symmetric resolvent.

Remark

1. From Hille-Yoshida or 4. of the definition 1.6, we would expect that G_{α} should be $(\alpha-A)^{-1}$ if A is the generator of a semigroup. We'll make this precise.
2. Given a strongly continuous resolvent $\left(G_{\alpha}\right)_{\alpha>\omega}$ on H, assume that for some $\alpha>\omega$ we have $G_{\alpha} u=0$. Then, $G_{\beta} u=0$ for all $\beta>\omega$ by resolvent equation and $u=\lim _{\beta \rightarrow \infty} \beta G_{\beta} u=0$ by strong continuity. This mean that G_{α} is invertible. We set

$$
\left\{\begin{array}{l}
\mathcal{D}(A):=G_{\alpha}(H), \tag{1.3}\\
A u:=\alpha u-G_{\alpha}^{-1} u
\end{array} \quad, \quad \alpha>\omega .\right.
$$

The definition is correct, i.e. doesn't depend on the choice of $\alpha>\omega$. The operator $(A, \mathcal{D}(A))$ is called the generator of the resolvent $\left(G_{\alpha}\right)_{\alpha>\omega}$.

Lemma 1.8.

The generator of a strongly continuous semigroup is equal to the generator of its resolvent.

Proof. Given $\left(T_{t}\right)_{t>0}$ and $\left(G_{\alpha}\right)_{\alpha>\omega}$ as annonced. Let A and A^{\prime} there generators respective. If $f \in D\left(A^{\prime}\right)$, $\operatorname{thn} f=G_{\alpha} \varphi$ for some $\varphi \in H$ and

$$
\frac{e^{-\alpha t} T_{t} f-f}{t}=-\frac{1}{t} \int_{0}^{t} e^{-\alpha s} T_{s} \varphi \mathrm{~d} s \underset{t \rightarrow 0}{\longrightarrow} \varphi, \quad \text { in } H
$$

and thus $f \in \mathcal{D}(A)$ and

$$
A f=\alpha f-\varphi=A^{\prime} f
$$

Let $f \in \mathcal{D}(A)$ and set

$$
\varphi:=\lim _{t \rightarrow 0} \frac{e^{-\alpha t} T_{t} f-f}{t} \quad \text { and } \quad \psi:=f-G_{\alpha} \varphi .
$$

Step 1 : We show that $\psi=0$. If we prove that $G_{\beta} \psi=0$, the claim follow because $\psi=\lim _{\beta \rightarrow \infty} \beta G_{\beta} \psi=0$. So let prove that $G_{\beta} \psi=0$. By resolvent equation,

$$
G_{\beta} \psi=G_{\beta} f-\frac{1}{\alpha-\beta}\left(G_{\beta}-G_{\alpha}\right) \varphi
$$

Now

$$
\begin{aligned}
\left(G_{\beta}-G_{\alpha}\right) \varphi & =-\lim _{t \rightarrow 0} \frac{1}{t}\left[e^{-\alpha t} \int_{0}^{\infty}\left(e^{-\beta s}-e^{-\alpha s}\right) T_{s+t} f \mathrm{~d} s-\int_{0}^{\infty}\left(e^{-\beta s}-e^{-\alpha s}\right) T_{s} f \mathrm{~d} s\right] \\
& =-\lim _{t \rightarrow 0}\left[e^{-\alpha t} \int_{t}^{\infty}\left(e^{-\beta(u-t)}-e^{-\alpha(u-t)}\right) T_{u} f \mathrm{~d} u-\int_{0}^{\infty}\left(e^{-\beta u}-e^{-\alpha u}\right) T_{u} f \mathrm{~d} u\right] \\
& =-\lim _{t \rightarrow 0} \frac{1}{t}\left[\int_{0}^{t} e^{-\alpha u} T_{u} f \mathrm{~d} u+e^{-(\alpha-\beta) t} \int_{t}^{\infty} e^{-\beta u} T_{u} f \mathrm{~d} u-\int_{0}^{\infty} e^{-\beta u} T_{u} f \mathrm{~d} u\right] \\
& =-\lim _{t \rightarrow 0} \frac{1}{t}\left[\int_{0}^{t} e^{-\alpha u} T_{u} f \mathrm{~d} u+\left(e^{-(\alpha-\beta) t}-1\right) \int_{t}^{\infty} e^{-\beta u} T_{u} f \mathrm{~d} u-\int_{0}^{t} e^{-\beta u} T_{u} f \mathrm{~d} u\right] \\
& =f+(\alpha-\beta) G_{\beta} f-f=(\alpha-\beta) G_{\beta} f .
\end{aligned}
$$

Step 2: By previous step $\psi=0$. This implies that $f=G_{\alpha} \varphi \in G_{\alpha}(H)=D\left(A^{\prime}\right)$ and $A^{\prime} f=\alpha f-\varphi=A f$. what implies $f=G_{\alpha} \varphi \in G_{\alpha}(H)=D\left(A^{\prime}\right)$ and $A^{\prime} f=\alpha f-\varphi=A f$.

Corollary 1.9.

The generator $(A, \mathcal{D}(A))$ of a strongly continuous semigroup (or strongly continuous resolvent) is densely defined on H, i.e. $\mathcal{D}(A)$ is dense in H.

Proof. $\mathcal{D}(A)=G_{\alpha}(H)$ for all $\alpha>\omega$, but due to strong continuity, $\mathcal{D}(A)$ must be dense in H, because

$$
\lim _{\alpha \rightarrow \infty}\|\underbrace{\alpha G_{\alpha} f}_{\in \mathcal{D}(A)}-f\|=0
$$

- There is also a way back from a resolvent to a semigroup : If $\left(G_{\alpha}\right)_{\alpha>\omega}$ is a strongly continuous resolvent, then

$$
T_{t} f:=\lim _{\beta \rightarrow \infty} e^{-t \beta} \sum_{n=0}^{\infty} \frac{(t \beta)^{n}}{n!}\left(\beta G_{\beta}\right)^{n} f, \quad f \in H
$$

define a strongly continuous semigroup which has resolvent $\left(G_{\alpha}\right)_{\alpha>\omega}$.

- We now look at stucture of generators in the symmetric case. Recall that $(A, \mathcal{D}(A))$ on H is called symmetric if

$$
\langle A f, g\rangle=\langle f, A g\rangle,
$$

for all $f, g \in \mathcal{D}(A)$. We could think that this notion generalize the notion of symmetric matrix, but unfortunately it doesn't : we have to find the correct domain.

- Given an unbounded linear operator $(A, \mathcal{D}(A))$ on H with dense domain, we can define the adjoint operator $\left(A^{*}, \mathcal{D}\left(A^{*}\right)\right)$ where

$$
\mathcal{D}\left(A^{*}\right)=\{f \in H \mid \exists u \in H: \forall g \in \mathcal{D}(A),\langle u, g\rangle=\langle f, A g\rangle\},
$$

and

$$
u:=A^{*} f, \quad f \in \mathcal{D}\left(A^{*}\right) .
$$

Lemma 1.10.

$\left(A^{*}, \mathcal{D}\left(A^{*}\right)\right)$ is a closed operator.

Proof. Let $\left(f_{n}\right)$ a sequence of $\mathcal{D}\left(A^{*}\right)$ s.t. $f_{n} \rightarrow f$ in H and $A^{*} f_{n} \rightarrow g$ in H for a certain $f \in H$ and a certain $g \in H$. For all $\varphi \in \mathcal{D}(A)$, we have

$$
\langle A \varphi, g\rangle=\lim _{n \rightarrow \infty}\left\langle A f_{n}, f\right\rangle=\lim _{n \rightarrow \infty}\left\langle f_{n}, A^{*} f\right\rangle=\langle\varphi, g\rangle
$$

i.e. $\varphi \mapsto\langle A \varphi, f\rangle$ is bounded. Consequently, $f \in \mathcal{D}\left(A^{*}\right)$ and $A^{*} f=g$.

- A densely defined operator $(A, \mathcal{D}(A))$ on H is called self adjoint if $\mathcal{D}\left(A^{*}\right)=\mathcal{D}(A)$ and $A^{*} f=A f$ on $\mathcal{D}(A)$. There is a "hidden closure process" in the definition of the adjoint, dictates the "correct domain".
- By Lemma 1.10, we know that a self adjoint operator is closed. Also, it's symmetric. A symmetric operator is self adjoint if $\mathcal{D}(A)=H$, but it's not true in general.

Example

$A:=i \frac{\mathrm{~d}}{\mathrm{~d} x}, H=L^{2}(-1,1)$ and

$$
\mathcal{D}(A)=\left\{f \in \mathcal{C}^{1}([-1,1]) \mid f(-1)=f(1)=0\right\}
$$

Then, A is densely defined and symmetric. But it's not closed and thus not self adjoint. Indeed, consider

$$
f_{n}(x)=\left(x^{2}+\frac{1}{n}\right)^{\frac{1}{2}}, \quad f(x)=|x| \quad \text { and } \quad g(x)=\operatorname{sgn}(x)
$$

with the convention that $\operatorname{sgn}(0)=0$. Then, $f_{n} \rightarrow f$ in $L^{2}(-1,1)$ (the convergence is actually uniform on $[-1,1]), A f_{n} \rightarrow i g$ in L^{2} but $f \notin \mathcal{D}(A)$.

- The notion of self-adjoint operator is the "domain-wise correct" generalization of the notion of symmetric matrix.

Remark

For a densely operator $(A, \mathcal{D}(A))$, we have

1. A symmetric if and only if $A \subset A^{*}$ (i.e. $\mathcal{D}(A) \subset \mathcal{D}\left(A^{*}\right)$ and $A f=A^{*} f$ for all $\left.f \in \mathcal{D}(A)\right)$. In this case, $A^{* *}=\left(A^{*}\right)^{*}$ can be defined as the smallest closed extension of A, and we have $A \subset A^{* *} \subset A^{*}$.
2. A is closed and symmetric, i.e. $A=A^{* *} \subset A^{*}$.
3. A is self adjoint if and only if $A=A^{* *}=A^{*}$. This is the case if and only if the adjoint A^{*} is a symmetric operator.

Example

Consider again $A=i \frac{\mathrm{~d}}{\mathrm{~d} x}$ on $L^{2}(-1,1)$ with a domain that makes it closed, namely
$\mathcal{D}(A)=\left\{f \in L^{2}(-1,1) \mid f\right.$ is equal to an absolute continuous function \tilde{f} a.e. on $[-1,1]$ and s.t. $\left.\tilde{f}(-1)=\tilde{f}(1)=0\right\}$.
Then A is symmetric an
$\mathcal{D}\left(A^{*}\right)=\left\{f \in L^{2}(-1,1) \mid t\right.$ is equal to an absolute continuous function \tilde{f} a.e. on $[-1,1]$ s.t. $\left.\int_{-1}^{1}|\tilde{f}|^{2}<\infty\right\}$,
and $A^{*}=i \frac{\mathrm{~d}}{\mathrm{~d} x}$. Then, A^{*} is not symmetric because $e^{-x} \in \mathcal{D}\left(A^{*}\right)$ but $A^{*} e^{-x}=-i e^{-x}$, i.e. $-i$ is a non zero imaginary imaginary part eigenvalue, which is impossible for a symmetric operator.

Definition 1.11.

A symmetric operator $(A, \mathcal{D}(A))$ is called semi-bounded if there is $C \geq 0$ s.t.

$$
\langle-A f, f\rangle \geq-C\|f\|^{2}
$$

for all $f \in \mathcal{D}(A)$. If $\langle-A f, f\rangle \geq 0$, then it's called non-positive definite.

Lemma 1.12.

The generator of a symmetric strongly continuous resolvent (or symmetric strongly continuous semigroup) on H is a semi-bounded self-adjoint operator if the resolvent (or semi-group) is contractive. Then, its generator is non positive definite.

Proof. Since G_{α} is symmetric and defined on a all H, it's therefore self-adjoint. By the spectral theorem (see below) also G_{α}^{-1} is self adjoint, and then so is A. Set $\varphi(\alpha):=\left\langle f, G_{\alpha} f\right\rangle$, where $f \in \mathcal{D}(A)$ and $\alpha>\omega$. By the resolvent equation,

$$
G_{\alpha+\varepsilon} f-G_{\alpha}=\varepsilon G_{\alpha+\varepsilon} G_{\alpha} f
$$

so that

$$
\varphi^{\prime}(\alpha)=-\left\langle G_{\alpha} f, G_{\alpha} f\right\rangle \leq 0
$$

By 4. of the definition of a resolvent,

$$
|\varphi(\alpha)| \leq \frac{M}{\alpha}\|f\|^{2} \underset{\alpha \rightarrow \infty}{\longrightarrow} 0
$$

Therefore $\varphi(\alpha) \geq 0$ for all $\alpha>\omega$ and thus, G_{α} is non-negative definite. Then, for all $f \in \mathcal{D}(A)$, $\left(\mathcal{D}(A)=G_{\alpha}(H)\right.$ for all $\left.\alpha>\omega\right)$,

$$
\langle(\omega-\alpha) f, f\rangle=\lim _{\alpha \rightarrow \omega}\langle-A f+\alpha f, f\rangle=\lim _{\alpha \rightarrow \omega}\left\langle G_{\alpha}^{-1} f, f\right\rangle=0 .
$$

So,

$$
\langle-A f, f\rangle \geq-\omega\|f\|^{2}
$$

for all $f \in \mathcal{D}(A)$.
We now gives two version of the spectral theorem (without proof).

Theorem 1.13 (Spectral decomposition).

Let $-A: H \rightarrow H$ be self adjoint with domain $\mathcal{D}(A)$. Then, there is a spectral measure (spectral family) $\left(E_{\lambda}\right)_{\lambda \in \mathbb{R}}$ s.t.

$$
-\langle A f, g\rangle=\int_{\mathbb{R}} \lambda \mathrm{d}\left\langle E_{\lambda} f, g\right\rangle, \quad f \in \mathcal{D}(A), g \in H
$$

and given a measurable function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ and setting

$$
D(\varphi(-1))=\left\{f \in H\left|\int_{\mathbb{R}}\right| \varphi(\lambda) \mid \mathrm{d}\left\langle E_{\lambda} f, f\right\rangle<\infty\right\}
$$

then $\varphi(-A)$ defined by

$$
\langle\varphi(-A) f, f\rangle=\int_{\mathbb{R}} \varphi(\lambda) \mathrm{d}\left\langle E_{\lambda} f, g\right\rangle, \quad f \in \mathcal{D}(A), g \in H
$$

define a self adjoint operator $(\varphi(-A), D(\varphi(-A)))$. For $\varphi=i d$, we recover

$$
\mathcal{D}(A)=\left\{f \in H \mid \int_{\mathbb{R}} \lambda^{2} \mathrm{~d}\left\langle E_{\lambda} f, f\right\rangle<\infty\right\} .
$$

Example

1. In many application, one encounters the situation that

$$
\mathcal{D}(A)=\left\{\left.f \in H\left|\sum_{i=0}^{\infty} \lambda_{i}^{2}\right|\left\langle\varphi_{i}, f\right\rangle\right|^{2}<\infty\right\},
$$

with a sequence of real numbers $\left(\lambda_{i}\right)_{i \in \mathbb{R}}$ and a complete orthonormal system $\left(\varphi_{i}\right)_{i \in \mathbb{N}}$ in H, and

$$
A f=\sum_{i=0}^{\infty} \lambda_{i}\left\langle\varphi_{i}, f\right\rangle \varphi_{i}, \quad f \in \mathcal{D}(A)
$$

This is for instance the case if " A has a pure point spectrum" to the λ_{i}, one refers as eigenvalues of A and to the φ_{i} as eigenfunctions (e.g. second order operators on bounded domain).
2. Given a non positive definite self-adjoint operator $(A, \mathcal{D}(A))$, we can use the spectral theorem to define fractional power of $-A$ by looking at $\varphi(\lambda)=\lambda^{\alpha}, \alpha \in \mathbb{R}$

As this version of the spectral theorem shows : all self-adjoint operator are multiplication operator up to a unitary transformation.

Theorem 1.14 (Spectral theorem)

Let $-A: H \rightarrow H$ be self-adjoint with domain $\mathcal{D}(A)$. Then, there exist a measure space $(\Omega, \mathcal{F}, \mu)$, a measurable function $\Phi: \Omega \rightarrow \mathbb{R}$ and a unitary operator $U: H \rightarrow L^{2}(\Omega, \mu)$ s.t. $f \in \mathcal{D}(A)$ if and only if $\Phi \cdot U f \in L^{2}(\Omega, \mu)$. Moreover, defining

$$
D\left(M_{\Phi}\right)=\left\{\varphi \in L^{2}(\Omega, \mu) \mid \Phi \cdot U f \in L^{2}(\Omega, \mu)\right\}
$$

and

$$
M_{\Phi}(g):=\Phi \cdot g, \quad g \in D\left(M_{\Phi}\right)
$$

the operator $\left(M_{\Phi}, D\left(M_{\Phi}\right)\right)$ is self-adjoint on $L^{2}(\Omega, \mu)$ and

$$
M_{\Phi}(g)=U(-A) U^{*} g, \quad g \in D\left(M_{\Phi}\right)
$$

The spectral theorem is also a way to construct (symmetric) semigroup and resolvent from self adjoint operator.

Lemma 1.15.

Let $(A, \mathcal{D}(A))$ semi-bounded self-adjoint operator on H (with constant ω, i.e. $\langle-A f, f\rangle \geq-\omega\|f\|^{2}$),

1. Setting $T_{t}:=e^{t A}$ (i.e. $\left.\varphi(\lambda)=e^{\lambda t}\right), t>0$ and $G_{\alpha}:=(\alpha-A)^{-1} \quad$ (i.e. $\left.\varphi(\lambda)=\frac{1}{\alpha+\lambda}\right)$, $\alpha>\omega$, we obtain a symmetric strongly continuous semigroup $\left(T_{t}\right)_{t>0}$ and a symmetric strongly continuous resolvent $\left(G_{\alpha}\right)_{\alpha>\omega}$ on H.
2. The generator of $\left(T_{t}\right)_{t>0}$ is A and $\left(T_{t}\right)_{t>0}$ is the only semigroup with this generator. Similarly for the resolvent.

Proof. 1. Follows directly from spectral theorem : for $\varphi, \psi:[-c, \infty) \rightarrow \mathbb{R}$ continuous, we have

$$
\langle\varphi(-1) u, \psi(-A) v\rangle=\int_{[-c, \infty)} \varphi(\lambda) \psi(\lambda) \mathrm{d}\left\langle E_{\lambda} u, v\right\rangle
$$

for all $u \in D\left(\varphi(-A)\right.$ and $v \in D(\psi(-A))$. We apply this to $\lambda \mapsto e^{-t \lambda}$ and $\lambda \mapsto \frac{1}{\alpha+\lambda}$. For instance, writing in symbolic notation ("operator calculus"), $\alpha G_{\alpha}^{-1}=\int_{[-c, \infty)}\left(\frac{\alpha}{\alpha+\lambda}-1\right) \mathrm{d} E_{\lambda}$ implies

$$
\left\langle\alpha G_{\alpha} u-u, \alpha G_{\alpha} u-u\right\rangle=\int_{[-c, \infty)}\left(\frac{\alpha}{\alpha+\lambda}-1\right)^{2} \mathrm{~d}\left\langle E_{\lambda} u, u\right\rangle \underset{\alpha \rightarrow \infty}{\longrightarrow} 0,
$$

for any $u \in H$. Tis show the strong continuity of $\left(G_{\alpha}\right)_{\alpha>c}$.
2. For any $f \in H$ and $\alpha>c$, we have

$$
\int_{[-c, \infty)} \lambda^{2} \mathrm{~d}\left\langle E_{\lambda} G_{\alpha} f, G_{\alpha} f\right\rangle=\int_{[-c, \infty)} \frac{\lambda^{2}}{(\alpha+\lambda)^{2}} \mathrm{~d}\left\langle E_{\lambda} f, f\right\rangle<\infty
$$

i.e. $G_{\alpha}(H) \subset \mathcal{D}(A)$. Since $(\alpha-A) G_{\alpha} g=f, f \in H$ and $G_{\alpha}(\alpha-A) f=f, f \in \mathcal{D}(A)$ (also to be seen via spectral theorem), we see that A is the generator of $\left(G_{\alpha}\right)_{\alpha>c}$. Let $\left(G_{\alpha}^{\prime}\right)_{\alpha>c}$ be a strongly continuous resolvent generated by A. Given $f \in H$, consider

$$
w=G_{\alpha} f-G_{\alpha}^{\prime} f \Longrightarrow(\alpha-A) w,
$$

for all $\alpha>c$. Since $c-A$ is non negative definite and $\alpha>c$, we get $w=0$. This shows $G_{\alpha}^{\prime}=G_{\alpha}$ for $\alpha>c$. The uniqueness of the semigroup follow from the right continuity of $t \mapsto\left\langle T_{t} f, g\right\rangle$ and the uniqueness theorem for Laplace transformation.

After having looked at semigroups, resolvents and generators, we add another perpective :

Definition 1.16.

A densely defined bilinear form $(Q, \mathcal{D}(Q))$ on H is a bilinear map $Q: \mathcal{D}(Q) \times \mathcal{D}(Q) \rightarrow \mathbb{R}$ where $\mathcal{D}(Q)$ is a dense subspace of H. If $Q(f, g)=Q(g, f)$ for all $f, g \in \mathcal{D}(Q)$, we say that $(Q, \mathcal{D}(Q))$ is symmetric. It's called semi-bounded if there is $C \geq 0$ s.t.

$$
Q(f, f) \geq-C\|f\|^{2}
$$

for all $f \in \mathcal{D}(Q)$ and non-negative definite if this is true for $C=0$. A semi-bounded form is closed if $\mathcal{D}(Q)$ is a Hilbert space with norm

$$
\|f\|_{Q, \alpha}:=\sqrt{Q_{\alpha}(f, f)}, \quad f \in \mathcal{D}(Q)
$$

for some $\alpha>c$ where

$$
Q_{\alpha}(f, g):=Q(f, g)+\alpha\langle f, g\rangle, \quad f, g \in \mathcal{D}(Q)
$$

Remark

1. If this hold for one $\alpha>c$, then it holds for all $\alpha>c$ and the Hilbert norms $\|\cdot\|_{Q, \alpha}, \alpha>c$ are equivalents norms.
2. Some author refer to a densely defined symmetric closed form as "closed quadratic form".

Any semi-bounded self-adjoint operator generates such a form :

Lemma 1.17.

Let $(A, \mathcal{D}(A))$ be a semi-bounded self adjoint operator on H with spectral representation

$$
\langle-A f, g\rangle=\int_{[-c, \infty)} \lambda \mathrm{d}\left\langle E_{\lambda} f, g\right\rangle, \quad f \in \mathcal{D}(A), g \in H
$$

and

$$
\mathcal{D}(A)=\left\{f \in H \mid \int_{[-c, \infty)} \lambda^{2} \mathrm{~d}\left\langle E_{\lambda} f, f\right\rangle<\infty\right\} .
$$

Then

$$
\begin{aligned}
& Q(f, g):=\int_{[-c, \infty)} \lambda \mathrm{d}\left\langle E_{\lambda} f, g\right\rangle, \quad f, g \in \mathcal{D}(Q), \\
& \mathcal{D}(Q)=\left\{f \in H \mid \int_{[-c, \infty)} \lambda \mathrm{d}\left\langle E_{\lambda} f, f\right\rangle<\infty\right\},
\end{aligned}
$$

defined a densely defined symmetric semi-bounded and closed form $(Q, \mathcal{D}(Q))$ with

$$
Q(f, f) \geq-C\|f\|^{2}, \quad f \in \mathcal{D}(Q)
$$

If A is non-positive definite (i.e. $-A$ is positive definite), then $(Q, \mathcal{D}(Q))$ is non-negative definite and $\mathcal{D}(Q)=\mathcal{D}(\sqrt{-A})$,

$$
Q(f, g)=\langle\sqrt{-A} f, \sqrt{-A} g\rangle .
$$

Proof. It suffice to consider the case that A is non-positive definite (otherwise look at $A-\alpha$). We need to verify density of $\mathcal{D}(Q)$ and closedness. But $\sqrt{-A}$ is a (non-negative defnite) self-adjoint operator. In particular, densely defined and closed. Clearly, $\mathcal{D}(Q)$ is dense, and the closedness follows from the closedness of $\sqrt{-A}$.

Corollary 1.18.

For the strongly continuous resolvent $\left(G_{\alpha}\right)_{\alpha>c}$ generated by $(A, \mathcal{D}(A))$, we have $G_{\alpha}(H) \subset \mathcal{D}(Q)$, $\alpha>c$, and

$$
\begin{equation*}
Q_{\alpha}\left(G_{\alpha} f, g\right)=\langle f, g\rangle, \quad f \in H, g \in \mathcal{D}(Q) \tag{1.4}
\end{equation*}
$$

If A is non-positive definite, then this holds for all $\alpha>0$. The form $(Q, \mathcal{D}(Q))$ is characterized by

$$
\begin{equation*}
\mathcal{D}(A) \subset \mathcal{D}(Q) \quad \text { and } \quad Q(f, g)=\langle-A f, g\rangle, \quad f \in \mathcal{D}(A), g \in \mathcal{D}(Q) \tag{1.5}
\end{equation*}
$$

Remark

The formula (1.5) is called "abstract Gauss-Green formula".
The power of closed quadratic form is that, unlike for operators, it cannot happen that they are symmetric and closed "but not self-adjoint". In other words, the following holds :

Lemma 1.19.

Given a closed quadratic form $(Q, \mathcal{D}(Q))$ on H, there exists a unique self-adjoint operator $(A, \mathcal{D}(A))$ s.t. (1.5) holds. This operator is semi-bounded, it is non-positive definite if and only if $(Q, \mathcal{D}(Q))$ is non-negative definite.

Proof. For any $\alpha>c$ and any $u \in H$, there is a unique element $G_{\alpha} u \in \mathcal{D}(A)$ s.t.

$$
\begin{equation*}
Q_{\alpha}\left(G_{\alpha} u, v\right)=\langle u, v\rangle, \quad v \in \mathcal{D}(Q) \tag{1.6}
\end{equation*}
$$

By Riesz representation theorem. One can see that $\left(G_{\alpha}\right)_{\alpha>c}$, where G_{α} is the operator $u \mapsto G_{\alpha} u, u \in H$, is a symmetric strongly continuous resolvent :

$$
(\alpha-c)\left\|G_{\alpha} u\right\|^{2} \underset{\text { semibd. }}{\leq} Q_{\alpha}\left(G_{\alpha} u, G_{\alpha} u\right)=\left\langle u, G_{\alpha} u\right\rangle \leq\|u\|\left\|G_{\alpha} u\right\|,
$$

which implies the bound 4 . in the definition. To see strong continuity, we can use boundedness 4. and density of $\mathcal{D}(Q)$ in H to restrict attention to the question wether

$$
\beta G_{\beta} u \rightarrow u \quad \text { as } \beta \rightarrow \infty
$$

for $u \in \mathcal{D}(Q)$. This follow from

$$
\begin{aligned}
& (\beta-c)\left\|\beta G_{\beta} u-u\right\|^{2} \leq Q_{\beta}\left(\beta G_{\beta} u-u, \beta G_{\beta} u-u\right) \\
& =\beta\left\langle\beta G_{\beta} u, u\right\rangle-2 \beta\langle u, u\rangle+Q(u, u) \leq Q_{c}(u, u)
\end{aligned}
$$

which implies convergence and therefore 3. in the definition of the resolvent. To see the resolvent equation 2., suppose $\alpha, \beta>c$. Then

$$
\begin{aligned}
Q_{\alpha}\left(G_{\beta} u-(\alpha-\beta) G_{\alpha} G_{\beta} u, v\right) & =Q_{\beta}\left(G_{\beta} u, v\right)+(\alpha-\beta)\left\langle G_{\beta} u, v\right\rangle-(\alpha-\beta)\left\langle G_{\beta} u, v\right\rangle \\
& =\langle u, v\rangle=Q_{\alpha}\left(G_{\alpha} u, v\right)
\end{aligned}
$$

where $u \in H$ and $v \in \mathcal{D}(Q)$. Let $(A, \mathcal{D}(A))$ be the generator $\left(G_{\alpha}\right)_{\alpha>c}$. Since A is semi-bounded and self-adjoint, it generates a closed quadratic form $\left(Q^{\prime}, D\left(Q^{\prime}\right)\right)$ satisfying (1.5). We claim that $Q^{\prime}=Q$. The formula (1.4) for Q^{\prime} implies that $G_{\alpha}(H) \subset D\left(Q^{\prime}\right)$ and

$$
Q_{\alpha}^{\prime}\left(G_{\alpha} u, G_{\alpha} v\right)=\left\langle u, G_{\alpha} v\right\rangle=Q_{\alpha}\left(G_{\alpha} u, G_{\alpha} v\right), \quad u, v \in H
$$

Therefore $Q^{\prime}=Q$ on $G_{\alpha}(H) \times G_{\alpha}(H)$. Since by (1.4) and (1.6), $G_{\alpha}(H)$ is dense (because $\mathcal{D}(A)$ is dense) both in $\mathcal{D}(Q)$ qnd $D\left(Q^{\prime}\right)$, we get $Q^{\prime}=Q$. For a given Q, the self-adjoint operator satisfying (1.5) is unique, because the resolvent satisfy (1.4) and it determines $\left(G_{\alpha}\right)_{\alpha>c}$ uniquely and therefore also A.

As a consequence, we have the following

Theorem 1.20.

There is a one-to-one correspondance between the family of non-negative definite closed quadratic forms and the family of non-positive definite self-adjoint operator, it is given by (1.5).
$(A, \mathcal{D}(A))$ is a non-positive self-adjoint operator if and only if $(Q, \mathcal{D}(Q))$ is a non-negative definite closed quadratic form, where is equivalnce is given by the spectral theorem. Spectral theorem also provide approximation formulas.

Lemma 1.21.

Let $(Q, \mathcal{D}(Q))$ a non-negative definite closed quadratic form and let $(A, \mathcal{D}(A))$ be it's generator. Let $\left(T_{t}\right)_{t>0}$ and $\left(G_{\alpha}\right)_{\alpha>0}$ be the associated semigroup and resolvent (strongly continuous, symmetric and contractive). Then,

1. For all $t>0, T_{t}(H) \subset \mathcal{D}(Q)^{a}$ and

$$
Q\left(T_{t} u, T_{t} u\right) \leq \frac{1}{2 t}\left(\langle u, u\rangle-\left\langle T_{t} u, T_{t} u\right\rangle\right) \leq Q(u, u), \quad u \in \mathcal{D}(Q)
$$

2. For all $\alpha>0, G_{\alpha}(H) \subset \mathcal{D}(Q)$, and

$$
Q_{\alpha}\left(G_{\alpha} u, v\right)=\langle u, v\rangle, \quad u \in H, v \in \mathcal{D}(Q)
$$

3. Given $u \in \mathcal{D}(Q)$, we have

$$
\begin{gathered}
T_{t} u \underset{t \rightarrow 0^{+}}{\longrightarrow} u, \\
\frac{1}{t}\left(G_{1} u-e^{-t} G_{1} T_{t} u\right)=\frac{1}{t}\left(G_{1} u-e^{-t} T_{t} G_{1} u\right) \underset{t \rightarrow 0^{+}}{\longrightarrow} u,
\end{gathered}
$$

and

$$
\alpha G_{\alpha} u \underset{\alpha \rightarrow \infty}{\longrightarrow} u
$$

all strongly in $\mathcal{D}(Q)$.
${ }^{a}$ Think for example $T_{t}\left(L^{2}\right) \subset H^{1}$.

Proof. Via spectral theorem.
Another, practically important type of approximation is as follow : define symmetric bilinear form on H by

$$
Q^{(t)}(u, v):=\frac{1}{t}\left\langle u-T_{t} u, v\right\rangle, \quad u, v \in H, t>0
$$

and

$$
Q^{(\beta)}(u, v):=\beta\left\langle u-\beta G_{\beta} u, v\right\rangle, \quad u, v \in H, \beta>0
$$

Lemma 1.22.

Let $Q,-A, T_{t}, G_{\alpha}, Q^{(t)}$ and $Q^{(\beta)}$ as above.

1. For any $u \in H, Q^{(t)}(u, u)$ is non-decreasing as $t \rightarrow 0^{+}$, and

$$
\begin{aligned}
\mathcal{D}(Q) & =\left\{u \in H \mid \lim _{\rightarrow 0^{+}} Q(u, u)<\infty\right\} \\
Q(u, v) & =\lim _{t \rightarrow 0^{+}} Q^{(t)}(u, v), \quad u, v \in \mathcal{D}(Q)
\end{aligned}
$$

2. For any $u \in H, Q^{(\beta)}(u, v)$ is non decreasing as $\beta \nearrow \infty$ and

$$
\begin{aligned}
\mathcal{D}(Q) & =\left\{u \in H \mid \lim _{\beta \rightarrow \infty} Q(u, u)<\infty\right\} \\
Q(u, v) & =\lim _{\beta \rightarrow \infty} Q^{(\beta)}(u, v), \quad u, v \in \mathcal{D}(Q)
\end{aligned}
$$

Proof. Via spectral theorem.

1.2 Markov semigroup and Dirichlet forms

From now on, assume that (X, \mathcal{X}, m) is a σ-finite measure space. Write $L^{p}:=L^{p}(m)=L^{p}(X, \mathcal{X}, m)$, $0<p \leq \infty$. We consider the case $H=L^{2}=L^{2}(m)$. So, "we start to do probability".

Definition 2.23.

A bounded symmetric operator P on L^{2} is called Markovian (or just Markov) if P is symmetric and for all $f \in L^{2}$ s.t. $0 \leq f \leq 1, m-a . e$. we have $0 \leq P f \leq 1$, $m-a . e$.

Remark

1. In particular, Markov operators are positivity preserving, i.e. $\operatorname{Pf} \geq 0, m$-a.e. whenever $f \in L^{2}$ is s.t. $f \geq 0, m$-a.e.
2. In some text, the above operators are called sub-Markovian, and only operators satisfying $P \mathbf{1}_{X}=$ $\mathbf{1}_{X}$ are called Markovian. But we'll use the more general manner of speaking.
3. Passing via L^{1}, we see that any Markov operator is contractive in L^{2}.

Proposition 2.24.

Suppose $f \in L^{1} \cap L^{2}$. Then $P f \in L^{1}$ and $\|P f\|_{L^{1}} \leq\|f\|_{L^{1}}$.

Proof. Let $f \in L^{1} \cap L^{2}$ and $\varphi \in L^{1} \cap L^{\infty}, \gamma \geq 0$. Then

$$
\int \varphi|P f| \mathrm{d} m \leq \int \varphi P(|f|) \mathrm{d} m \leq \int P(\varphi)|f| \mathrm{d} m \leq\|\varphi\|_{L^{\infty}} \int|f| \mathrm{d} m
$$

Now, take a sequence $\left(\varphi_{n}\right)_{n}$ of function $0 \leq \varphi_{n} \leq 1$ for all n, with $\varphi_{n} \nearrow \mathbf{1}_{X}$ pointwise.
We can extend the restriction of P to $L^{1} \cap L^{2}$ to a Markov contraction on L^{1}. We denote this extension $P^{(1)}$.

Proposition 2.25.

Let $f \in L^{2}$. Then $(P f)^{2} \leq P^{(1)} f^{2}$.

Proof. It suffices to prove the property for $f \in L^{1} \cap L^{\infty}$ (by boundedness of P and density). Let $A \in \mathcal{X}$ with $m(A)<\infty$. Since for all $\lambda \in \mathbb{R}$ we have

$$
P\left(f+\lambda \mathbf{1}_{A}\right)^{2} \geq 0, \quad m \text { - a.e. }
$$

we obtain

$$
\left[P\left(f \mathbf{1}_{A}\right)\right]^{2} \leq P\left(f^{2}\right) P\left(\mathbf{1}_{A}\right) \leq P(f), \quad m-\text { a.e. }
$$

By σ-finiteness, we can find $A_{n} \in \mathcal{X}$ s.t. $\mathbf{1}_{A_{n}} \nearrow \mathbf{1}_{X}$ pointwise. Dominated convergence theorem gives the result.

Definition 2.26.

A function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with

$$
|F(x)-F(y)| \leq \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|, \quad x, y \in \mathbb{R}^{n}
$$

and $F(0)=0$ is called normal contraction.

Given a Markov operator P on L^{2}, we consider the quadratic form

$$
\mathcal{E}_{p}(f):=\langle f-P f, f\rangle_{L^{2}}, \quad f \in L^{2} .
$$

Proposition 2.27 (Implication of Markovity).

Let $F: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a normal contraction, P a Markov operator and $f_{1}, \ldots, f_{p} \in L^{2}$. Then, writing $f=\left(f_{1}, \ldots, f_{p}\right)$, we have

$$
\left(\mathcal{E}_{p}(F \circ f)\right)^{\frac{1}{2}} \leq \sum_{i=1}^{p}\left(\mathcal{E}_{p}\left(f_{i}\right)\right)^{\frac{1}{2}} .
$$

To prove the proposition, we use an elementary lemma :

Lemma 2.28

Let $A_{1}, \ldots, A_{n} \in \mathcal{X}$, pairwise disjoints of finite measure, and consider

$$
\varphi=\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{A_{i}}
$$

with $\alpha_{i} \in \mathbb{R}$. Let

$$
\lambda_{i}=m\left(A_{i}\right), \quad \varepsilon_{i j}=\left\langle\mathbf{1}_{A_{i}}, P \mathbf{1}_{A_{j}}\right\rangle_{L^{2}} \quad \text { and } \quad \mu_{j}=\lambda_{j}-\sum_{i=1}^{n} a_{i j}
$$

Then $\mu_{j} \geq 0$ for all j and

$$
\mathcal{E}_{p}(\varphi)=\sum_{i=1}^{n} \mu_{i} \alpha_{i}^{2}+\frac{1}{2} \sum_{1 \leq i, j \leq n} \varepsilon_{i j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

Proof. The equality

$$
\mu_{j}=\left\langle\mathbf{1}_{A_{j}}, \mathbf{1}-P\left(\sum_{i=1}^{n} \mathbf{1}_{A_{i}}\right)\right\rangle_{L^{2}},
$$

hold. Since the A_{i} 's are pairwise disjoints and P is Markov, the μ_{j} are non-negative. One have

$$
\begin{aligned}
\mathcal{E}_{p}(\varphi) & =\sum_{i, j}\left\langle\alpha_{i}\left(\mathbf{1}_{A_{i}}-P \mathbf{1}_{A_{i}}\right), \alpha_{j} \mathbf{1}_{A_{j}}\right\rangle \\
& =\sum_{i} \alpha_{i}^{2} \mu_{i}-\sum_{i, j} \varepsilon_{i j} \alpha_{i} \alpha_{j} \\
& =\sum_{i} \alpha_{i}^{2} \mu_{i}+\sum_{i} \alpha_{i}^{2} \sum_{j} \varepsilon_{i j}-\sum_{i, j} \alpha_{i} \alpha_{j} \varepsilon_{i j} .
\end{aligned}
$$

