

Prof. S. Herr

October 25, 2018

Contents

1	Laplace equation		
	1.1	Harmonic functions	2
	1.2	Newtonian potential	E

Chapter _

Laplace equation

1.1 Harmonic functions

The Laplace operator is defined as

$$\Delta = \sum_{j=1}^{n} \partial_j^2.$$

Définition 1.1.

Let $U \subset \mathbb{R}^n$ open and $u \in \mathcal{C}^2(U)$.

1. u is subharmonic if $\Delta u \geq 0$ in U,

2. u is superharmonic if $\Delta u \leq 0$ in U,

3. u is harmonic if $\Delta u = 0$.

Examples

1. Affine and linear functions,

2. $u: \mathbb{R}^2 \to \mathbb{R}$ defined by $u(x,y) = x^2 - y^2$,

3. $v: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ defined by $v(x,y) = \log(x^2 + y^2)$.

Théorème 1.2 (Mean value property (MVP)).

Let $U \subset \mathbb{R}^n$ open, $\overline{\mathcal{B}_r(x)} \subset U$ and $u \in \mathcal{C}^2(U)$.

1. If u is harmonic in U, then

$$u(x) = \int_{\partial \mathcal{B}_r(x)} u \, d\sigma = \int_{\mathcal{B}_r(x)} u,$$

where $\int_A u = \frac{1}{|A|} \int_A u$, for a measurable set A.

2. If u is subharmonic (resp. superharmonic) in U, then

$$u(x) \underset{(\geq)}{\leq} \underset{\partial \mathcal{B}_r(x)}{ } u \, \mathrm{d} \sigma \quad \text{and} \quad u(x) \underset{(\geq)}{\leq} \underset{\mathcal{B}_r(x)}{ } u.$$

We set $\omega_n := |\mathcal{B}_1(0)|$ and recall that

$$|\mathcal{B}_r(x)| = r^n \omega_n$$
 and $|\partial \mathcal{B}_r(x)| = nr^{n-1} \omega_n$.

Proof. It suffice to prove 2. when u is subharmonic. Let $0 < \rho \le r$. By Divergence,

$$\int_{\partial \mathcal{B}_{\rho}(x)} \nabla u \cdot \eta \, d\sigma = \int_{\mathcal{B}_{\rho}} \operatorname{div}(\nabla u) \ge 0.$$

Define

$$f(\rho) = \int_{\partial \mathcal{B}_{\rho}(x)} u \, \mathrm{d}\sigma.$$

We have

$$0 \leq \int_{\partial \mathcal{B}_{\rho}(x)} u \, d\sigma$$

$$= \rho^{n-1} \int_{\partial \mathcal{B}_{1}(0)} \nabla u(x + \rho t) \cdot t \, d\sigma(t)$$

$$= \rho^{n-1} \frac{\partial}{\partial \rho} \int_{\partial \mathcal{B}_{1}(0)} u(x + \rho t) \, d\sigma(t)$$

$$= \rho^{n-1} n\omega_{n} \frac{\partial}{\partial \rho} \int_{\partial \mathcal{B}_{\rho}(0)} u$$

$$= \rho^{n-1} n\omega_{n} f'(\rho),$$

and thus f is increasing. Since

$$\lim_{\rho \to 0^+} f(\rho) = u(x),$$

we get $u(x) \leq f(\rho)$ for all $0 < \rho \leq r$, and thus, the first inequality follow. For the second one,

$$r^{n}\omega_{n}u(x) = \int_{0}^{r} n\omega_{n}\rho^{n-1}u(x) d\rho \leq \int_{0}^{r} \int_{\partial \mathcal{B}_{\rho}(x)} u d\sigma = \int_{\mathcal{B}_{r}(x)} u,$$

and thus the second inequality follow.

Théorème 1.3.

Let $U \subset \mathbb{R}^n$ a domain (i.e. open and connected).

1. If $u \in C^2(U)$ is harmonic and there is $x \in U$ s.t.

$$u(x) = \sup_{U} u \quad or \quad u(x) = \inf_{U} u,$$

then u is constant.

2. If $u \in C^2(U)$ is sub harmonic (resp. superharmonic) and there is x s.t. $u(x) = \sup_U u$ (resp. $u(x) = \inf_U u$), then u is constant.

Proof. It suffice to prove 2. when u is subharmonic. Let $s := \sup_{U} u$ and set

$$U_s := \{ x \in U \mid u(x) = s \}.$$

Since u is continuous, the set U_s is closed. It's also open since if $x \in U_s$ and $\mathcal{B}_r(x) \subset U$, by MVP applied to u - s,

$$0 = u(z) - s \le \int_{\mathcal{B}_r(x)} \underbrace{(u - s)}_{\le 0} \le 0.$$

Therefore

$$\int_{\mathcal{B}_r(x)} (u - s) = 0,$$

and thus u(y) = s for all $y \in \mathcal{B}_r(x)$. Then $\mathcal{B}_r(x) \subset U$ and the claim follow.

Remark 1. 1. The proof only use MVP.

2. If U is open and bounded, the minimum and the maximum of harmonic function (resp. maximum of subharmonic/ minimum of superharmonic) are taken on the boundary.

Corolaire 1.4.

Let $U \subset \mathbb{R}^n$ is open, bounded and $u, v \in C^2(U) \cap C(\overline{U})$.

- 1. If $\Delta u = \Delta v$ in U and u = v on ∂U , then u = v.
- **2.** If u is subharmonic (resp. superharmonic), v harmonic and u = v on ∂U , then $u \le v$ (resp. $u \ge v$) in U.

Proof. Apply the previous remark to w := u - v.

Théorème 1.5 (Harnack's inequality).

Let $U \subset \mathbb{R}^n$ be a domain and $V \subset\subset U$ a sub-domain (i.e. $V \subset U$ and V connected). Then, there is a constant C > 0 s.t. for all harmonic function $u \in C^2(U)$,

$$\sup_{V} u \le C \inf_{V} u.$$

 $^a \mbox{i.e.}~ V$ is relatively compact : \overline{V} is compact in U

Proof.

Step 1 : Let $0 < \delta \le \frac{1}{4} \operatorname{dist}(\overline{V}, \partial U)$ and $x, y \in V$ s.t. $|x - y| \le \delta$. Then

$$\mathcal{B}_{\delta}(y) \subset \mathcal{B}_{2\delta}(x) \subset U.$$

By the MVP,

$$u(x) = \int_{\mathcal{B}_{2\delta}(x)} u \underset{u \ge 0}{\geq} \frac{|\mathcal{B}_{\delta}(x)|}{|\mathcal{B}_{2\delta}(x)|} \int_{\mathcal{B}_{\delta}(x)} u = 2^{-n} u(y).$$

By symmetry, we get

$$2^{-n}u(y) \le u(x) \le 2^n u(y),$$

for all $|x - y| \le \delta$.

Step 2: By compactness of \overline{V} , there is a finite covering of ball B_1, \ldots, B_N of radius $\frac{\delta}{2}$ and centers p_1, \ldots, p_N . If $x, y \in V$, there are B_{j_1}, \ldots, B_{j_m} of those ball, $m \leq N$ s.t. $x \in B_{j_1}, B_{j_k} \cap B_{j_{k+1}} \neq \emptyset$ and $y \in B_{j_m}$. By step 1,

$$u(x) \le 2^n u(p_{j_1}) \le \ldots \le 2^{n(N+1)} u(y).$$

The claim follow with $C = 2^{n(N+1)}$. Peut-être plutôt $2^{n(m+1)}$?

1.2 Newtonian potential

$\{$ Définition 1.6. $\}$

The Newtonain potential $\Gamma: \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}$ is defined as

$$\Gamma(x) = \begin{cases} \frac{1}{2\pi} \log|x| & n = 2\\ -\frac{1}{n(n-2)\omega_n} |x|^{2-n} & n \ge 3. \end{cases}$$

Remark 2.

$$\partial_i \Gamma(x) = \frac{1}{n\omega_n} \frac{x_i}{|x|^n}$$
 and $\frac{1}{n\omega_n} \cdot \frac{\delta_{ij}|x|^2 - nx_i x_j}{|x|^{n+1}}$.

Then

$$\Delta\Gamma(x) = \frac{1}{n\omega_n |x|^{n+2}} \sum_{j=1}^n (|x|^2 - nx_j^2) = 0.$$

Also

$$|\partial_i \Gamma(x)| \le \frac{1}{n\omega_n} \cdot \frac{1}{|x|^{n-1}}$$
 and $|\partial_j \partial_i \Gamma(x)| \le \frac{1}{\omega_n} \cdot \frac{1}{|x|^n}$.

Théorème 1.7.

Let $f \in \mathcal{C}^1_c(\mathbb{R}^n)$ and

$$u(x) = (\Gamma * f)(x) := \int_{\mathbb{R}^n} \Gamma(x - y) f(y) \, \mathrm{d}y = \int_{\mathbb{R}^n} \Gamma(y) f(x - y) \, \mathrm{d}y.$$

Proof. The functions

$$x \mapsto \Gamma(x-y)$$
 and $y \mapsto \Gamma(x-y)$,

are harmonics on $\mathbb{R}^n \setminus \{x\}$ and $\mathbb{R}^n \setminus \{y\}$ respectively and integrable on compacts sets.

$$\partial_{i} u(x) = \int_{\mathbb{R}^{n}} \Gamma(y) \partial_{i} f(x - y) \, dy$$

$$= \int_{\mathbb{R}^{n}} \Gamma(x - y) \partial_{i} f(y) \, dy$$

$$= \underbrace{\int_{\mathcal{B}_{\varepsilon}(x)} \Gamma(x - y) \partial_{i} f(y) \, dy}_{-:A} + \underbrace{\int_{\mathcal{B}_{\varepsilon}(x)^{c}} \Gamma(x - y) \partial_{i} f(y) \, dy}_{-:B}.$$

By divergence theorem¹

$$B = -\int_{\partial \mathcal{B}_{\varepsilon}(x)} \Gamma(x - y) f(y) \eta_i(y) d\sigma(y) + \int_{\mathcal{B}_{\varepsilon}(x)^c} \partial_i \Gamma(x - y) f(y) dy,$$

where $\eta(y) = \frac{y-x}{|y-x|}$ the exterior normal unit vector. We have

$$|A| \leq \|\partial_i f\|_{L^{\infty}(\mathbb{R}^n)} \int_{\mathcal{B}_{\varepsilon}(0)} \leq \begin{cases} \omega_n \int_0^{\varepsilon} r^{n-1} r^{n-2} \frac{1}{n\omega_n(n-2)} \, \mathrm{d}r & n \geq 3\\ \omega_2 \int_0^{\varepsilon} \frac{r \log(r)}{2\pi} \, \mathrm{d}r & n = 2 \end{cases}$$
$$\leq C \|\partial_i f\|_{L^{\infty}(\mathbb{R}^n)} \varepsilon \underset{\varepsilon \to 0^+}{\longrightarrow} 0.$$

Recall that $\operatorname{div}(fF) = f\operatorname{div}(F) + F \cdot \nabla f$, and use divergence theorem with $F(y) = (0, \dots, 0, \partial_i f(y), 0, \dots, 0)$ where $\partial_i f(y)$ is at the i^{th} position and $f(y) = \Gamma(x-y)$.

$$|B| \le C||f||_{L^{\infty}(\mathbb{R}^n)} \begin{cases} \varepsilon^{n-1} \varepsilon^{2-n} & n \ge 3 \\ \varepsilon |\log(\varepsilon)| & n = 2 \end{cases} \xrightarrow{\varepsilon \to 0^+} 0.$$

Therefore

$$\partial_i u(x) = \int_{\mathbb{R}^n} \partial_i \Gamma(x - y) f(y) \, \mathrm{d}y.$$

As above

$$\partial_j \partial_i u(x) = \int_{\mathcal{B}_{\varepsilon}(x)} \partial_i \Gamma(x - y) \partial_j f(y) \, \mathrm{d}y + \int_{\mathcal{B}_{\varepsilon}(x)^c} \partial_j \partial_i \Gamma(x - y) f(y) \, \mathrm{d}y.$$

Therefore,

$$\Delta u(x) = -\sum_{j=1}^{n} \int_{\partial \mathcal{B}_{\varepsilon}(x)} \partial_{j} \Gamma(x - y) \frac{y_{j} - x_{j}}{|y - x|} f(y) \, d\sigma(y) + \int_{\mathcal{B}_{\varepsilon}(x)^{c}} \underbrace{\Delta \Gamma(x - y)}_{=0} f(y) \, dy$$

$$= \int_{\partial \mathcal{B}_{\varepsilon}(x)} \underbrace{\nabla \Gamma(x - y) \cdot \frac{x - y}{|x - y|}}_{=\frac{1}{n\omega_{n}}|x - y|^{-1}} f(y) \, dy$$

$$= \int_{\partial \mathcal{B}_{\varepsilon}(x)} f(y) \, dy \xrightarrow[\varepsilon \to 0^{+}]{} f(x).$$

Remark 3. The condition $f \in \mathcal{C}^1_c(\mathbb{R}^n)$ is not optimal, however $f \in \mathcal{C}_c(\mathbb{R}^n)$ is not enough.

Proposition 1.8 (Green Formula).

Let $U \subset \mathbb{R}^n$ be a open and bounded s.t. $\partial U \in \mathcal{C}^1$, $u \in \mathcal{C}^2(\overline{U})$ (i.e. $\partial_i u$ and $\partial_{ij} u$ are extendable on ∂U by continuity). For $x \in U$,

$$u(x) = \int_{\partial U} \left(u(y) \frac{\partial \Gamma}{\partial \eta} (y - x) - \Gamma(y - x) \frac{\partial u}{\partial \eta} \right) d\sigma(y) - \int_{U} \Gamma(y - x) \Delta u(y) dy,$$

where η is the exterior unit normal vector field w.r.t. U and $\frac{\partial}{\partial \eta} := \eta \cdot \nabla$.

Proof. Let $x \in U$, $\varepsilon > 0$, $\overline{\mathcal{B}_{\varepsilon}(x)} \subset U$ and $U_{\varepsilon} := U \setminus \mathcal{B}_{\varepsilon}(x)$. Using divergence formula, one gets ²

$$\underbrace{\int_{U_{\varepsilon}} \Gamma(y-x) \Delta u(y) \, \mathrm{d}y}_{\underset{\varepsilon \to 0^{+}}{\longrightarrow} \int_{U} \Gamma(y-x) \Delta u(y) \, \mathrm{d}y} = \int_{\partial U_{\varepsilon}} \left(\Gamma(y-x) \frac{\partial u}{\partial \eta}(y) - \frac{\partial \Gamma}{\partial \eta}(y-x) u(y) \right) \, \mathrm{d}\sigma(y).$$

By theorem 1.7,

$$\int_{\partial \mathcal{B}_{\varepsilon}(x)} \Gamma(y-x) \frac{\partial u}{\partial \eta}(y) \, \mathrm{d}\sigma(y) \underset{\varepsilon \to 0^+}{\longrightarrow} 0.$$

For $y \in \partial \mathcal{B}_{\varepsilon}(x)$, $\eta(y) = -\frac{y-x}{|y-x|}$, hence

$$-\int_{\partial \mathcal{B}_{\varepsilon}(x)} \frac{\partial \Gamma}{\partial \eta}(y-x)u(y) \, \mathrm{d}\sigma(y) \underset{\varepsilon \to 0^{+}}{\longrightarrow} u(x).$$

Why don't we only consider $\partial \mathcal{B}_{\varepsilon}(x)$ and not ∂U in ∂U_{ε} ?

²We use $\operatorname{div}(u\nabla v - v\nabla u)$ for well chosen functions.

Définition 1.9.

Let $U \subset \mathbb{R}^n$ be open and bounded. For $x \in U$, let $h^x \in \mathcal{C}^2(U) \cap \mathcal{C}^1(\overline{U})$ be the solution (if it exist) of

$$\begin{cases} \Delta h^x = 0 & \text{in } U \\ h^x = -\Gamma(\cdot - x) & \text{on } \partial U. \end{cases}$$

The Green function of U is defined by

$$G: U \times U \setminus \{(u, u) \mid u \in U\} \longrightarrow \mathbb{R}$$
$$(x, y) \longmapsto -\Gamma(y - x) - h^{x}(y).$$

Remark 4. Existence is unclear but unicity comes from maximum principle.

Corolaire 1.10 (Green representation formula).

Let $U \subset \mathbb{R}^n$ open and bounded, $\partial U \in \mathcal{C}^1$ and G the Green function of U. If $u \in \mathcal{C}^2(\overline{U})$ is a solution to

$$\begin{cases} -\Delta u = f & in \ U \\ u = g & on \ \partial U, \end{cases}$$

then for $x \in U$,

$$u(x) = \int_{U} G(x, y) f(y) dy - \int_{\partial U} \underbrace{\frac{\partial G}{\partial \eta}(x, y)}_{=\eta(y) \cdot \nabla_{y} G(x, y)} g(y) d\sigma(y).$$

Proof. Apply Green formula to h^x .

Remark 5.

- 1. $K = -\frac{\partial G}{\partial \eta}$ is called *Poisson kernel for U*.
- **2.** One can prove that $G \ge 0$ and G(x,y) = G(y,x).

Proposition 1.11.

Let $n \geq 2$. Then, the Green function of $U = \mathcal{B}_1(0)$ is given by

$$G(x,y) = \begin{cases} \Gamma(|x|) \left(y - \frac{x}{|x|^2} \right) - \Gamma(y - x) & x \neq 0 \\ \Gamma(1) - \Gamma(y) & x = 0, \end{cases}$$

for all $(x,y) \in U \times U \setminus \{(u,u) \mid u \in U\}$, and Poisson kernel is given by

$$-\frac{\partial G}{\partial \eta}(x,y) = \frac{1 - |x|^2}{n\omega_n |x - y|^n}.$$

Proof.

Step 1: We have that

$$h^{x}(y) = \begin{cases} -\Gamma(|x|(y - \bar{x}) & x \neq 0\\ -\Gamma(1) & x = 0, \end{cases}$$

where $\bar{x} = \frac{x}{|x|^2}$. Indeed, we have that Γ is harmonic in $\mathbb{R}^n \setminus \{0\}$. Moreover if $x \in \mathcal{B}_1(0)$, then $\bar{x} \notin \mathcal{B}_1(0)$. For $y \in \partial \mathcal{B}_1(0)$, we have that

$$h^x(y) = -\Gamma(y - x),$$

since for $x \neq 0$,

$$\left| |x|(y-\bar{x})^2 \right| = |x|^2 \left(|y|^2 - \frac{2xy}{|x|^2} + \frac{1}{|x|^2} \right) = |x-y|^2.$$

Step 2: For the Poisson kernel, we have that

$$\nabla\Gamma(y-x) = \frac{1}{n\omega_n} \frac{y-x}{|y-x|}.$$

Also,

$$\nabla_y h^x(y) = -\nabla_y \Gamma\Big(|x|(y-\bar x)\Big)|x| = \frac{1}{n\omega_n}|x|^2 \frac{y-x}{|y-x|}.$$

Since $\eta(y) = y$,

$$\begin{split} -\frac{\partial G}{\partial \eta}(x,y) &= -\frac{\partial \Gamma}{\partial \eta}(y-x) - \frac{\partial h^x}{\partial \eta}(y) \\ &= -\frac{1}{n\omega_n} \left(\frac{(y-x)\cdot y}{|y-x|^n} - \frac{|x|^2 y \cdot y - x \cdot y}{|y-x|^2} \right). \end{split}$$

By translation and scaling, we get:

Théorème 1.12 (Poisson formula).

Let r > 0, $x_0 \in \mathbb{R}^n$ and $g \in \mathcal{C}(\partial \mathcal{B}_r(x_0))$. Then,

$$u(x) = \begin{cases} \frac{r^2 - |x - x_0|^2}{n\omega_n r} \int_{\partial \mathcal{B}_r(x_0)} \frac{g(y)}{|x - y|^n} d\sigma(y) & x \in \mathcal{B}_r(x_0) \\ g(x) & x \in \partial \mathcal{B}_r(x_0), \end{cases}$$

is a $C^{\infty}(\mathcal{B}_r(x_0)) \cap C\left(\overline{\mathcal{B}_r(x_0)}\right)$ function solving the Dirichlet problem

$$\begin{cases} \Delta u = 0 & in \ \mathcal{B}_r(x_0) \\ u = g & on \ \partial \mathcal{B}_r(x_0). \end{cases}$$

Proof. Prove that u is really a solution of the Dirichlet problem. Recall that Poisson kernel is given by

$$K = -\frac{\partial G}{\partial \eta}(x, y) = \frac{r^2 - |x - x_0|^2}{n\omega_n r} \frac{1}{|x - y|^n}.$$

If $y \in \partial \mathcal{B}_r(x_0)$ then $K(\cdot, y) \in \mathcal{C}^{\infty}(\mathcal{B}_r(x_0))$ and

$$\Delta u(x) = \int_{\partial \mathcal{B}_r(x_0)} \underbrace{\Delta_x K(x, y)}_{=0} g(y) \, d\sigma(y) = 0,$$

because K is symmetric and harmonic w.r.t. y. Further by a discussion above

$$1 = \int_{\partial \mathcal{B}_r(x_0)} K(x, y) \, d\sigma(y),$$

(otherwise, hand to compute, but it's not obvious). Lat $a \in \partial \mathcal{B}_r(x_0)$, and let $\varepsilon > 0$. Since g is continuous, there is $\delta > 0$ s.t. $|g(x) - g(a)| < \varepsilon$ whenever $|x - a| < \delta$. For $x \in \partial \mathcal{B}_r(x_0)$ and $|x - a| < \frac{\delta}{2}$,

$$|u(x) - g(a)| = \int_{\substack{\partial B_r(x_0) \\ |y - a| < \frac{\delta}{2}}} |K(x, y)| |g(y) - g(a)| \, \mathrm{d}\sigma(y) + \int_{\substack{\partial B_r(x_0) \\ |y - a| \ge \frac{\delta}{2}}} |K(x, y)| |g(y) - g(a)| \, \mathrm{d}\sigma(y) \underset{x \to \partial \mathcal{B}_r(x_0)}{\longrightarrow} \varepsilon.$$

Théorème 1.13.

Let $U \subset \mathbb{R}^n$ open. The following statements are equivalents

1. $u \in \mathcal{C}^{\infty}(U)$ is harmonic, 2. $u \in \mathcal{C}(U)$ satisfy

$$u(x) = \int_{\mathcal{B}_n(x_0)} u(y) \, \mathrm{d}y,$$

for all $\mathcal{B}_r(x_0) \subset\subset U$.

Proof. 1. \Rightarrow 2. is the MVP. Let prove the converse. Let $\mathcal{B}_r(x_0) \subset\subset U$. By theorem 1.12, there exist $v \in \mathcal{C}^{\infty}(\mathcal{B}_r(x_0)) \cap \mathcal{B}(\overline{\mathcal{B}_r}(x_0))$ s.t.

$$\begin{cases} \Delta v = 0 & \text{in } \mathcal{B}_r(x_0) \\ v = u & \text{on } \partial \mathcal{B}_r(x_0). \end{cases}$$

The function w = u - v satisfy the MVP and thus the maximum principal. Therefore, w = 0 and thus u=v in $\mathcal{B}_r(x_0)$ and $u\in\mathcal{C}^\infty(\mathcal{B}_r(x_0))$. Since $\mathcal{B}_r(x_0)$ is unspecified, the claim follow.

Remark 6. In the following, we say that $u \in \mathcal{C}(U)$ is subharmonic / superharmonic / harmonic if

$$u(x) \le \int_{\mathcal{B}_r(x_0)} u,$$

for all ball $\mathcal{B}_r(x_0) \subset\subset U$.

Théorème 1.14.

Let $U \subset \mathbb{R}^n$ be open and (u_n) a sequence of $\mathcal{C}(U)$ of harmonics functions. If (u_n) converge locally uniformly^a to $u: U \longrightarrow \mathbb{R}$, then $u \in \mathcal{C}^{\infty}(U)$ and u is harmonic.

 $a(u_n)$ converge locally uniformly to u if (u_n) converge uniformly to u on all compacts sets.

Proof. Let $\mathcal{B}_r(x) \subset\subset U$. Then

$$u_n(x) \underset{n \to \infty}{\longrightarrow} u(x)$$

and

$$u_n(x) = \int_{\mathcal{B}_r(x)} u \xrightarrow[n \to \infty]{} \int_{\mathcal{B}_r(x)} u.$$

Since u is continuous (by uniform convergence), the theorem follow from theorem 1.13.

Théorème 1.15.

If $U \subset \mathbb{R}^n$ is open and $u \in \mathcal{C}(U)$ satisfy the MVP, then $u \in \mathcal{C}^{\infty}(U)$ and

$$|\partial^{\alpha} u(x)| \le \frac{C_{\alpha}}{r^{n+k}} ||u||_{L^{1}(\mathcal{B}_{r}(x))},$$

for all $\mathcal{B}r(x) \subset\subset U$ where

$$C_{\alpha} = \begin{cases} \frac{(2^{n+1}n|\alpha|)^{|\alpha|}}{\omega_n} & |\alpha| \ge 1\\ \frac{1}{n\omega_n} & \alpha = 0. \end{cases}$$

Proof. If $\alpha = 0$, it's the MVP. Let $|\alpha| = 1$, says $\partial^{\alpha} = \partial_i$. Then $\Delta \partial_i u = 0$ and thus

$$\begin{aligned} |\partial_i u(x)| &\leq \left| \oint_{\mathcal{B}_{r/2}} \partial_i u \right| \\ &= \frac{2^n}{\omega_n r^n} \left| \int_{\partial \mathcal{B}_{r/2}(x)} u \eta_i \, d\sigma \right| \\ &\leq \frac{2n}{r} \sup_{y \in \partial \mathcal{B}_{\frac{r}{2}}(x)} |u(y)|. \end{aligned}$$

Since $\mathcal{B}_{\frac{r}{2}}(y) \subset \mathcal{B}_r(x)$, we finally get

$$|u(y)| \le \frac{1}{n\omega_n} \left(\frac{2}{r}\right)^n ||u||_{L^1(\mathcal{B}_r(x))},$$

and thus, the claim follow.

Corolaire 1.16.

Every harmonic functions is real analytic.

Proof. Taylor's formula.

Corolaire 1.17 (Liouville).

Let $u : \mathbb{R}^n \longrightarrow \mathbb{R}$ be harmonic and bounded. Then u is constant.

Proof. Let $x \in \mathbb{R}^n$ and r > 0. By theorem 1.15,

$$\|\nabla u(x)\| \le \frac{2^{n+1}n}{r^{n+1}} \|u\|_{L^1(\mathcal{B}_r(x))} \le \frac{2^{n+1}n}{r} \sup_{\mathbb{R}^n} |u| \underset{n \to \infty}{\longrightarrow} 0.$$

Théorème 1.18 (Harnack's convergence theorem).

Let $U \subset \mathbb{R}^n$ be a domain. If (u_n) is an increasing sequence of harmonic functions which converge at some point, then (u_n) converge locally uniformly to a harmonic function.

Proof. Let $V \subset\subset U$ be a subdomain. Suppose WLOG that $(u_n(y))_n$ converge for some $y \in V$. Let $\varepsilon > 0$. By Harnack's inequality $(n \geq m)$,

$$\sup_{V} |u_n - u_m| \le C|u_n(y) - u_m(y)| < \varepsilon,$$

if $n \ge m \ge n_0$ for a certain $n_0 \in \mathbb{N}$. Therefore, (u_n) is a Cauchy sequence in $\mathcal{C}(\overline{V})$. The claim follow by theorem 1.14.

Définition 1.19.

Let $U \subset \mathbb{R}^n$ be open. We define

$$\sigma(U) = \{u: U \longrightarrow \mathbb{R} \mid u \text{ is subharmonic}\},\$$

and for $g: \partial U \longrightarrow \mathbb{R}$ given,

$$\sigma(U,g) = \{u : U \longrightarrow \mathbb{R} \mid u \leq g \text{ on } \partial U\}.$$

Remark 7. If $u \in \sigma(U)$ and if $x \in U$ is s.t. $u(x) = \sup_{y \in U} u(y)$, then u is constant.

Lemme 1.20.

Let $U \subset \mathbb{R}^n$ be open. Then

- **1.** If $u_1, \ldots, u_N \in \sigma(U)$ and $\lambda_j \geq 0$, then $\sum_{i=1}^N \lambda_i u_i \in \sigma(U)$,
- **2.** If $u_1, u_2 \in \sigma(U)$, then $\max\{u_1, u_2\} \in \sigma(U)$,
- 3. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is convex and increasing and $u \in \sigma(u)$, then $f(u) \in \sigma(U)$.

Proof. 1. is clear by linearty of the integral. 3. is clear by Jensen's inequality. For 2., let $x \in U$ and $\mathcal{B}_r(x) \subset U$. Suppose $u_1(x) \geq u_2(x)$. Then,

$$\max\{u_1(x), u_2(x)\} = u_1(x) \le \int_{\partial B_r(x)} u_1 d\sigma \le \int_{\partial B_r(x)} \max\{u_1, u_2\} d\sigma.$$

Définition 1.21.

Let $U \subset \mathbb{R}^n$ be open, $u \in \mathcal{C}(U)$, $x_0 \in U$ and r > 0 s.t. $\mathcal{B}_r(x_0) \subset U$. Then, the harmonic lift of u is defined by

$$u_{x_0,r}(x) = \begin{cases} \frac{r^2 - |x - x_0|^2}{n\omega_n r} \int_{\partial \mathcal{B}_r(x_0)} \frac{u(x)}{|x - y|^n} d\sigma(y) & x \in \mathcal{B}_r(x_0) \\ u(x) & otherwise. \end{cases}$$

Remark 8. 1. $u_{x_0,r} \in \mathcal{C}^{\infty}(\mathcal{B}_r(x_0)) \cap \mathcal{C}(\overline{\mathcal{B}_r(x_0)})$ is harmonic in $\mathcal{B}_r(x_0)$ and coincide with u on $\partial \mathcal{B}_r(x_0)$.

2. If $u, v \in \mathcal{C}(U)$, are s.t. $v \leq u$ and $\mathcal{B}_r(x_0) \subset \subset U$, then $v_{x_0,r} \leq u_{x_0,r}$.

Lemme 1.22.

Let $U \subset \mathbb{R}^n$ open, $u \in \sigma(U)$ and $\mathcal{B}_r(x_0) \subset U$. Then,

- 1. $u \leq u_{x_0,r}$,
- **2.** $u_{x_0,r} \in \sigma(U)$.

Proof. 1. Since $u_{x_0,r}$ is harmonic, on $\mathcal{B}_r(x_0)$, the function $u - u_{x_0,r} \in \sigma(U)$. Apply the maximum principle to $u - u_{x_0,r}$ on $\mathcal{B}_r(x_0)$, and thus $u - u_{x_0,r} \leq 0$ in $\mathcal{B}_r(x_0)$. The claim follow since $u_{x_0,r} = u$ on $U \setminus \mathcal{B}_r(x_0)$.

2. We want to show that if $\mathcal{B}_{\rho}(\xi) \subset\subset U$, then

$$u_{x_0,r}(\xi) \le \int_{\partial \mathcal{B}_{\rho}(\xi)} u_{x_0,r} \, d\sigma.$$

Step 1 : Suppose $\xi \notin \mathcal{B}_r(x_0)$. Then,

$$u_{x_0,r}(\xi) = u(\xi) \le \int_{\partial \mathcal{B}_{\rho}(\xi)} u \, d\sigma \le \int_{\partial \mathcal{B}_{\rho}(\xi)} u_{x_0,r} \, d\sigma.$$

Step 2: Suppose $\xi \in \mathcal{B}_r(x_0)$. Assume that $u_{x_0,r} \notin \sigma(U)$. Then, there is ρ and ξ s.t.

$$u_{x_0,r}(\xi) > \int_{\partial \mathcal{B}_o(\xi)} u_{x_0,r} \, d\sigma. \tag{1.1}$$

Set $v := (u_{x_0,r})_{\xi,\rho}$. Then, v is harmonic in $\mathcal{B}_{\rho}(\xi)$. So,

$$v(\xi) = \int_{\partial \mathcal{B}_{\rho}(\xi)} u_{x_0,r} \, d\sigma < u_{x_0,r}.$$
 (1.2)

Since $u_{x_0,r}-v$ is harmonic in the domain $D=\mathcal{B}_{\rho}(\xi)\cap\mathcal{B}_{r}(x_0)$, by the maximum principle and (1.2), there is $p\in\partial D$ s.t. $u_{x_0,r}-v(p)>0$. If $p\in\partial\mathcal{B}_{\rho}(\xi)\cap\overline{\mathcal{B}_{r}(x_0)}$, then $u_{x_0,r}(p)=v(p)$ which is a contradiction. If $p\in\partial\mathcal{B}_{r}(x_0)\cap\overline{\mathcal{B}_{\rho}(\xi)}$, then $v(p)< u_{x_0,r}(p)=u(p)$. By the remark and $\mathbf{1.},\,v\geq u_{\xi,\rho}\geq u$ in U which is also a contradiction. The claim follow.