Analysis of differential and integro-differential equations

Prof. S. Herr

October 11, 2018

Contents

1	Lap	lace equation	2
	1.1	Harmonic functions	2
	1.2	Newtonian potential	5

Chapter

Laplace equation

1.1 Harmonic functions

The Laplace operator is defined as

$$\Delta = \sum_{j=1}^{n} \partial_j^2.$$

-{Définition 1.1.}-

Let $U \subset \mathbb{R}^n$ open and $u \in \mathcal{C}^2(U)$.

1. u is subharmonic if $\Delta u \ge 0$ in U,

2. u is superharmonic if $\Delta u \leq 0$ in U,

3. u is harmonic if $\Delta u = 0$.

Examples

1. Affine and linear functions,

- **2.** $u : \mathbb{R}^2 \to \mathbb{R}$ defined by $u(x, y) = x^2 y^2$,
- **3.** $v : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ defined by $v(x, y) = \log(x^2 + y^2)$.

Théorème 1.2 (Mean value property (MVP)).

Let $U \subset \mathbb{R}^n$ open, $\overline{\mathcal{B}_r(x)} \subset U$ and $u \in \mathcal{C}^2(U)$.

1. If u is harmonic in U, then

$$u(x) = \int_{\partial \mathcal{B}_r(x)} u \, \mathrm{d}\sigma = \int_{\mathcal{B}_r(x)} u,$$

where $\oint_A u = \frac{1}{|A|} \int_A u$, for a measurable set A.

2. If u is subharmonic (resp. superharmonic) in U, then

$$u(x) \leq \int_{\partial \mathcal{B}_r(x)} u \, \mathrm{d}\sigma \quad and \quad u(x) \leq \int_{\mathcal{B}_r(x)} u \, \mathrm{d}\sigma$$

We set $\omega_n := |\mathcal{B}_1(0)|$ and recall that

$$|\mathcal{B}_r(x)| = r^n \omega_n$$
 and $|\partial \mathcal{B}_r(x)| = nr^{n-1} \omega_n$.

Proof. It suffice to prove **2.** when u is subharmonic. Let $0 < \rho \leq r$. By Divergence,

$$\int_{\partial \mathcal{B}_{\rho}(x)} \nabla u \cdot \eta \, \mathrm{d}\sigma = \int_{\mathcal{B}_{\rho}} \operatorname{div}(\nabla u) \ge 0.$$

Define

$$f(\rho) = \oint_{\partial \mathcal{B}_{\rho}(x)} u \, \mathrm{d}\sigma.$$

$$0 \leq \int_{\partial \mathcal{B}_{\rho}(x)} u \, \mathrm{d}\sigma$$

= $\rho^{n-1} \int_{\partial \mathcal{B}_{1}(0)} \nabla u(x+\rho t) \cdot t \, \mathrm{d}\sigma(t)$
= $\rho^{n-1} \frac{\partial}{\partial \rho} \int_{\partial \mathcal{B}_{1}(0)} u(x+\rho t) \, \mathrm{d}\sigma(t)$
= $\rho^{n-1} n \omega_{n} \frac{\partial}{\partial \rho} \int_{\partial \mathcal{B}_{\rho}(0)} u$
= $\rho^{n-1} n \omega_{n} f'(\rho),$

and thus f is increasing. Since

$$\lim_{\rho \to 0^+} f(\rho) = u(x),$$

we get $u(x) \leq f(\rho)$ for all $0 < \rho \leq r$, and thus, the first inequality follow. For the second one,

$$r^{n}\omega_{n}u(x) = \int_{0}^{r} n\omega_{n}\rho^{n-1}u(x) \,\mathrm{d}\rho \leq \int_{0}^{r} \int_{\partial \mathcal{B}_{\rho}(x)} u \,\mathrm{d}\sigma = \int_{\mathcal{B}_{r}(x)} u,$$

and thus the second inequality follow.

(Théorème 1.3.)

Let $U \subset \mathbb{R}^n$ a domain (i.e. open and connected).

1. If $u \in C^2(U)$ is harmonic and there is $x \in U$ s.t.

$$u(x) = \sup_{U} u \quad or \quad u(x) = \inf_{U} u,$$

then u is constant.

2. If $u \in C^2(U)$ is sub harmonic (resp. superharmonic) and there is x s.t. $u(x) = \sup_U u$ (resp. $u(x) = \inf_U u$), then u is constant.

Proof. It suffice to prove **2.** when u is subharmonic. Let $s := \sup_{U} u$ and set

$$U_s := \{ x \in U \mid u(x) = s \}$$

٦	

Since u is continuous, the set U_s is closed. It's also open since if $x \in U_s$ and $\mathcal{B}_r(x) \subset U$, by MVP applied to u - s,

$$0 = u(z) - s \le \int_{\mathcal{B}_r(x)} \underbrace{(u-s)}_{\le 0} \le 0$$
$$\int_{\mathbb{C}} (u-s) = 0$$

Therefore

$$\int\limits_{\mathcal{B}_r(x)} (u-s) = 0$$

and thus u(y) = s for all $y \in \mathcal{B}_r(x)$. Then $\mathcal{B}_r(x) \subset U$ and the claim follow.

Remark 1. 1. The proof only use MVP.

2. If U is open and bounded, the minimum and the maximum of harmonic function (resp. maximum of subharmonic/ minimum of superharmonic) are taken on the boundary.

Corolaire 1.4.

Let $U \subset \mathbb{R}^n$ is open, bounded and $u, v \in \mathcal{C}^2(U) \cap \mathcal{C}(\overline{U})$.

- **1.** If $\Delta u = \Delta v$ in U and u = v on ∂U , then u = v.
- 2. If u is subharmonic (resp. superharmonic), v harmonic and u = v on ∂U , then $u \leq v$ (resp. $u \geq v$) in U.

Proof. Apply the previous remark to w := u - v.

Théorème 1.5 (Harnack's inequality).

Let $U \subset \mathbb{R}^n$ be a domain and V relatively compact^a sub-domain (i.e. $V \subset U$ and V connected). Then, there is a constant C > 0 s.t. for all harmonic function $u \in C^2(U)$,

 $\sup_{V} u \le C \inf_{V} u.$

^{*a*}i.e. \overline{V} is compact in U

Proof.

Step 1 : Let $0 < \delta \leq \frac{1}{4} \operatorname{dist}(\overline{V}, \partial U)$ and $x, y \in V$ s.t. $|x - y| \leq \delta$. Then

$$\mathcal{B}_{\delta}(y) \subset \mathcal{B}_{2\delta}(x) \subset U.$$

By the MVP,

$$u(x) = \int_{\mathcal{B}_{2\delta}(x)} u \ge_{u \ge 0} \frac{|\mathcal{B}_{\delta}(x)|}{|\mathcal{B}_{2\delta}(x)|} \int_{\mathcal{B}_{\delta}(x)} u = 2^{-n} u(y).$$

By symmetry, we get

$$2^{-n}u(y) \le u(x) \le 2^n u(y)$$

for all $|x - y| \leq \delta$.

Step 2: By compactness of \overline{V} , there is a finite covering of ball B_1, \ldots, B_N of radius $\frac{\delta}{2}$ and centers p_1, \ldots, p_N . If $x, y \in V$, there are B_{j_1}, \ldots, B_{j_m} of those ball, $m \leq N$ s.t. $x \in B_{j_1}, B_{j_k} \cap B_{j_{k+1}} \neq \emptyset$ and $y \in B_{j_m}$. By step 1,

$$u(x) \le 2^n u(p_{j_1}) \le \ldots \le 2^{n(N+1)} u(y)$$

The claim follow with $C = 2^{n(N+1)}$. Peut-être plutôt $2^{n(m+1)}$?

1.2 Newtonian potential

Définition 1.6.

The Newtonain potential $\Gamma:\mathbb{R}^n\setminus\{0\}\longrightarrow\mathbb{R}$ is defined as

$$\Gamma(x) = \begin{cases} \frac{1}{2\pi} \log |x| & n = 2\\ -\frac{1}{n(n-2)\omega_n} |x|^{2-n} & n \ge 3. \end{cases}$$

Remark 2.

$$\partial_i \Gamma(x) = \frac{1}{n\omega_n} \frac{x_i}{|x|^n}$$
 and $\frac{1}{n\omega_n} \cdot \frac{\delta_{ij} |x|^2 - nx_i x_j}{|x|^{n+1}}.$

Then

$$\Delta\Gamma(x) = \frac{1}{n\omega_n |x|^{n+2}} \sum_{j=1}^n (|x|^2 - nx_j^2) = 0.$$

Also

$$|\partial_i \Gamma(x)| \leq \frac{1}{n\omega_n} \cdot \frac{1}{|x|^{n-1}}$$
 and $|\partial_j \partial_i \Gamma(x)| \leq \frac{1}{\omega_n} \cdot \frac{1}{|x|^n}.$