
EXERCISES OPERATOR THEORY

SHEET 9

Exercise 33

Show: A,B ∈Mn(C) commute ⇒ eA+B = eAeB.

Reminder.

eA =
∞∑
n=0

An

n!

To show the claim, we need the binomial theorem for matrices:

Lemma. If A,B ∈Mn(C) commute, then

(A+B)k =
k∑
l=0

(
k

l

)
AlBk−l

Proof. Induction, see e.g. Forster, Analysis 1. �

Proof of exercise: Calculation:

eAeB =
∞∑
l=0

Al

l!

∞∑
m=0

Bm

m!
=
∞∑
l=0

∞∑
m=0

AlBm

l!m!
=
∞∑
l=0

∞∑
m=0

(l +m)!

l!m!

AlBm

(l +m)!

=
∑
l=0

∞∑
k=l

k!

l!(k − l)!
1

k!
AlBk−l =

∞∑
k=0

k∑
l=0

(
k

l

)
1

k!
AlBk−l =

∞∑
k=0

1

k!

k∑
n=0

(
k

n

)
AlBk−l

=
∞∑
k=0

1

k!
(A+B)k = eA+B

�

Exercise 34

Find the semigroup generated by

(a) (
1 1
−1 −1

)
(b) 2 1 0

0 2 0
0 0 1


Reminder. (Definition 1.6, second part) The semigroup generated by A ∈Mn(C) is given
by etA.

In both parts, let Id denote the corresponding unit matrix.
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(a) We have

A2 =

(
1 1
−1 −1

)(
1 1
−1 −1

)
=

(
0 0
0 0

)
And hence An = 0 for all n ≥ 2. This means

etA =
∞∑
k=0

(tA)k

k!
= Id +tA

Or as matrix,

etA =

(
1 + t t
−t 1− t

)
(b) The matrix A can be written as2 1 0

0 2 0
0 0 1

 =

2 0 0
0 2 0
0 0 1

+

0 1 0
0 0 0
0 0 0

 =: D +N

We see easily that N2 = 0, therefore etN = Id +tN . Furthermore, D and N
commute and

etD =

e2t 0 0
0 e2t 0
0 0 et


Hence, by exercise 33,

etA = etDetN =

e2t 0 0
0 e2t 0
0 0 et

 (Id +tN)

=

e2t 0 0
0 e2t 0
0 0 et

+

0 te2t 0
0 0 0
0 0 0

 =

e2t te2t 0
0 e2t 0
0 0 et


Remark. The matrices in this exercise were “nice” in a sense that no additional calcu-
lations were needed. In general, on needs to find the Jordan (or diagonal) form of the
matrix, A = BJB−1 and make use of the identity

etA = BetJB−1.

Exercise 35

Prove for etA, A ∈Mn(C) that the following are equivalent:

(a) The semigroup is bounded, i.e. there exists M ≥ 1 such that ‖etA‖ < M for all
t ≥ 0.

(b) All eigenvalues λ of A satisfy <λ ≤ 0 and whenever <λ = 0, then λ is a simple
eigenvalue (i.e. the Jordan blocks coresponding to λ have size 1)

Remark. Since all norms on a finite-dimensional space are equivalent, we can choose a
norm convenient to us.

Proof. “⇒”: Assume that etA is bounded, but there exists an eigenvalue λ0 with <λ0 > 0.
Then for A = BJB−1, we have

etA = BetJB−1 ⇔ B−1etAB = etJ .
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Therefore, for ‖A‖ := max1≤i,j≤n |aij|,

‖B−1‖‖etA‖‖B‖ ≥ ‖B−1etAB−1‖ = ‖etJ‖ = ‖etDetN‖
= ‖etD[Id +(off-diag. terms)]‖ ≥ |etλ0| → ∞, t→∞

and hence ‖etA‖ → ∞, t → ∞, which contradicts our assumption that etA is
bounded.

Assume that there exists λ1 with <λ1 = 0 such that the Jordan form has the
following representation:

J =


λ1 1
0 λ1

0

0 C


where C is the rest of the Jordan matrix. Denote the upper block by J1. Then
with the same norm as above,

‖B−1‖‖etA‖‖B‖ ≥ ‖etJ‖ ≥ ‖etJ1‖ = ‖etDetN‖

=

∥∥∥∥(eλ1t 0
0 eλ1t

)[
Id +t

(
0 1
0 0

)]∥∥∥∥ =

∥∥∥∥(eλ1t teλ1t

0 eλ1t

)∥∥∥∥
≥ |tetλ1| → ∞, t→∞

since |etλ1| = 1. The calculation for larger blocks works similarly.
“⇐”: Assume that <λ ≤ 0 for all eigenvalues of A and if <λ = 0, λ is simple. Let l be

the number of Jordan blocks, denoted by Ji. Then since the Jordan blocks (seen
as sub-matrices) commute:

‖etA‖ = ‖BetJB−1‖ ≤ ‖B‖‖B−1‖︸ ︷︷ ︸
=:β

‖etJ‖ ≤ β
l∏

i=1

‖etJi‖

Hence, it suffices to show that each Jordan block is bounded. Let us distinguish
the cases for different-sized Jordan blocks:
(a) Block of size one: We have <λi ≤ 0, hence

‖etJi‖ = |etλi | ≤ 1

(b) Block of size larger than one: We already know that <λi < 0. Consider the
case where the size is equal to 2:

‖etJi‖ = ‖etDietNi‖

=

[(
eλit 0
0 eλit

)[
Id +t

(
0 1
0 0

)]∥∥∥∥ =

∥∥∥∥(eλit teλit

0 eλit

)∥∥∥∥
≤ max{etλi , tetλi} → 0, t→∞

For Jordan blocks of larger size, the calculations are similar, but the polynomials appearing
will be of higher order. �

Exercise 36

Let Mq with maximal domain D(Mq) be the multiplication operator on C0(Ω) induced
by some continuous function q. Show:
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(a) Mq has a bounded inverse ⇔ q has a bounded inverse 1
q
, i.e. 0 /∈ q(Ω). In this

case, we have

(1) M−1
q = M 1

q

(b) σ(Mq) = q(Ω).

Proof. (a) Recall that the norm ‖ · ‖ on C0(Ω) is the supremum norm. Also, let us
recall us a version of Uryson’s Lemma:

Lemma. Let A,B ⊂ Ω closed and disjoint. Then there exists a continuous func-
tion f : Ω→ [0, 1] such that f ≡ 0 on A and f ≡ 1 on B.

“⇐”: Let 0 /∈ q(Ω). Since q is continuous, it is bounded away from zero and hence,
1
q

is bounded and continuous. In this case, we obviously have (1) and∥∥∥M 1
q

∥∥∥ = sup
‖f‖=1

∥∥∥∥fq
∥∥∥∥ ≤ ∥∥∥∥1

q

∥∥∥∥ <∞
since 1

q
is bounded.

“⇒” Assume that Mq has a bounded inverse M−1
q . Then for f ∈ D(Mq), we have

‖f‖ = ‖M−1
q Mqf‖ ≤ ‖M−1

q ‖‖Mqf‖.
Consider f ∈ D(Mq) with ‖f‖ = 1, then

(2) δ :=
1

‖M−1
q ‖
≤ ‖Mqf‖ = sup

s∈Ω
|q(s)f(s)|

We want to show that q is bounded away from zero. In particular, we want
to show |q| ≥ δ

2
.

Assume that infs∈Ω |q(s)| < δ
2
. Since q is continuous, there exists an open set

O ⊂ Ω such that q(s) < δ
2

for all s ∈ O. On the other hand, by Uryson’s
Lemma, we find a function f0 ∈ C0(Ω) such that f0 ≡ 0 on Ω \ O and f0 ≡ 1
on some K ⊂ O compact ⇒ ‖f0‖ = 1. Therefore,

δ
(2)

≤ sup
s∈Ω
|q(s)f0(s)| = sup

s∈O
| q(s)︸︷︷︸
≤ δ

2

f0(s)︸ ︷︷ ︸
≤1

| ≤ δ

2

which is a contradiction. Hence, infs∈Ω |q(s)| ≥ δ
2

and therefore 0 /∈ q(Ω).
The representation (1) is obvious again.

(b) We have λ−Mq = Mλ−q. Hence, the claim follows if we apply a) to the operator
Mλ−q:

λ ∈ σ(Mq)⇔ 0 ∈ σ(Mλ−q)⇔Mλ−q is not boundedly invertible

a)⇔ 0 ∈ (λ− q)(Ω)⇔ λ ∈ q(Ω)

�


