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Chapter

Laplace equation

1.1 Harmonic functions

The Laplace operator is defined as
n

A=)

j=1

r—[Déﬁnition 1. 1.]

Let U C R™ open and u € C*(U).
1. u is subharmonic if Au >0 in U,
2. u is superharmonic if Au <0 in U,

8. w is harmonic if Au = 0.

Examples
1. Affine and linear functions,
2. u: R? = R defined by u(x,y) = 22 — 32,
3. v:R?\ {0} — R defined by v(x,y) = log(z? + 3?).

,—[Théoréme 1.2 (Mean value property (MVP)) )

)

Let U C R™ open, B.(z) C U and u € C*(U).

u(z) = ][ udo = ][ u,

OB, (z) B (z)

1. If u is harmonic in U, then

1

where f u = A [ u, for a measurable set A.
A

'

2. If u is subharmonic (resp. superharmonic) in U, then

u(z) < ][ udo and wu(z) < ][ u.
)

> )
OB, (x) B (x)




We set wy, := |B1(0)| and recall that

|B.(2)| = r"w, and |0B.(z)| =nr" tw,.

Proof. Tt suffice to prove 2. when wu is subharmonic. Let 0 < p < r. By Divergence,

/ Vu-ndo = /div(Vu) > 0.

0B, (z) B,

Define

flp) = udo.
0B, ()

We have

0< / udo

a8, (x)

=pnt / Vu(z + pt) - tdo(t)
0B1(0)

= p"_l(% / u(z + pt) do(t)
9B1(0)

=" hw 2 ][ U

9B, (0)
= p" nw, f'(p),

and thus f is increasing. Since

lim f(p) = u(x),

p—0t

we get u(x) < f(p) for all 0 < p < r, and thus, the first inequality follow. For the second one,

T"o.)nu(x):/ nwnp”_lu(x)dpg/ / udo = / u,
’ * o8, ()

Br(z)

and thus the second inequality follow.

.

~ Théoréme 1.3.)

Let U C R™ a domain (i.e. open and connected).

1. If u € C*(U) is harmonic and there is x € U s.t.

u(z) =supu or wu(xz)=infu,
U U

then u is constant.

2. If u € C?(U) is sub harmonic (resp. superharmonic) and there is x s.t. u(x) = supu (resp.
U

u(z) = irl}f u), then u is constant.

Proof. Tt suffice to prove 2. when u is subharmonic. Let s := supu and set

U

Us:={xeU|ulz)=s}




Since u is continuous, the set Uy is closed. It’s also open since if z € U, and B,.(x) C U, by MVP applied

to u — s,
0=u(z) —s < / (u—s)<0.
——
By () <0

Therefore

/ (U - S) = 07

B (z)

and thus u(y) = s for all y € B,(z). Then B,(xz) C U and the claim follow. O

Remark 1. 1. The proof only use MVP.

2. If U is open and bounded, the minimum and the maximum of harmonic function (resp. maximum
of subharmonic/ minimum of superharmonic) are taken on the boundary.

~— Corolaire 1.4. .

Let U C R™ is open, bounded and u,v € C*(U) NC(U).

1. If Au=Av in U and u=v on OU, then u = v.

2. If u is subharmonic (resp. superharmonic), v harmonic and w = v on OU, then u < v (resp.

u>wv)inU.
Proof. Apply the previous remark to w := u — v. O
,—[Théoréme 1.5 (Harnack’s inequality).} N

Let U C R™ be a domain and V' relatively compact® sub-domain (i.e. V. .C U and V' connected).
Then, there is a constant C' > 0 s.t. for all harmonic function u € C*(U),

supu < C'inf u.
\d Vv

%.e. V is compact in U

\ J

Proof.

Step 1 : Let 0 < § < dist(V,0U) and z,y € V s.t. |z —y| < 6. Then
85(y) - 825(.%') cU.

L B[
“(x)‘][ Zo |z325<m>\/ = 27uly).

Bas (1) Bs (a:)

By the MVP,

By symmetry, we get
27" u(y) < u(x) < 2"u(y),

for all |z —y| < 0.

)
5 and centers p1,...,pN.

B, NBj,., #Jandy € Bj,,.

Step 2 : By compactness of V, there is a finite covering of ball By, ..., By of radius
If z,y € V, there are B;,, ..., B;,, of those ball, m < N s.t. x € B;,,

By step 1,
w(z) < 2"u(py,) < ... < 2"V FDy(y).

The claim follow with C' = 2*(N+1) Peut-étre plutot 270m+1) ?



1.2 Newtonian potential

~ Définition 1.6.

The Newtonain potential T' : R™ \ {0} — R is defined as

L log || n=2
— 27
F(Z‘) - { 1 |$|2_n n > 3.

T nn—2)wn,

\

Remark 2. - 1 bilzf? — naz;
Ol'(x) = nwy, \a:|2” and NWwy, - ||t —
Then §
A0 = s 2 ) =0
Also ) ! 1 1
O (@) < T and 00T @) < - B

f—[Théoréme 1 .7.]

Let f € CH(R") and

u(@) = (O s @)= [ Ta-9)f@)dy= [ T -y)dy.

.

Proof. The functions
z—=T(x—y) and y— T'(z—y),

are harmonics on R™ \ {z} and R™ \ {y} respectively and integrable on compacts sets.

L(y)0if(z —y)dy

Moy vt [ Ty

i
_ /]R T(x — )0 f(y) dy
J,

—:A =:B

By divergence theorem!

B—- /@ o, T = DI @() o) + /B AT =0 )

where 7(y) = LLI the exterior normal unit vector. We have

T ly—=

W, fE 7“”717“"72# dr n Z 3
|A| < H&fHLaQ(Rn)/ < 2_ rlog(r) n(n—2)
B.(0) wy [y e dr n=2

<C al =S n — 0
< ClOifllr=@me —2,

IRecall that div(fF) = fdiv(F) + F - Vf, and use divergence theorem with F(y) = (0,...,0,8;f(y),0,...

8; f(y) is at the i*" position and f(y) = I'(z — y).

,0) where



En—1€2—n n 2 3

—
ellog(e)] n =2 -0t

|B] < C f[l oo (rm) {

Therefore
diu(z) = . Oil'(z —y)f(y) dy.
As above
9;0;u(x) = / Oz —v)0; f(y)dy + / 9;0,I'(x — y) f(y) dy.
Be(x) Be()®
Therefore,

n

Bua) == [ o 2T = ) ey + [ Aty

j=1 ly—a Be(z)e "
r—y
= VI(z—y) — f(y)dy
/(985(1) ( ) |z -yl w)

:ﬁpﬁ*y\*l

- ][ f@W)dy — f(z).
0B.(x)

e—0+

Remark 3. The condition f € C}(R") is not optimal, however f € C.(R™) is not enough.

,—[Proposition 1.8 (Green Formula).}

Let U C R™ be a open and bounded s.t. OU € C', u € C2(U) (i.e. dyu and O;ju are extendable on
OU by continuity). For x € U,

or ou
)= [ (“@/)an@ ) =Ty — x)an) o)~ [ T 2)Au)an

where 1 is the exterior unit normal vector field w.r.t. U and 3% =n-V.

\.

Proof. Let x € U, ¢ > 0, B.(x) C U and U, := U \ B-(x). Using divergence formula, one gets 2

| ro-vauma- [ (r<yz>gj;<y>25<yx>u<y>> do(y).

53?[" T'(y—z)Au(y) dy

By theorem 1.7,
ou
[ Tw-o5 ) — o
B, n

e—=0t

For y € 0B.(x), n(y) = —*%=%, hence

or
_ /355(;5) %(y —z)u(y) do(y) 5$>+ u(z).

Why don’t we only consider 9B.(x) and not OU in JU. ?

2We use div(uVv — vVu) for well chosen functions.




~ Définition 1.9.)
Let U C R™ be open and bounded. For x € U, let h* € C>(U)NCY(U) be the solution (if it exist) of

AR® =0 in U
h* = =I'(-—z) on JU.

The Green function of U is defined by

G:UxU\{(u,u) |lueU} —R
(z,y) — —T'(y —z) = h*(y).

\
Remark 4. Existence is unclear but unicity comes from maximum principle.

)
y

,—[Corolaire 1.10 (Green representation formula).

Let U C R™ open and bounded, OU € C* and G the Green function of U. If u € C*(U) is a solution

to
—Au=f inU
u=g on OU,
then for x € U,
oG
uw) = [ Geaiway- [ Ty gw)dot).
U ou Ul
——
=n(y)-VyG(z,y)

Proof. Apply Green formula to h*.

Remark 5.

1. K= —% is called Poisson kernel for U.

2. One can prove that G > 0 and G(z,y) = G(y, z).

,—[Proposition 1.11.]
Let n > 2. Then, the Green function of U = B1(0) is given by

_ [Tz (y— %) -Tw-2) 2#0
G(.’L‘,y) -
I'(1) - T(y) z =0,
for all (z,y) €e U x U\ {(u,u) | uw € U}, and Poisson kernel is given by
,87G(x ) = Sl
677 = nwn|x_y|n.
Proof.
Step 1 : We have that
wigy < {Tlely=2) w0
-TI(1) z =0,



€T

where 7 = 7. Indeed, we have that I' is harmonic in R" \ {0}. Moreover if z € B;(0), then
Z ¢ B1(0). For y € 0B1(0), we have that

h*(y) = =Ty — ),
since for z # 0,

2zy 1
=\2| __ 2 2 _ 2
2]y — )2 = |2 (|y| —xlg+|x|2)—|w—y|.

Step 2 : For the Poisson kernel, we have that

1 _
VI(y —z) = — gy
nwy, |y — x|
Also,
T _ 1 y—x
Vih®(y) = =T (Jelly = ) lel = el

Since 7(y) = v,

G =5 -0 - G)

1 ((yx)~y |x2y'yx~y)'

Cnw, \ Jy—afn ly — ]2

By translation and scaling, we get :

,—{Théoréme 1.12 (Poisson formula).] \

Let r >0, zo € R™ and g € C (0B, (z0)). Then,

r’—|z—=zol|? ()
u(z) = n‘iw JoB, @o) Tyt do(y) - @ € Br(0)
g(x) x € 0B, (xo),

is a C°(B,(x0)) NC (Br(xg)) function solving the Dirichlet problem

Au=0 in B(zo)
u=g  on dB.(x).

.

Proof. Prove that u is really a solution of the Dirichlet problem. O
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