
GENERALIZED INHOMOGENEOUS STRICHARTZ ESTIMATES

ROBERT SCHIPPA

Abstract. We prove new inhomogeneous generalized Strichartz estimates,
which do not follow from the homogeneous generalized estimates by virtue

of the Christ-Kiselev lemma. Instead, we make use of the bilinear interpola-

tion argument worked out by Keel and Tao and refined by Foschi presented in
a unified framework. Finally, we give a sample application.

1. Introduction

We start by briefly revisiting homogeneous and inhomogeneous Strichartz esti-
mates, their link and previous results. For unexplained terminology and notation
see Section 2. Let us consider the homogeneous equation

(1)

{
i∂tu(t, x) + ϕ(D)u(t, x) = 0, (t, x) ∈ R× Rn,

u(0, ·) = u0.

In the following we shall confine ourselves to the dispersion relation ϕ(ρ) = ρa, a ≥
1, which yields a simple scaling condition for the free solutions. The method can be
extended to more general phase functions see e.g. [16] but since the generalization
is straight-forward we choose to focus on the main argument.
We shall denote the unitary group generated by iDa as

Ua = (Ua(t))t∈R =
(
eitD

a
)
t∈R

.

The homogeneous Strichartz estimates control the mixed LqtL
p
x-norm of the free

solution with respect to an L2-Sobolev norm of the initial datum:

(2) ‖eitD
a

u0‖LqtLpx .n,p,q ‖u0‖Ḣ−s
with −s = n

2 −
n
p −

a
q fixed by scaling and q, p ≥ 2 due to translation invariance.

For classical Strichartz estimates, that are estimates, which hold without further
assumptions on the wave-functions, the sharp range of the homogeneous estimates
was found in [14] by Keel and Tao starting from an energy estimate and a dispersive
estimate:
When U = (U(t))t∈R denotes the propagator, typically after localizing frequencies
to unit scale, the energy estimate states as

‖U(t)u0‖L2
x
.n ‖u0‖L2

x

and the dispersive estimate can come up as the untruncated decay

(3) ‖U(t)u0‖L∞x .n |t|
−σ‖u0‖L1

x
(t 6= 0)
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or as the (stronger) truncated decay

(4) ‖U(t)u0‖L∞x .n (1 + |t|)−σ‖u0‖L1
x

(t 6= 0).

σ is called the decay parameter, which we find to be

σ(a, n) =

{
n−1
2 , if a = 1,
n
2 , if a 6= 1.

For a 6= 1 see for instance [12, Remark 2, p. 1644], for a = 1 this is common knowl-
edge. Since we shall work at fixed spatial dimension and with a fixed unitary group,
we will usually suppress the dependence of a and n. When we consider local in-
homogeneous estimates in Section 3.1 we state our modified assumptions on decay
estimates. For further references on the history of Strichartz estimates we also refer
to [14] and references therein. The sharp range is found by maximally anisotrop-
ically propagating waves, so-called Knapp-type examples (cf. [14, p. 964]). More
estimates become available, e.g. if one considers spherically symmetric data ruling
out the classical Knapp-type examples. For Strichartz estimates for more general
dispersion relations with non-vanishing second derivative, e.g. ϕ(ρ) = (1 + ρ2)1/2

which relates to the Klein-Gordon equation we refer to [5]. It turns out that the
admissible range is the same as for Schrödinger-like equations, although the cor-
responding estimate (2) involves a pseudo-differential operator taking into account
the inhomogeneity of the dispersion relation.
Inhomogeneous estimates come into play controlling the solution to the inhomoge-
neous equation with zero-initial condition{

i∂tu(t, x) +Dau(t, x) = F (t, x), (t, x) ∈ R× Rn,
limt→−∞ u(t, x) = 0.

The weak solution is given by the Duhamel formula

u(t, x) = −i
∫ t

−∞
ei(t−τ)D

a

F (τ, x)dτ

and inhomogeneous estimates state as follows:∥∥∥∥∫ t

−∞
ei(t−τ)D

a

F (τ)dτ

∥∥∥∥
Lq̃tL

p̃
x

.n,p,q,p̃,q̃ ‖D−2sF‖Lq′t Lp
′
x

This time we have the scaling condition:

(5) βa(q, q̃, p, p̃, s) =
1

q
+

1

q̃
− n

a

(
1− 1

p
− 1

p̃

)
− 2s

a
= 0

Denoting the time-evolution operator as

T : L2 →LqtLpx
u0 7→DseitD

a

u0,

we find the adjoint operator to be

T ∗ : Lq̃
′

t L
p̃′

x →L2

F 7→Ds̃

∫ ∞
−∞

e−iτD
a

F (τ)dτ,
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and finally, we have

TT ∗ : Lq̃
′

t L
p̃′

x →L
q
tL

p
x

F 7→D(s+s̃)

∫ ∞
−∞

ei(t−τ)D
a

F (τ)dτ.

From the Christ-Kiselev lemma (cf. [6, Theorem 1.2, p. 410]) and its operator-
valued extension (cf. [20, pp. 1481-1483]) we find that two homogeneous estimates
with coefficients (q, p) and (q̃, p̃) yield an inhomogeneous estimate with coefficients
(q, p, q̃, p̃) if q̃′ < q.
A precise analysis performed by Foschi in [7] showed that the method employed in
[14] can be extended to find more inhomogeneous estimates than the ones, which
already follow from the homogeneous estimates and the Christ-Kiselev lemma. We
shall see that this method is not confined to classical Strichartz estimates but that
one can also start with a generalized setting. The important notions will be declared
in greater detail in Section 2. In the following we shall work with the notion of range
spaces Zsp , which resemble Lp-spaces with derivatives but incorporate the additional
assumptions on the wave-functions, effectively giving rise to an extended range. In
the special case of spherical symmetry this has already been done in [16], though
not with the sharp range of decay parameters.
We shall consider global estimates of the kind

(6)

∥∥∥∥∫ t

−∞
ei(t−τ)D

a

F (τ)dτ

∥∥∥∥
LqtZ

s
p

.n,p,q,p̃,q̃ ‖F‖Lq̃′t Z−sp̃′

and

(7)

∥∥∥∥∫ t

−∞
ei(t−τ)D

a

F (τ)dτ

∥∥∥∥
Zsp,q

.n,p,q,p̃,q̃ ‖F‖Z−s
p̃′,q̃′

.

We find the following theorem to hold:

Theorem 1.1 (Global inhomogeneous estimates). Let a ≥ 1. Suppose that the
family of linear operators Ua admits generalized homogeneous Strichartz estimates
with range spaces (Zp)p∈[1,∞], extended decay parameter σ′ and with the generalized
Strichartz estimates admitting a generalized dispersive estimate. Suppose that for
1 ≤ q, q̃, p, p̃ ≤ ∞, s ∈ R we have βa(q, q̃, p, p̃, s) = 0. In the non-sharp case, that is
1/q + 1/q̃ < 1, q, q̃ <∞, we find the estimates (6) and (7) to hold, if

∃ σ1, σ2 ∈ (σ, σ′) :

1 ≤µ =
(a/2) (σ1/2 + σ2/2− σ)

s− r + ((aσ1 − n)/p+ (aσ2 − n)/p̃) /2
<∞

σ1 − 1

σ1

p

2
≤ µ ≤ p

2

σ2 − 1

σ2

p̃

2
≤ µ ≤ p̃

2

(σ1/2)

(1/q) + (σ1/p)
< µ

(σ2/2)

(1/q̃) + (σ2/p̃)
< µ



4 ROBERT SCHIPPA

In the sharp case, that is 1/q + 1/q̃ = 1, where, in addition to the requirements for
the non-sharp case 2 < p, p̃ <∞, we find the estimate (7) to hold, if

∃ σ1, σ2 ∈ (σ, σ′) :

1 <µ =
(a/2) (σ1/2 + σ2/2− σ)

s− r + ((aσ1 − n)/p+ (aσ2 − n)/p̃) /2
<∞

σ1 − 1

σ1

p

2
< µ <

p

2

σ2 − 1

σ2

p̃

2
< µ <

p̃

2

(σ1/2)

(1/q) + (σ1/p)
< µ

(σ2/2)

(1/q̃) + (σ2/p̃)
< µ

1

p
≤ 1

q

1

p̃
≤ 1

q̃

O

A

CB

D

1
p

1
p̃

σ1−1
2σ1

σ2−1
2σ2

1
2

1
2

Figure 1. This pictorial representation generalizes [7, Fig-
ure 2, p. 5]. The axes refer to the spatial integrability coefficients.
The rectangle ABCD corresponds to estimates found from fac-
torization and the application of the Christ-Kiselev lemma up to
endpoints. The origin relates to the dispersive estimate; one finds
local estimates to hold in the wedge AOCD by virtue of interpo-
lation, restrictions on global estimates cut off estimates with too
large spatial integrability coefficients.

We shall see in Section 4 that spherical symmetry and taking spherical aver-
ages yield generalized Strichartz estimates. The main purpose of this article is to
show that one can prove additional inhomogeneous generalized Strichartz estimates
from homogeneous estimates in a unified framework. By additional inhomogeneous
estimates we mean that these estimates do not follow from the homogeneous esti-
mates and the Christ-Kiselev lemma. In the special case of additional homogeneous
estimates stemming from spherical symmetry (cf. Section 4.1) this had been car-
ried out previously in [16]. Our results extend the ones in [16] for Schrödinger-like
equations because we work with the up to endpoints sharp range of homogeneous
Strichartz estimates for spherically symmetric functions. We also find additional
inhomogeneous estimates after taking spherical averages as an instance of Theorem
1.1 in Section 4.2. In this case our results appear to be completely new.
The additional inhomogeneous estimates found after taking spherical averages can
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be applied to find a new well-posedness result for the fractional Schrödinger equation
with time-dependent potential we will establish in Section 4.3, where the following
corollary provides the required additional estimates.

Corollary 1. There is some δ > 0, so that for 2− δ ≤ a < 2 there are coefficients
(q, q, q̃, q̃) which fulfill the requirements of Theorem 1.1 with a vanishing derivative

parameter in a full neighbourhood of q = 2(n+a)
n if 1

q + 1
q̃ = n

n+a .

In particular, we find the estimate∥∥∥∥∫ t

−∞
ei(t−τ)D

a

F (τ)dτ

∥∥∥∥
LqtL

q
rL2

ω

.n,q,q̃ ‖F‖Lq̃′t Lq̃
′
r L2

ω

to hold under the above assumptions.

The fractional Schrödinger equation with potential was also considered in [3]
though only for spherically symmetric potentials and solutions. The main ingre-
dient for the proof of [3, Theorem 1.2, p. 1908] were additional inhomogeneous
estimates for spherically symmetric solutions. We will recap the proof with slight
modifications to see how the additional inhomogeneous estimates found after taking
spherical averages from Corollary 1 allow us to drop assumptions on spherical sym-
metry. Due to the perturbative nature of the range of the admissible coefficients we
choose not to state the integrability conditions explicitly, which was carried out in
[3]. We remark that the range provided by Corollary 1 is significantly smaller than
the one from [3, Corollary 1.1, p. 1907].
Note that the situation is very different when one considers a Schrödinger equation
with a potential which is time-independent. Instead of perceiving the solution as
perturbation of the homogeneous equation via Duhamel’s formula one typically pro-
ceeds by proving the dispersive estimate for the generator of the full time-evolution
(cf. [2, 15,17] and the references therein).
In specific cases this method extends to time-dependent potentials (cf. [17]) but
the potentials under consideration in Section 4.3 are in general not compatible.

2. Preliminaries

2.1. Notation. In this section we explain basic notation which we will employ
throughout the text. Further definitions which demand more explanation can be
found in the next sections.
Let (X,µ) be a measure space and E a Banach space. For q ∈ [1,∞) we consider

Lq(X,E) = {f : X → E, µ-measurable | ‖f‖q <∞}

‖f‖q =

(∫
X

‖f(x)‖qEdµ(x)

)1/q

with the usual modification for q =∞.
We shall work under the general assumption that the estimates we prove are sup-
posed to hold merely for sufficiently smooth and decaying initial data. Therefore,
we will typically ignore any questions on measurability, which become more deli-
cate if the space L∞(E) is involved. The smoothness and decay assumptions al-
low us to be a bit careless regarding vector-valued integration and interpolation,
see also [1, Theorem 5.1.2., p. 107]. In the special case (X,µ) = (Rn, λ) and
E = Lp(Rn,C) =: Lp(Rn) =: Lp, if there is no ambiguity about spatial dimension,
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we have

‖f‖Lqt (R,Lpx(Rn)) =

(∫
R

(∫
Rn
|f(t, x)|pdx

)q/p
dt

)1/q

.

We denote Lqt (R, Lpx(Rn)) =: LqtL
p
x.

We work with the following convention of the Fourier transform for f ∈ S(Rn)

f̂(ξ) =

∫
Rn
f(x)e−ixξdx,

which extends by standard means into the space of tempered distributions S ′(Rn).
For details on some basic assertions which are made in the following without further
comment see e.g. [18, Chapter 0, pp. 1-38].
We denote the sphere embedded into Euclidean space with Lp-spaces defined via
surface measure dσ

Sn−1 = {x ∈ Rn | ‖x‖2 = 1} , Lp(Sn−1, dσ) =: Lpω.

Once again, we make use of the latter variation, if there is no confusion about spatial
dimension.
We also introduce a shorthand notation for the radial part of functions in Euclidean
space, that is Lpr := Lp((0,∞), rn−1dr).
We define homogeneous and inhomogeneous Sobolev spaces in Euclidean space by
powers of the operators D = (−∆)1/2 and Λ = (1−∆)1/2 as

Ḣs(Rn) = {f ∈ S ′(Rn)/P | ‖f‖Ḣs <∞} , ‖f‖Ḣs = ‖Dsf‖L2 ,

Hs(Rn) = {f ∈ S ′(Rn) | ‖f‖Hs <∞} , ‖f‖Hs = ‖Λsf‖L2 ,

where P denotes the set of polynomials (i.e. tempered distributions with Fourier
support concentrated at the origin).
In the following let ψ : Rn → R denote a fixed smooth spherically symmetric
and in terms of the radial variable monotonically decreasing function satisfying
ψ(x) = 1, |x| ≤ 1 and ψ(x) = 0, |x| ≥ 2. We set χ : Rn → R, χ(x) = ψ(x)− ψ(2x)
to define a suitable bump function with support around 1. For f ∈ S ′(Rn) we define
the frequency localization operators

(PNf)ˆ(ξ) = χ(ξ/N)f̂(ξ).

Capital letters will denote dyadic numbers and we will use the notation P̃N =
PN/2 + PN + P2N .
For Besov spaces we follow the conventions of [9] and for angular derivatives we
make use of the following notation: For 1 ≤ i < j ≤ n we set Ωij = i(xi∂j − xj∂i)
to denote the generators of rotations, ∆ω =

∑
i<j Ω2

ij denotes the Laplace-Beltrami

operator on the sphere extended to Euclidean space and Λω = (1−∆ω)1/2 denotes
the inhomogeneous angular derivative. For basic results see e.g. [13, 19].
In estimates we use the notation Ca,b,... = C(a, b, . . .), indicating that the generic
constant C depends only on the parameters a, b, . . .. We also employ the shorthand
notation .a,b,.... The constant is allowed to change at each occurrence, though.
More sophisticated dependencies will be mentioned properly.
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2.2. Setup. We consider generalized Strichartz estimates beyond the classical range
originating from spherical symmetry or from weakening integrability in the spheri-
cal coordinates. We shall start from some basic assumptions on the function spaces
we are working with and generalized homogeneous Strichartz estimates.
In order to generically write up the homogeneous generalized Strichartz estimates,
let (Zp)p∈[1,∞] denote a family of Banach spaces of tempered distributions in Rn.
In the following let n denote the fixed spatial dimension; we are not interested in
comparing estimates for different spatial dimensions, but since decay parameters
and scaling also depend on the spatial dimension, we keep track of it.
We make the following definition, so that the function spaces under consideration
behave reasonably under frequency localization and scaling:

Definition 2.1 (Compatibility property). We say that the family (Zp)p∈[1,∞] of
function spaces has the compatibility property, if we have

(i) the continuous embedding Zp ↪→ S ′(Rn),
(ii) the continuity of frequency localization:

(8) ∀R > 0, p ∈ [1,∞] : ‖PR‖Zp→Zp < Cn, (PRf) (̂ξ) = χ(ξ/R)f̂(ξ),

(iii) and a vector-valued Lp-structure: There is a separable Hilbert space H,
such that we have the identification

Zp = Lp(((0,∞), rn−1dr), H).(9)

Note that from a change of variables follows the identity

∀p ∈ [1,∞], λ > 0 : ‖f(λ·)‖Zp = λ−
n
p ‖f‖Zp ,

which we shall refer to as the Lp-dilation property.
Also note that the independence of R in (8) follows from a scaling argument and
that from (9) follows the duality relation

(Zp)
′ ' Zp′ , Zp separable for p ∈ [1,∞), where

1

p
+

1

p′
= 1.(10)

In our applications the Zp-spaces are the Lp(Rn)-spaces of spherically symmetric
functions, when we consider spherical symmetry (i.e. H = C in (9)), or spaces of the
kind LprLqω, when we consider weakened integrability in the spherical coordinates
(i.e. H = L2

ω in (9)). We make the following definition on adding derivatives:

Zsp =
{
f ∈ S ′(Rn)/P | ‖f‖Zsp <∞

}
with the Besov-like norm

‖f‖Zsp =

(∑
N

N2s‖PNf‖2Zp

)1/2

.

Working with these norms has the benefit, that one can conclude estimates from
frequency-localized versions although one does not necessarily have a Littlewood-
Paley decomposition of the considered spaces. When we consider operators between
the spaces, we shall frequently start with a frequency localized estimate. We also
consider the following norms

‖F‖Zsp,q =

(∑
N

N2s‖PNF‖2LqtZp

)1/2

.
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Also, we use the nomenclature of an ’extended decay parameter’ which is supposed
to be understood morally: The decay estimates (3), (4) are not improved. But
for instance in the case of spherically symmetric functions the sharp decay only
holds for a relatively thin set (cf. [19]), which makes the proof of the generalized
homogeneous Strichartz estimates possible and with the ordinary decay parameter
giving rise to the classical sharp line of integrability coefficients (cf. [14]) we want
this phenomenon to extend for generalized Strichartz estimates. With range spaces,
which have the compatibility property, we formulate the generalized homogeneous
Strichartz estimates as follows.

Definition 2.2 (Generalized homogeneous Strichartz estimates). Let a ≥ 1 and
Ua as above. We say that Ua admits generalized homogeneous Strichartz estimates
with range spaces (Zp)p∈[1,∞], which are a family of spaces of tempered distributions

in Rn with the compatibility property, and with extended decay parameter σ′1, if
1 ≤ σ < σ′2 and we find the estimate

(11)
∥∥∥PNeitDau0∥∥∥

LqtZp
.n,p,q N

−s‖u0‖L2

to hold for any N ∈ 2Z with3

(12)
1

q
= τ

(
1

2
− 1

p

)
, τ ∈ (σ, σ′), s = −n

2
+
n

p
+
a

q
, q, p ≥ 2.

In the following we shall also refer to generalized homogeneous Strichartz esti-
mates as generalized Strichartz estimates.
Furthermore, we note that by duality follows from (11)∥∥∥∥PN ∫ ∞

−∞
e−iτD

a

F (τ)dτ

∥∥∥∥
L2

.n,p̃,q̃ N
−s̃‖F‖

Lq̃
′
t Zp̃′

and taking the two estimates together yields

(13)

∥∥∥∥PN ∫ ∞
−∞

ei(t−s)D
a

F (s)ds

∥∥∥∥
Lq̃tZp̃

.n,p,q,p̃,q̃ N
−(s+s̃)‖F‖

Lq
′
t Zp′

.

We work under the convention that estimates of the kind (11) and 13 hold for any
N ∈ 2Z without further comment. Also note that in any of the three estimates
we can of course assume the function under consideration to be frequency localized
around N .

3. Proof of the global inhomogeneous estimates

Starting from generalized Strichartz estimates, we shall follow the strategy al-
ready developed in [7]:

1. Finding temporally delayed and localized inhomogeneous estimates with
normalized temporal support, which will be done in Section 3.1,

1Again, σ′ will typically depend on a and n, but we suppress the dependence for the sake of
brevity for the same reasons we suppress the dependence considering σ.

2The requirement σ ≥ 1 is a technical restriction to avoid endpoints with infinite space in-

tegrability. Typically, the estimates for these endpoints are ruled out and must be excluded by

force.
3For 1/q ≤ σ(1/2 − 1/p) we have the ordinary Strichartz estimates and typically, we do not

have the generalized Strichartz estimates at some point for the critical decay parameter σ′, or not

all.
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2. finding more local estimates by means of a scaling transform in Section 3.2,
3. perceiving global inhomogeneous estimates as bilinear estimates, which can

be decomposed into local estimates by means of a Whitney decomposition,
4. summing the local estimates, which becomes possible through atomic de-

compositions of the involved functions. This will be done in Section 3.3.

3.1. Local estimates. Let I and J be two time intervals of unit length |I| = |J | =
1, which are separated, so that d = dist(I, J) ∼ 1 when sup I < inf J and let us
consider the local estimates

(14)

∥∥∥∥∫ ∞
−∞

ei(t−τ)D
a

F (τ) dτ

∥∥∥∥
Lq̃t (J;Z

s̃
p̃)

≤ Cn,p,q,p̃,q̃‖F‖Lq′t (I;Z−s
p′ )

,

which are meant to hold for any time intervals with the properties described above.
We note that such an estimate also depends on |I|, |J | and d. For the moment we
suppress the dependence, but we have to keep track of it, when we consider intervals
of different shape, which will be done in the next sections.
Assuming F to be supported in I, we find that TT ∗ and (TT ∗)R coincide. The
aim of this section is to find as many of these local estimates as possible. In the
following lemma we observe that it is enough to consider frequency localized variants
if q, q̃ ≥ 2 due to Minkowski’s inequality.

Lemma 3.1. Suppose that the estimate∥∥∥∥PN ∫ t

−∞
eiD

a(t−s)F (s)ds

∥∥∥∥
Lq̃t (J;Zp̃)

≤ Cn,p,q,p̃,q̃N−(s+s̃)‖F‖Lq′t (I;Zp′ )

holds for some q, q̃, p, p̃, s and any intervals I and J of unit length, which are sepa-
rated so that d =dist(I, J) ∼ 1 and sup I < inf J with q, q̃ ≥ 2.
Then we also find the estimate (14) to hold.

In order to find local estimates, we start from the dispersive estimate:

‖P1e
itDau0‖L∞x ≤ Cn|t|

−σ‖u0‖L1
x

(t 6= 0).

By means of a scaling transform we find

‖PNeitD
a

u0‖L∞x ≤ Cn|t|
−σNn−aσ‖u0‖L1

x
(t 6= 0).

Integrating the above inequality yields the following local estimate:

(15)

∥∥∥∥PN ∫ t

−∞
ei(t−s)D

a

F (s)ds

∥∥∥∥
L∞t (J;L∞x )

≤ CnNn−aσ ‖F‖L1
t (I;L

1
x)

In the following we set

r =
aσ − n

2
.

We would like to combine (15) with the estimates we find from (13); however, we
have to require that these estimates still hold in the Zp-spaces, which leads us to
the following definition:

Definition 3.2 (Generalized dispersive estimate). Suppose that Ua admits gener-
alized Strichartz estimates with range spaces (Zp)p∈[1,∞] and extended decay pa-
rameter σ′. We say that these generalized Strichartz estimates admit a generalized
dispersive estimate, if we have

(16)

∥∥∥∥PN ∫ t

−∞
eiD

a(t−τ)F (τ)dτ

∥∥∥∥
L∞t (J;Z∞)

≤ CnNn−aσ ‖F‖L1
t (I;Z1)

,
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which is supposed to hold for any intervals I and J of unit length |I| = |J | = 1,
which are separated so that dist(I, J) ∼ 1.

We will also make use of the interpolation identity

(17) (Zp, Zq)[θ] = Zu,
1

u
=

1− θ
p

+
θ

q
, q, p ∈ [1,∞], θ ∈ [0, 1],

but this identity follows for p 6=∞, q 6=∞ from the Zp-spaces being vector-valued
Lp-spaces; if one of the coefficients is infinite, we have to take into account the
regularity and decay assumption, see again [1, Theorem 5.1.2., p. 107]. The same
reasoning holds for further nested Lp-spaces.
We observe that in (3.1) there is some ambiguity between s and s̃ in the sense
that the estimate actually only depends on s+ s̃. Therefore, we will only consider
estimates of the kind

(18)

∥∥∥∥PN ∫ t

−∞
eiD

a(t−τ)F (τ)dτ

∥∥∥∥
Lq̃t (J;Zp̃)

.n,p,q,p̃,q̃ N
−2s‖F‖

Lq
′
t (I;Zp′ )

and

(19)

∥∥∥∥∫ t

−∞
eiD

a(t−τ)F (τ)dτ

∥∥∥∥
Lq̃t (J;Z

s
p̃)

.n,p,q,p̃,q̃ ‖F‖Lq′t (I;Z−s
p′ )

.

When we perform interpolation steps to find global estimates in Section 3.3, the
above representations will be advantageous. We work out the local estimates below
using the methods from [7]: That is interpolating the estimates from factorization
with the dispersive estimate and finally using Hölder’s inequality in time. The
following theorem is an extension to [7, Theorem 1.12., p. 4]; the proof is complicated
from the necessity to keep in mind the derivative parameters.

Theorem 3.3 (Local inhomogeneous estimates). Suppose that the family of linear
operators Ua admits generalized homogeneous Strichartz estimates with range spaces
(Zp)p∈[1,∞], with extended decay parameter σ′ and which admit a generalized dis-
persive estimate.
Then we find the estimates (18) and (19) to hold if

∃ σ1, σ2 ∈ (σ, σ′) :

1 ≤µ =
(a/2) (σ1/2 + σ2/2− σ)

s− r + ((aσ1 − n)/p+ (aσ2 − n)/p̃) /2
<∞

σ1 − 1

σ1

p

2
≤ µ ≤ p

2

σ2 − 1

σ2

p̃

2
≤ µ ≤ p̃

2

(σ1/2)

(1/q) + (σ1/p)
≤ µ (σ2/2)

(1/q̃) + (σ2/p̃)
≤ µ

Proof. Let us set Eloc =
{

(1/q, 1/p, 1/q̃, 1/p̃, s) ∈ [0, 1]4 × R | (18) is valid }. We
have (0, 0, 0, 0, r) ∈ Eloc by virtue of the dispersive estimate (15). We also observe
that if the generalized homogeneous Strichartz estimates are valid, that is (Q,P, S)

and (Q̃, P̃ , S̃) satisfy (12), then we find that (1/Q, 1/P, 1/Q̃, 1/P̃ , (S + S̃)/2) ∈ Eloc
due to (13) and localization in time.
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That means we have for some σ1, σ2 ∈ (σ, σ′)

1

Q
= σ1

(
1

2
− 1

P

)
, S = −n

(
1

2
− 1

P

)
+
a

Q
,

1

Q̃
= σ2

(
1

2
− 1

P̃

)
, S̃ = −n

(
1

2
− 1

P̃

)
+
a

Q̃
, 0 ≤ 1

Q
,

1

Q̃
,

1

P
,

1

P̃
≤ 1

2
.

(20)

Note that S and S̃ only depend on 1
P ,

1
P̃

, respectively, that is

S = (aσ1 − n)

(
1

2
− 1

P

)
, S̃ = (aσ2 − n)

(
1

2
− 1

P̃

)
.

Second, we can take the convex hull of these points with the point (0, 0, 0, 0, r) by
virtue of the interpolation property. This gives rise to the wedge in Figure 1. Those
points are of the form

(θ/Q, θ/P, θ/Q̃, θ/P̃ , (1− θ)r + θ
(S + S̃)

2
).

Before we apply Hölder’s inequality to find more admissible coefficients with respect
to time integrability, we lift the estimates of the kind (18) to estimates of the kind
(19) by invoking Lemma 3.1, which is possible because θ

Q ,
θ
Q̃
≤ 1

2 . Lifting is no

longer possible after applying Hölder’s inequality in general.
Finally, we apply Hölder’s inequality to find points of the form

(1/q, 1/p, 1/q̃, 1/p̃, s) where
1

q
≥ θ

Q
,

1

p
=

θ

P
,

1

q̃
≥ θ

Q̃
,

1

p̃
=

θ

P̃
, s = (1− θ)r + θ(S + S̃)/2,

(21)

when (Q,P, S, Q̃, P̃ , S̃) satisfies (20). Our aim is to eliminate the dependence from

the initial values. We can already eliminate P, P̃ :

θ

Q
= σ1

(
θ

2
− 1

p

)
θ

Q̃
= σ2

(
θ

2
− 1

p̃

)
0 ≤ θ

Q
,
θ

Q̃
≤ θ

2
0 ≤ 1

p
,

1

p̃
≤ θ

2
, θ ∈ (0, 1]

1

q
≥ θ

Q

1

q̃
≥ θ

Q̃

s = r + θ

(
S + S̃

2
− r

)

θS = (aσ1 − n)

(
θ

2
− 1

p

)
θS̃ = (aσ2 − n)

(
θ

2
− 1

p̃

)
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Next, we can eliminate Q, Q̃ and find θ from the last equations:

σ1

(
θ

2
− 1

p

)
≤ θ

2
σ2

(
θ

2
− 1

p̃

)
≤ θ

2

0 ≤ 1

p
,

1

p̃
≤ θ

2
0 < θ ≤ 1

1

q
≥ σ1

(
θ

2
− 1

p

)
1

q̃
≥ σ2

(
θ

2
− 1

p̃

)
θ =

s− r + ((aσ1 − n)/p+ (aσ2 − n)/p̃) /2

(a/2) (σ1/2 + σ2/2− σ)

We rearrange these inequalities:

1 ≤ 1

θ
<∞

σ1 − 1

σ1

θ

2
≤ 1

p
≤ θ

2

σ2 − 1

σ2

θ

2
≤ 1

p̃
≤ θ

2

σ1θ

2
≤ 1

q
+
σ1
p

σ2θ

2
≤ 1

q̃
+
σ2
p̃

s− r + ((aσ1 − n)/p+ (aσ2 − n)/p̃) /2

(a/2) (σ1/2 + σ2/2− σ)
= θ

Next, we isolate the quantity 1/θ:

1 ≤ 1

θ
<∞(22)

σ1 − 1

σ1

p

2
≤ 1

θ
≤ p

2

σ2 − 1

σ2

p̃

2
≤ 1

θ
≤ p̃

2

(σ1/2)

(1/q) + (σ1/p)
≤ 1

θ

(σ2/2)

(1/q̃) + (σ2/p̃)
≤ 1

θ

(a/2) (σ1/2 + σ2/2− σ)

s− r + (1/2) ((aσ1 − n)/p+ (aσ2 − n)/p̃)
=

1

θ

To find the conditions on the derivative parameter, we plug in the value we found for
1/θ = µ in terms of the derivative parameter into (22) which finishes the proof. �

3.2. Scaling symmetry. Next, we apply the scaling symmetry already mentioned
above to find rescaled local estimates, which become useful when we recover the
global estimates.
The following proposition is an extension to [7, Proposition 2.1., p. 6].

Lemma 3.4 (Rescaled local estimates). Suppose that the family Ua admits the
estimate (18) or (19) for some q, p, q̃, p̃, s with p, p̃ ∈ (1,∞)4 and any two time
intervals of unit length |I| = |J | = 1, which are separated so that dist(I, J) ∼ 1,
when sup I < inf J and that the Zp-spaces have the compatibility property.

Letting Ĩ , J̃ denote two time intervals with |Ĩ| = |J̃ | = λ, which are separated so

that dist(Ĩ , J̃) ∼ λ, when sup Ĩ < inf J̃ , in case of (18) we find the estimate

(23)

∥∥∥∥PN ∫ t

−∞
ei(t−s)D

a

F (s)ds

∥∥∥∥
Lq̃t (J̃,Z

s
p̃)

.n,p,q,p̃,q̃ λ
βa(q,q̃,p,p̃,s)N−2s‖F‖

Lq
′
t (Ĩ;Z−s

p′ )

4This is a technical restriction, which does not have any practical relevance for us because in

Theorem 3.3 we found 2 ≤ p, p̃ <∞.
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to be true and in case of (19) we find the following estimate to hold

(24)

∥∥∥∥PN ∫ t

−∞
ei(t−s)D

a

F (s)ds

∥∥∥∥
Lq̃t (J̃,Z

s
p̃)

.n,p,q,p̃,q̃ λ
βa(q,q̃,p,p̃,s)‖F‖

Lq
′
t (Ĩ;Z−s

p′ )
.

Proof. The proof consists only of straight-forward changes of variables. �

3.3. Recovering the global estimates. We follow the strategy from [7], that
is considering a Whitney decomposition of the domain of integration, so that the
local estimates come into play and gaining summability by perturbation of the
coefficients. The execution is complicated from the additional derivative parameter.
To prove the inhomogeneous estimates (6) and (7), we adapt the bilinear formulation
of (TT ∗)R by setting

B : Lq
′

t Z
−s
p′ × L

q̃′

t Z
−s̃
p̃′ → C

B(F,G) =

∫ ∫
s<t

〈U(−s)F (s), U(−t)G(t)〉 ds dt

and we also have to consider the following variant with frequency localization

BN : Lq
′

t Zp′ × L
q̃′

t Zp̃′ → C

BN (F,G) =

∫ ∫
s<t

〈PNU(−s)F (s), U(−t)G(t)〉 ds dt

Note that we have to keep track of the derivative parameters when estimating the
latter form.
We can exploit our previous results on local estimates by considering Whitney’s
dyadic decomposition of the domain of integration Ω =

{
(s, t) ∈ R2 | s < t

}
. Recall

that a dyadic cube in Euclidean space is a cube whose sidelength is a dyadic number
λ ∈ 2Z and the coordinates of its vertices are integer multiples of λ. Precisely,
we use the theorem [8, Appendix J, pp. 463-464] on decomposition of open sets in
Euclidean space into essentially disjoint dyadic cubes. By Q we denote the Whitney
decomposition of Ω.
For each dyadic number λ, by Qλ we denote the collection of squares in Q with
sidelength λ. Each square Q = I × J ∈ Qλ satisfies the condition

λ = |I| = |J | ∼ dist(Q, ∂Ω) ∼ dist(I, J).

Transferring the Whitney decomposition onto the bilinear form we arrive at

(25) B =
∑
λ

∑
Q∈Qλ

BQ,

where we have restricted the domain of integration to Q = I × J on BQ, that is

BQ(F,G) = B(χIF, χJG) =

∫ ∫
s∈I, t∈J

〈U(−s)F (s), U(−t)G(t)〉 ds dt.

Note that when we consider estimates for BQ, Q = I × J , F and G are effec-
tively supported on I and J , respectively: Thus, we find that the estimate (24) is
equivalent to

(26) |BQ(F,G)| .n,p,q,p̃,q̃ λβa(q,q̃,p,p̃,s)‖F‖Lq̃′t (I;Z−s
p̃′ )
‖G‖

Lq
′
t (J;Z−s

p′ )
, Q ∈ Qλ.

Note that the above arguments also apply to BN with the obvious modifications.
To recover the global estimates from the local ones, we have to perform the sum-
mations. First, we note the following variant to Hölder’s inequality for sequence
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spaces by combining ordinary Hölder’s inequality with the embedding `p ↪→ `q for
p ≤ q:

Lemma 3.5 ([7, Lemma 3.2., p. 8]). Suppose that 1/r + 1/r̃ ≥ 1, then we have∑
Q ∈ Qλ
Q = I × J

‖f‖Lr̃(I)‖g‖Lr(J) ≤ ‖f‖Lr̃(R)‖g‖Lr(R)

for f ∈ Lr̃(R), g ∈ Lr(R) and any dyadic number λ.

An application of Lemma 3.5 to (26) under the assumption 1/q+ 1/q̃ ≤ 1 yields

(27)
∑
Q∈Qλ

|BQ(F,G)| .n,p,q,p̃,q̃ λβa(q,q̃,p,p̃,s)‖F‖Lq′t (R;Z−s
p′ )
‖G‖

Lq̃
′
t (R;Z−s

p̃′ )
.

Since the operator (TT ∗)R has a convolution structure, we do not lose any globally
admissible pairs making this assumption.
We will also need the following variant of Young’s inequality:

Lemma 3.6 ([7, Lemma 4.3., p. 11]). Let (An) , (Bn) , (Cn) be sequences of non-
negative numbers. If

1

p
+

1

q
+

1

r
≥ 2,

then
∑
n,k AnBkCn−k ≤ ‖A‖`p‖B‖`q‖C‖`r .

Apparently, necessary for performing the summations in (25) is the scaling con-
dition βa = 0. But still, plain summation does not work; however, perturbation of
the exponents enhances summability because of the exponential decay one has in a
neighbourhood as was well demonstrated in [14] and [7].

First, we consider the non-sharp case

1/q + 1/q̃ < 1,

which allows us to perturb the time integrability exponents. We prepare this inter-
polation step by introducing atomic decompositions of Lp-functions. We resort to

a vector-valued atomic decomposition of the functions F ∈ Lq
′

t Z
−s
p′ , G ∈ Lq̃

′

t Z
−s̃
p̃′ :

The following part follows the steps from [7, pp. 8-11] with the addition that in the
concrete part of the proof, we are dealing with the unspecified Banach spaces Zsp ,

whereat in [7] the LpX -spaces were considered.

Definition 3.7 (p-atoms). Let X denote a measure space, D denote a Banach
space and 1 ≤ p ≤ ∞. A p-atom in Lp(X ;D) of size λ is a measurable function
ϕ : X → D such that:

(i) ξ 7→ ϕ(ξ) is supported on a set of measure less than λ;
(ii) ‖ϕ‖L∞(X ;D) .p λ−1/p.

We note that ‖ϕ‖Lq(X ;D) .p λ
1
q−

1
p , which will become mostly important, and

we have the following result on atomic decompositions:

Lemma 3.8 (Atomic decomposition of Lp(X ;D)-spaces, [7, Lemma 3.4, p. 9]). Any
D-valued function F ∈ Lp(X ;D) can be decomposed as

F =
∑
λ∈2Z

aλϕλ,
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where:

(a) each ϕλ is a p-atom in Lp(X ;D) of size λ;
(b) the atoms ϕλ have disjoint supports;
(c) aλ are non-negative constants such that ‖f‖Lp(X ;D) ∼p ‖aλ‖`p(2Z).

Atomic decomposition of F ∈ Lq
′

t Z
−s
p′ and G ∈ Lq̃

′

t Z
−s̃
p̃′ with respect to the

Lqt -spaces yields

F (t) =
∑
µ

aµϕµ(t), G(t) =
∑
ν

bνψν(t),

where ϕµ is a q′-atom with values in Z−sp′ of size µ and ψν is a q̃′-atom with values

in Z−s̃p̃′ of size ν and

‖F‖
Lq
′
t Z
−s
p′
∼q′ ‖aµ‖`q′ , ‖G‖Lq̃′t Z−s̃p̃′

∼q̃′ ‖bν‖`q̃′ .

Plugging the atomic decomposition into (25) we arrive at

(28) B(F,G) =
∑
λ,µ,ν

aµbν
∑
Q∈Qλ

BQ(ϕµ, ψν).

For convenience we introduce the notation

[λ] = max

{
λ,

1

λ

}
,

which will play the role of an absolute value for dyadic numbers in the following.
The freedom to perturb the exponents gives rise to the following lemma, this is an
extension to [7, Lemma 4.2., p. 10]:

Lemma 3.9. Suppose that 1/q0 + 1/q̃0 < 1, and that we have the local estimates
(18) and (19) with exponents (q, p, q̃, p̃, s) for all (1/q, 1/q̃) in a full neighbourhood of
(1/q0, 1/q̃0). Then, there exists ε = ε(q0, q̃0) > 0 such that, for all dyadic numbers
λ, µ, ν, we have

(29)
∑
Q∈Qλ

|BQ(ϕµ, ψν)| .n,p,q0,p̃,q̃0 λβa(q0,q̃0,p,p̃,s)
[µ
λ

]−ε [ν
λ

]−ε
,

whenever ϕµ is a q′0-atom of size µ in L
q′0
t Z
−s
p′ , and ψν is a q̃′0-atom of size ν in

L
q̃′0
t Z
−s
p̃′ and

(30)
∑
Q∈Qλ

|BNQ (ϕµ, ψν)| .n,p,q0,p̃,q̃0 λβa(q0,q̃0,p,p̃,s)N−2s
[µ
λ

]−ε [ν
λ

]−ε
,

whenever ϕµ is a q′0-atom of size µ in L
q′0
t Zp′ , and ψν is a q̃′0-atom of size ν in

L
q̃′0
t Zp̃′ .

Proof. We can transfer the proof from [7, Lemma 4.2., p. 10] because the proof
only depends on the concrete form of the q, q̃-part of the scaling function, which
coincide, and the properties of atomic decompositions, but we have to keep track
of the derivative parameters. �

We are ready to prove the first part of Theorem 1.1:
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Proof of the non-sharp cases from Theorem 1.1. We can imitate the proof from [7,
pp. 10-11] when we have to work at fixed derivative parameter in addition: Observe
that we are in the position to employ Lemma 3.9 because we made the inequalities,
which involve the parameters q and q̃, strict, and we required 1 < q, q̃ < ∞ and
plugging the estimates for atomic decomposition with respect to the Lqt -spaces into
(28) we find

|B(F,G)| ≤ Cn,p,q,p̃,q̃
∑
µ,ν

aµbν
∑
λ

λβa(q,q̃,p,p̃,s)
[µ
λ

]−ε [ν
λ

]−ε
.

With the scaling condition βa = 0, we can perform the sum over λ and find∑
λ

[µ
λ

]−ε [ν
λ

]−ε
.ε
(

1 + log
[µ
ν

]) [µ
ν

]−ε
= cµ/ν .

Recall that ε = ε(q, q̃). Since the sequence (cα) is absolutely summable, we can
apply Lemma 3.6 on the estimate

|B(F,G)| ≤ Cn,p,q,p̃,q̃
∑
µ,ν

aµbνcµ/ν ,

which is possible because (aµ) ∈ `q′ , (bν) ∈ `q̃′ , (cα) ∈ `1 and therefore 1/q′+1/q̃′+
1 = 3− (1/q + 1/q̃) > 2 by hypothesis. This proves the estimate (6).
For the second claim we consider the bilinear form BN and following along the
above lines with the obvious modifications we arrive at the estimate∥∥∥∥PN ∫ t

−∞
Ua(t− s)F (s)ds

∥∥∥∥
Lq̃tZp̃

.n,p,q,p̃,q̃ N
−2s‖P̃NF‖Lq′t Zp′

and the estimate (7) follows by squaring and summing over N . �

For the sharp case

1/q + 1/q̃ = 1,

was considered a perturbation of the spatial exponents in [7]. Recall that we work
under the assumption, that the Zp-spaces are Lp-spaces, possibly vector-valued.
Let F (t) ∈ Zp′ and let G(t) ∈ Zp̃′ , which yields the atomic decompositions

F (t) =
∑
µ

aµ(t)ϕµ(t), G(t) =
∑
ν

bν(t)ψν(t),

where ϕµ(t) is a Zp′-atom in Zp′ of size µ and ψν(t) is a Zp̃′ -atom in Zp̃′ of size ν
and

‖F (t)‖Zp′ ∼p′ ‖aµ(t)‖`p′ , ‖G(t)‖Zp̃′ ∼p̃′ ‖bν(t)‖`p̃′ .

Plugging these decompositions into the bilinear form BN we arrive at

BN (F,G) =
∑
λ,µ,ν

∑
Q∈Qλ

BNQ (aµϕµ, bνψν).

We have the following lemma on enhanced summability due to perturbation of
the spatial exponents at fixed derivative parameter s, which is found after [7,
Lemma 5.1., p. 12]:

Lemma 3.10. Suppose that the local estimates (18) hold with exponents (q, p, q̃, p̃, s)
for all (1/p, 1/p̃) in a full neighbourhood of (1/p0, 1/p̃0). Then, there exists ε =
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ε(p0, p̃0) > 0, such that we have for all dyadic numbers λ, µ, ν and the dyadic square
Q = I × J ∈ Qλ

|BNQ (aϕµ, bψν)| .n,p0,q,p̃0,q̃λβa(q,q̃,p0,p̃0,s)‖a‖Lq′ (I)‖b‖Lq̃′ (J)N
−2s[ µ

λn/a

]−ε [ ν

λn/a

]−ε
,

whenever a ∈ Lq
′
(I;R), b ∈ Lq̃

′
(J ;R), and for each t, the function ϕµ(t) is a

p′0-atom in Zp′0 and the function ψν(t) is a p̃′0-atom in Zp̃′0 of size ν.

Proof. We employ the local estimates from (14) together with Hölder’s inequality
to find

|BNQ (aϕµ, bψν)| ≤ Cn,p0,q,p̃0,q̃λβa(q,q̃,p,p̃,s)‖a‖Lq′ (I)‖b‖Lq̃′ (J)N
−2s

‖ϕµ‖L∞t (I;Zp′ )
‖ψν‖L∞t (J;Zp̃′ )

≤ Cn,p0,q,p̃0,q̃λβa(q,q̃,p,p̃,s)‖a‖Lq′ (I)‖b‖Lq̃′ (J)N
−2sµ

1
p0
− 1
p ν

1
p̃0
− 1
p̃

= Cn,p0,q,p̃0,q̃λ
βa(q,q̃,p0,p̃0,s)‖a‖Lq′ (I)‖b‖Lq̃′ (J)N

−2s( µ

λn/a

) 1
p0
− 1
p
( ν

λn/a

) 1
p̃0
− 1
p̃

.

Since the local estimates hold in a full neighbourhood, we can choose p and p̃ for
given λ, µ, ν with ε = ε(p0, p̃0) > 0 and take the constant C = C(n, p0, q, p̃0, q̃) like
in the proof of Lemma 3.9, so that( µ

λn/a

) 1
p0
− 1
p

=
[ µ

λn/a

]−ε
,
( ν

λn/a

) 1
p̃0
− 1
p̃

=
[ ν

λn/a

]−ε
,

which finishes the proof. �

We will perturb the spatial exponents p and p̃ associated to decay parameters
σ1 and σ2, but note that it is necessary to fix the sum of the derivative parameters.
By this method we are unable to recover the estimates in the LqtZ

s
p-spaces, but only

in the Zsp,q-spaces. In the specific case of spherical symmetry the Zsp-spaces become
Besov spaces of spherically symmetric functions and the estimate can be concluded
by an abstract interpolation argument via additional perturbation of the derivative
parameters as demonstrated in [16].

Proof of the sharp cases from Theorem 1.1. The above requirements on (q, p, q̃, p̃, s)
are sufficient to employ Lemma 3.10 and we find

|BN (F,G)| ≤ Cn,p,q,p̃,q̃N−2s
∑
λ,µ,ν

λβa(q,q̃,p,p̃,s)
[ µ

λn/a

]−ε
[ ν

λn/a

]−ε ∑
I×J∈Qλ

‖aµ‖Lq′ (I)‖bν‖Lq̃′ (J).

An application of Lemma 3.5, which is possible due to 1/q + 1/q̃ = 1, yields

|BN (F,G)| ≤ Cn,p,q,p̃,q̃N−2s
∑
µ,ν

‖aµ‖Lq′ (R)‖bν‖Lq̃′ (R)(∑
λ

λβa(q,q̃,p,p̃,s)
[ µ

λn/a

]−ε [ ν

λn/a

]−ε)
.
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Since we are at the scaling invariant case βa(q, q̃, p, p̃, s) = 0, we can perform the
sum over λ and find∑

λ

[ µ

λn/a

]−ε [ ν

λn/a

]−ε
.ε
(

1 + log
[µ
ν

]) [µ
ν

]−ε
= cµ/ν .

Therefore, we find

|BN (F,G)| ≤ Cn,p,q,p̃,q̃N−2s
∑
µ,ν

‖aµ‖Lq′ (R)‖bν‖Lq̃′ (R)cµ/ν .

As in the first part of the proof of Theorem 1.1, the sequence (cα) is absolutely
summable and we can apply Lemma 3.6 to arrive at the estimate

|BN (F,G)| ≤ Cn,p,q,p̃,q̃N−2s
(∑

µ

‖aµ(t)‖q
′

Lq
′
t (R)

)1/q′ (∑
ν

‖bν(t)‖q̃
′

Lq̃
′
t (R)

)1/q̃′

= Cn,p,q,p̃,q̃N
−2s

∥∥∥∥∥∥
(∑

µ

aµ(t)q
′

)1/q′
∥∥∥∥∥∥
Lq
′
t (R)

∥∥∥∥∥∥
(∑

ν

bν(t)q̃
′

)1/q̃′
∥∥∥∥∥∥
Lq̃
′
t (R)

.

Finally, we use the embeddings `q ↪→ `p and `q̃ ↪→ `p̃, which gives

|BN (F,G)| ≤ Cn,p,q,p̃,q̃N−2s
∥∥∥∥∥∥
(∑

µ

aµ(t)p
′

)1/p′
∥∥∥∥∥∥
Lq
′
t (R)

∥∥∥∥∥∥
(∑

ν

bν(t)p̃
′

)1/p̃′
∥∥∥∥∥∥
Lq̃
′
t (R)

= Cn,p,q,p̃,q̃N
−2s

∥∥∥‖F (t)‖Zp′
∥∥∥
Lq
′
t

∥∥∥‖G(t)‖Zp̃′
∥∥∥
Lq̃
′
t

,

when in the last step we have used the properties of atomic decomposition. �

4. Applications

Next, we give two instances of generalized Strichartz estimates: First, we see
that requiring the wave-functions to be spherically symmetric yields generalized
Strichartz estimates and further, we see that taking spherical averages yields gen-
eralized Strichartz estimates. As future extended decay parameters we set

σ′(a, n) =

{
n− 1, if a = 1,
2n−1

2 , if a > 1.

Note that the estimates found after taking spherical averages imply the estimates
found after requiring spherical symmetry for Schrödinger-like equations. But since
we would like to stress the existence of a unified framework which is built up in
Section 2 allowing one to prove inhomogeneous estimates from homogeneous esti-
mates we chose to present the results separately, also with a view towards possible
generalizations with respect to the dispersion relation since the Strichartz estimates
for spherically symmetric wave-functions are known for a much larger class than for
the Schrödinger-like equations (cf. [4]).

4.1. Inhomogeneous estimates found after taking spherical symmetry. In
[4] Cho and Lee showed that penalizing anisotropic propagation results in the follow-
ing additional homogeneous Strichartz estimates for dispersion relations respecting
spherical symmetry and their results imply the following corollary:
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Theorem 4.1 (Special case of [4, Theorem 1.2., p. 997]
and [4, Section 4.5., pp. 1017-1018]).
Let q, p ≥ 2, a ≥ 1 and n ≥ 2 for a > 1 and n ≥ 3 for a = 1 and suppose that

σ(a, n)

(
1

2
− 1

p

)
<

1

q
< σ′(a, n)

(
1

2
− 1

p

)
.

Then we find the estimate∥∥∥PNeitDau0∥∥∥
LqtL

p
x

.n,p,q N
−s‖u0‖L2(Rn)

to hold for spherically symmetric u0 where s = −n2 + n
p + a

q .

The special case a = 1 was already covered in [19], testing the estimates against
Knapp-type examples one finds the range of integrability coefficients to be sharp
up to endpoints. We argue that Theorem 4.1 gives rise to generalized Strichartz
estimates. The range spaces are Lp-spaces of spherically symmetric functions, which
certainly have the compatibility property, also observe the identification:

Lpr = Lp((0,∞), rn−1dr)↔ {f ∈ Lp(Rn) | f spherically symmetric}
Furthermore, the generalized Strichartz estimates admit the generalized dispersive
estimate because the propagator respects spherical symmetry. Altogether, we find
an instance of Theorem 1.1 to hold for spherically symmetric wave-functions with
extended decay parameter defined above.
We observe that the range of homogeneous estimates in Theorem 4.1 remains valid
for general initial data if one considers norms of the initial data taking into account
the regularity in the spherical coordinates. Performing an additional Littlewood-
Paley decomposition in the spherical coordinates, one will be able to prove inhomo-
geneous estimates in the same range with derivative loss in the spherical coordinates.

4.2. Inhomogeneous estimates found after taking spherical averages. For
the wave equation and Schrödinger-like equations it is known, that the additional
Strichartz estimates, which exist for spherically symmetric initial data, become also
possible for general initial data when one requires a lower angular integrability
of the corresponding free solutions. The corresponding theorem on homogeneous
estimates states as follows:

Theorem 4.2 ([13, Theorem 1.4., p. 4], [10, Theorem 1.1., p. 3]). Let a ≥ 1, n ≥
3, q, p ≥ 2 and suppose that

σ(a, n)

(
1

2
− 1

p

)
<

1

q
< σ′(a, n)

(
1

2
− 1

p

)
.

We find the estimate

(31)
∥∥∥PNeitDau0∥∥∥

LqtL
p
rL2

ω

.n,p,q N
−s‖u0‖L2

to hold for any N ∈ 2Z with s = −n2 + n
p + a

q .

We show that the above theorem is another instance of generalized Strichartz
estimates with the range spaces LprL2

ω. The embedding LprL2
ω ↪→ S ′(Rn) is clear

from Hölder’s inequality like the vector-valued Lp-structure. We still have to show
compatibility with respect to frequency localization, which we do with the following
lemma, extending Young’s inequality. Let µ be the Haar measure on SO(n), and
denote LqA = Lq(SO(n), µ).
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The following identities are given in [11, Lemma 3.1., Lemma 3.2., p. 255].
First, we note that for any p, q ∈ [1,∞]

‖f‖LprLqω ∼n,p,q ‖f‖LpxLqA ,

which is straight-forward. This identification allows us to easily prove the following
extension to Young’s inequality in Euclidean space:

Lemma 4.3 (Young’s inequality with mixed norms).
Suppose that 1 ≤ p, q, p1, p2, q1, q2 ≤ ∞, 1

q = 1
q1

+ 1
q2
, 1 + 1

p = 1
p1

+ 1
p2
. Then we

find the following estimate to hold:

‖f ∗ g‖LprLqω ≤ Cn,p,q‖f‖Lp1r L
q1
ω
‖g‖Lp2r L

q2
ω
.

We note that in the last step of the proof given in [11] one could use weak Young’s
inequality. Since the Riesz-potential and the Bessel-potential are given by convo-
lution with a spherically symmetric function, we conclude that Sobolev embedding
remains valid in the LprL2

ω-spaces.
Specifically, we find from the above lemma that frequency localization yields a con-
tinuous operator in the LprL2

ω-spaces because frequency localization can be perceived
as convolution with a spherically symmetric Schwartz function.
The generalized dispersive estimate follows from two applications of Hölder’s in-
equality and we conclude that spherically averaged estimates yield another instance
of generalized Strichartz estimates and we find another instance of Theorem 1.1 to
hold.
However, the application of Hölder’s inequality to find the dispersive estimate in
the LprL2

ω-spaces produces slack in the results. Alternatively, when one looks for
the local estimates, one can directly interpolate with estimate (16) and use Hölder’s
inequality in the spherical coordinates afterwards.

4.3. Application to the fractional Schrödinger equation with potential.
Finally, we give a more sophisticated application of the additional inhomogeneous
estimates. Note the trivial application that the additional inhomogeneous estimates
allow us to bind the weak solution to an inhomogeneous equation with zero-initial
value in certain LqtL

p
x-norms, in which the weak solution to the homogeneous equa-

tion with non-vanishing initial value can’t be bounded in general. In [3] had been
considered the fractional Schrödinger equation with spherically symmetric initial
data u0 and potential V , where 1 < a < 2:

(32)

{
i∂tu(t, x) +Dau(t, x) = V (t, x)u(t, x), (t, x) ∈ (R,Rn),

u(0, ·) = u0

The main ingredient to the proof of well-posedness with initial data below L2 are
inhomogeneous estimates, which do not follow from the homogeneous estimates and
the Christ-Kiselev lemma.
We see how employing the additional inhomogeneous estimates allow us to drop the
assumptions on spherical symmetry, but we have to require some angular regularity
for the potential and slightly more Sobolev regularity for the potential and the
initial data; we stay below L2 though. We proceed by sketching the proof of [3,
Theorem 1.2., p. 1908]. We shall see how additional inhomogeneous estimates make
the proof possible. When we want to drop the assumptions on spherical symmetry,
we make use of the estimates provided by Corollary 1.
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Proof of Corollary 1. We show that the conditions from Theorem 1.1 are fulfilled;
first by checking the conditions on the diagonal q = q̃. If the inequalities hold on
the diagonal strictly, the claim follows from continuous dependence.
We have

µ(a) =
(a/2) (σ1/2 + σ2/2− n/2)

n(1− a/2) + ((aσ1 − n)/(2q) + (aσ2 − n)/(2q))
and q =

2(n+ a)

n
.

For a = 2 this gives µ(a = 2) = q
2 , and we find that the inequalities µ ≤ p/2 and

µ ≤ p̃/2 from Theorem 1.1 hold with equality, when all of the other inequalities are
strict.
For the derivatives of µ and q we find

µ′(a = 2) =
q

4
−
(

1

2(σ1 + σ2 − n)

)(
2 + σ1 + σ2 −

n

2
q2
)

and q′(a = 2) =
2

n
.

We find that µ decreases much faster than q as we lower a starting from a = 2 for
σ1, σ2 ↓ n/2, which yields the claim. �

Connecting these estimates which will be employed in the proof to certain re-
gions in Figure 2 will clarify how additional inhomogeneous estimates establish
well-posedness with negative Sobolev regularity.

A

B

C

D1
p

(
1
p̃

)O

1
q

(
1
q̃

)
1
2

Figure 2. We give a pictorial representation similar to [3, Fig-
ure 1, p. 1907]. In the setting of [3, Corollary 1., p. 1907] we
find A = (n−a2n ,

1
2 ), B = ( n

n+a −
n

2(n+1) ,
n
n+a −

n
2(n+1) ), C =

( n
2(n+1) ,

n
2(n+1) ), D = ( 1

2 , 0), where the open line BC corresponds

to the range from [3, Theorem 1.2., p. 1908] and the closed line AD
corresponds to estimates found from factorization and application
of the Christ-Kiselev lemma.

Proof of [3, Theorem 1.2., p. 1908] and dropping spherical symmetry.
We will see that the solution mapping

Φu0
(u) = eitD

a

u0 − i
∫ t

0

ei(t−s)D
a

(V u)(s)ds

is a contraction mapping if we choose an adequate resolution space. The proof from
[3] can be divided up into the following two steps:
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(i) Establishing local well-posedness in some Lqt ([0, τ ], Lpx)-space for a small
τ > 0,

(ii) Iterating the process a finite number of times after showing that the Sobolev

regularity is conserved. Since we show that we control the L∞t Ḣ
γ
x -norm

continuity follows from the usual approximation argument.

When we want to drop the assumptions on spherical symmetry, we work in a space
given by the norm

‖F‖Y =
∑
N

‖PNF‖LqtLprL2
ω
,

when the solution mapping Φu0 remains unchanged of course. In this case working
with a 1-norm has practical benefits. Note that we have from the triangle inequality
‖u‖LqtLprL2

ω
≤ ‖u‖Y . In the second step we iterate with respect to L∞t Ḃ

γ
2,1.

For the homogeneous part of the solution mapping we find from the homogeneous
Strichartz estimates

‖eitD
a

u0‖Y .n,p,q ‖u0‖Ḃγ2,1
and for the inhomogeneous part we find for a frequency localized component by
virtue of the estimates found in Theorems 1.1 under the associated assumptions

‖PN
∫ t

0

ei(t−s)D
a

(V u)(s)ds‖LqtLprL2
ω
.n,p,q,p̃,q̃ ‖P̃N (V u)‖

Lq̃
′
t L

p̃′
r L2

ω
.

Ad (i): We find

‖Φu0(u)‖Y .n,p,q,p̃,q̃ ‖u0‖Ḃγ2,1 +
∑
N

‖P̃N (V u)‖
Lq̃
′
t ([0,τ ],Lp̃

′
r L2

ω)

where we make use of the homogeneous estimates, which demands

(33)
a

q
+
n

p
=
n

2
− γ

to bind the homogeneous part; the admissibility follows from requirements on a
and γ. Further, (q, p, q̃, p̃) must be in the range of the additional inhomogeneous
estimates, which gives

(34)
a

q̃
+
n

p̃
=
n

2
+ γ

from plugging in the scaling condition. The requirement that (33) has non-empty
intersection with the triangle 4(ADC), with the lines AC and CD excluded, leads
to conditions on γ and q. In the case of spherical symmetry, these are described by
[3, Eq. (20), (22), p. 1909].
The requirement that (34) has non-empty intersection with the triangle 4(ABC),
with the lines AB and BC excluded, leads to an additional condition on 1

q̃ (cf.

[3, Eq. (23), p. 1909]). In the following we adapt the notation from [3].
We decompose PN (V u) = PN ((P<N/8V )u)+PN ((P≥N/8V )u) and for the first term
we note that we can freely replace u with PN/8<·<8Nu due to impossible frequency
interactions and we find by making use of Hölder’s inequality and Sobolev embed-
ding on the sphere

‖PN ((P<N/8V )u)‖
Lq̃
′
t L

p̃′
r L2

ω
≤ Cn‖(P<N/8V )(PN/8<·<8Nu)‖

Lq̃
′
t L

p̃′
r L2

ω

≤ Cn‖P<N/8V ‖LrtLwr L∞ω ‖PN/8<·<8Nu‖LqtLprL2
ω

≤ Cn,p,w,α‖ΛαωV ‖LrtLwx
∑
M∼N

‖PMu‖LqtLprL2
ω
,
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whenever α > n−1
w .

For the second term (P≥N/8V )u we distinguish between three frequency regions:
In case of N � 1 we make use of Bernstein’s inequality, which we state for conve-
nience for spaces with mixed norms:

‖PNg‖LqrL2
ω
≤ Cn,p,qN

n
p−

n
q ‖PNg‖LprL2

ω
,

whenever 1 ≤ p ≤ q ≤ ∞. For the proof one can follow along the lines of the proof
of the common variant, but making use of Lemma 4.3 instead of usual Young’s
inequality. This gives for some small ε′ > 0

‖PN ((P≥N/8V )u)‖
Lq̃
′
t L

p̃′
r L2

ω
≤ Cn,p,w,ε′Nε‖(P≥N/8V )u‖

Lq̃
′
t L

p̃′−ε′
r L2

ω

≤ Cn,p,w,ε′Nε‖P≥N/8V ‖LrtLw−ε′r L∞ω
‖u‖LqtLprL2

ω

≤ Cn,p,w,ε′,αNε‖ΛαωV ‖LrtLw−ε′x
‖u‖Y .

For N ∼ 1 we make use of the crude estimate, which follows from taking out the
operator norms of the frequency projectors:

‖PN ((P≥N/8V )u)‖
Lq̃
′
t L

p̃′
r L2

ω
≤ Cn,p,w,α‖V ‖LrtLwr L∞ω ‖u‖LqtLprL2

ω

≤ Cn,p,w,α‖ΛαωV ‖LrtLwx ‖u‖Y ,
which is still acceptable because we only have to sum finitely many of these pieces.
For N � 1 we make use of the following Bernstein inequality:

‖P≥NV ‖LprL2
ω
.n,p,s N

−s‖P≥NDsV ‖LprL2
ω
,

which holds, whenever s ≥ 0 and 1 ≤ p ≤ ∞. This gives

‖PN ((P≥N/8V )u)‖
Lq̃
′
t L

p̃′
r L2

ω
≤ Cn‖P≥N/8V ‖LrtLwr L∞ω ‖u‖LqtLprL2

ω

≤ Cn,p,w,ε,αN−ε‖ΛαωV ‖LrtW ε,w
x
‖u‖Y .

We find the solution mapping to be contracting if ΛαωV ∈ LrtLw−εx ∩ LrtW ε,w
x with

ε > 0, α > n−1
w−ε .

Ad (ii): For the homogeneous part we find again from the energy estimate

‖eitD
a

u0‖L∞t Ḃγ2,1 =

∥∥∥∥∥∑
N

Nγ‖PNeitD
a

u0‖L2
x

∥∥∥∥∥
L∞t

≤
∑
N

Nγ‖PNu0‖L2
x

= ‖u0‖Ḃγ2,1 .

For the inhomogeneous part we can also follow the strategy from [3] using the same
notation:

Nγ‖PN
∫ t

0

ei(t−s)D
a

(V u)(s)ds‖L∞t L2
x
≤ Cn,ũ,ṽNγ‖PN (V u)‖Lũ′t Lṽ′r L2

ω

≤ Cn,ũ,ṽ‖PN (V u)‖Lũ′t Lb′r L2
ω
.

Again we decompose PN (V u) = PN ((P<N/8V )(PN/8<·<8Nu)) + PN ((P≥N/8V )u)
and for the first term we find:

‖PN ((P<N/8V )(PN/8<·<8Nu))‖Lũ′t Lb′r L∞ω
≤ Cn,p,w,α‖ΛαωV ‖LrtLwx

∑
M∼N

‖PMu‖LqtLprL2
ω
,

where the second factor is controlled by ‖u‖Y after summing over N .
The second term will be treated like in the first part of the proof: For N � 1 we
can employ a Bernstein inequality and find by the same means of the first part

‖PN ((P≥N/8V )u)‖Lũ′t Lb′r L2
ω
≤ Cn,p,w,ε′,αNε‖ΛαωV ‖LrtLw−ε′x

‖u‖Y .
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For N ∼ 1 we make use of the rough estimate from the first part to find

‖PN ((P≥N/8V )u)‖Lũ′t Lb′r L2
ω
≤ Cn,p,w,α‖ΛαωV ‖LrtLwx ‖u‖Y

and for N � 1 we find

‖PN ((P≥N/8V )u)‖Lũ′t Lb′r L2
ω
≤ Cn,p,w,ε,αN−ε‖ΛαωV ‖LrtW ε,w

x
‖u‖Y ,

which means that we need no additional requirements on V to perform the iteration.
�
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