EXERCISES OPERATOR THEORY

SHEET 9

EXERCISE 33

Show: $A, B \in M_n(\mathbb{C})$ commute $\Rightarrow e^{A+B} = e^A e^B$.

Reminder.

$$e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!}$$

To show the claim, we need the binomial theorem for matrices:

Lemma. If $A, B \in M_n(\mathbb{C})$ commute, then

$$(A+B)^{k} = \sum_{l=0}^{k} \binom{k}{l} A^{l} B^{k-l}$$

Proof. Induction, see e.g. Forster, Analysis 1.

Proof of exercise: Calculation:

$$e^{A}e^{B} = \sum_{l=0}^{\infty} \frac{A^{l}}{l!} \sum_{m=0}^{\infty} \frac{B^{m}}{m!} = \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \frac{A^{l}B^{m}}{l!m!} = \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \frac{(l+m)!}{l!m!} \frac{A^{l}B^{m}}{(l+m)!}$$
$$= \sum_{l=0}^{\infty} \sum_{k=l}^{\infty} \frac{k!}{l!(k-l)!} \frac{1}{k!} A^{l}B^{k-l} = \sum_{k=0}^{\infty} \sum_{l=0}^{k} \binom{k}{l} \frac{1}{k!} A^{l}B^{k-l} = \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{n=0}^{k} \binom{k}{n} A^{l}B^{k-l}$$
$$= \sum_{k=0}^{\infty} \frac{1}{k!} (A+B)^{k} = e^{A+B}$$

EXERCISE 34

Find the semigroup generated by (a)

(b)
$$\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$
$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Reminder. (Definition 1.6, second part) The semigroup generated by $A \in M_n(\mathbb{C})$ is given by e^{tA} .

In both parts, let Id denote the corresponding unit matrix.

Winter term 2018/19. Corrections and comments to peter.kuchling@uni-bielefeld.de.

(a) We have

$$A^{2} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

And hence $A^n = 0$ for all $n \ge 2$. This means

$$e^{tA} = \sum_{k=0}^{\infty} \frac{(tA)^k}{k!} = \operatorname{Id} + tA$$

Or as matrix,

$$e^{tA} = \begin{pmatrix} 1+t & t\\ -t & 1-t \end{pmatrix}$$

(b) The matrix A can be written as

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} =: D + N$$

We see easily that $N^2 = 0$, therefore $e^{tN} = \mathrm{Id} + tN$. Furthermore, D and N commute and

$$e^{tD} = \begin{pmatrix} e^{2t} & 0 & 0\\ 0 & e^{2t} & 0\\ 0 & 0 & e^t \end{pmatrix}$$

Hence, by exercise 33,

$$e^{tA} = e^{tD}e^{tN} = \begin{pmatrix} e^{2t} & 0 & 0\\ 0 & e^{2t} & 0\\ 0 & 0 & e^t \end{pmatrix} (\mathrm{Id} + tN)$$
$$= \begin{pmatrix} e^{2t} & 0 & 0\\ 0 & e^{2t} & 0\\ 0 & 0 & e^t \end{pmatrix} + \begin{pmatrix} 0 & te^{2t} & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} e^{2t} & te^{2t} & 0\\ 0 & e^{2t} & 0\\ 0 & 0 & e^t \end{pmatrix}$$

Remark. The matrices in this exercise were "nice" in a sense that no additional calculations were needed. In general, on needs to find the Jordan (or diagonal) form of the matrix, $A = BJB^{-1}$ and make use of the identity

$$e^{tA} = Be^{tJ}B^{-1}.$$

EXERCISE 35

Prove for e^{tA} , $A \in M_n(\mathbb{C})$ that the following are equivalent:

- (a) The semigroup is bounded, i.e. there exists $M \ge 1$ such that $||e^{tA}|| < M$ for all $t \ge 0$.
- (b) All eigenvalues λ of A satisfy $\Re \lambda \leq 0$ and whenever $\Re \lambda = 0$, then λ is a simple eigenvalue (i.e. the Jordan blocks corresponding to λ have size 1)

Remark. Since all norms on a finite-dimensional space are equivalent, we can choose a norm convenient to us.

Proof. " \Rightarrow ": Assume that e^{tA} is bounded, but there exists an eigenvalue λ_0 with $\Re \lambda_0 > 0$. Then for $A = BJB^{-1}$, we have

$$e^{tA} = Be^{tJ}B^{-1} \Leftrightarrow B^{-1}e^{tA}B = e^{tJ}.$$

Therefore, for $||A|| := \max_{1 \le i,j \le n} |a_{ij}|$,

$$\begin{split} \|B^{-1}\| \|e^{tA}\| \|B\| &\geq \|B^{-1}e^{tA}B^{-1}\| = \|e^{tJ}\| = \|e^{tD}e^{tN}\| \\ &= \|e^{tD}[\mathrm{Id} + (\mathrm{off\text{-}diag.\ terms})]\| \geq |e^{t\lambda_0}| \to \infty, t \to \infty \end{split}$$

and hence $||e^{tA}|| \to \infty, t \to \infty$, which contradicts our assumption that e^{tA} is bounded.

Assume that there exists λ_1 with $\Re \lambda_1 = 0$ such that the Jordan form has the following representation:

$$J = \begin{pmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ \hline 0 & C \end{pmatrix}$$

where C is the rest of the Jordan matrix. Denote the upper block by J_1 . Then with the same norm as above,

$$\begin{split} \|B^{-1}\| \|e^{tA}\| \|B\| &\geq \|e^{tJ}\| \geq \|e^{tJ_1}\| = \|e^{tD}e^{tN}\| \\ &= \left\| \begin{pmatrix} e^{\lambda_1 t} & 0\\ 0 & e^{\lambda_1 t} \end{pmatrix} \begin{bmatrix} \operatorname{Id} + t \begin{pmatrix} 0 & 1\\ 0 & 0 \end{bmatrix} \right\| = \left\| \begin{pmatrix} e^{\lambda_1 t} & te^{\lambda_1 t}\\ 0 & e^{\lambda_1 t} \end{pmatrix} \right\| \\ &\geq |te^{t\lambda_1}| \to \infty, t \to \infty \end{split}$$

since $|e^{t\lambda_1}| = 1$. The calculation for larger blocks works similarly.

" \Leftarrow ": Assume that $\Re \lambda \leq 0$ for all eigenvalues of A and if $\Re \lambda = 0$, λ is simple. Let l be the number of Jordan blocks, denoted by J_i . Then since the Jordan blocks (seen as sub-matrices) commute:

$$\|e^{tA}\| = \|Be^{tJ}B^{-1}\| \le \underbrace{\|B\|}_{=:\beta} \|e^{tJ}\| \le \beta \prod_{i=1}^{l} \|e^{tJ_i}\|$$

Hence, it suffices to show that each Jordan block is bounded. Let us distinguish the cases for different-sized Jordan blocks:

(a) Block of size one: We have $\Re \lambda_i \leq 0$, hence

$$\|e^{tJ_i}\| = |e^{t\lambda_i}| \le 1$$

(b) Block of size larger than one: We already know that $\Re \lambda_i < 0$. Consider the case where the size is equal to 2:

$$\begin{aligned} |e^{tJ_i}\| &= \|e^{tD_i}e^{tN_i}\| \\ &= \left[\begin{pmatrix} e^{\lambda_i t} & 0\\ 0 & e^{\lambda_i t} \end{pmatrix} \left[\mathrm{Id} + t \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix} \right] \right\| = \left\| \begin{pmatrix} e^{\lambda_i t} & te^{\lambda_i t}\\ 0 & e^{\lambda_i t} \end{pmatrix} \right\| \\ &\leq \max\{e^{t\lambda_i}, te^{t\lambda_i}\} \to 0, t \to \infty \end{aligned}$$

For Jordan blocks of larger size, the calculations are similar, but the polynomials appearing will be of higher order. $\hfill \Box$

EXERCISE 36

Let M_q with maximal domain $D(M_q)$ be the multiplication operator on $C_0(\Omega)$ induced by some continuous function q. Show: (a) M_q has a bounded inverse $\Leftrightarrow q$ has a bounded inverse $\frac{1}{q}$, i.e. $0 \notin \overline{q(\Omega)}$. In this case, we have

(1) $M_q^{-1} = M_{\frac{1}{a}}$

(b) $\sigma(M_q) = \overline{q(\Omega)}.$

Proof. (a) Recall that the norm $\|\cdot\|$ on $C_0(\Omega)$ is the supremum norm. Also, let us recall us a version of Uryson's Lemma:

Lemma. Let $A, B \subset \Omega$ closed and disjoint. Then there exists a continuous function $f: \Omega \to [0, 1]$ such that $f \equiv 0$ on A and $f \equiv 1$ on B.

"⇐": Let $0 \notin q(\Omega)$. Since q is continuous, it is bounded away from zero and hence, $\frac{1}{q}$ is bounded and continuous. In this case, we obviously have (1) and

$$\left\|M_{\frac{1}{q}}\right\| = \sup_{\|f\|=1} \left\|\frac{f}{q}\right\| \le \left\|\frac{1}{q}\right\| < \infty$$

since $\frac{1}{q}$ is bounded.

" \Rightarrow " Assume that M_q has a bounded inverse M_q^{-1} . Then for $f \in D(M_q)$, we have

$$||f|| = ||M_q^{-1}M_qf|| \le ||M_q^{-1}|| ||M_qf||.$$

Consider $f \in D(M_q)$ with ||f|| = 1, then

$$\delta := \frac{1}{\|M_q^{-1}\|} \le \|M_q f\| = \sup_{s \in \Omega} |q(s)f(s)|$$

We want to show that q is bounded away from zero. In particular, we want to show $|q| \ge \frac{\delta}{2}$.

Assume that $\inf_{s\in\Omega} |q(s)| < \frac{\delta}{2}$. Since q is continuous, there exists an open set $\mathcal{O} \subset \Omega$ such that $q(s) < \frac{\delta}{2}$ for all $s \in \mathcal{O}$. On the other hand, by Uryson's Lemma, we find a function $f_0 \in C_0(\Omega)$ such that $f_0 \equiv 0$ on $\Omega \setminus \mathcal{O}$ and $f_0 \equiv 1$ on some $K \subset \mathcal{O}$ compact $\Rightarrow ||f_0|| = 1$. Therefore,

$$\delta \stackrel{(2)}{\leq} \sup_{s \in \Omega} |q(s)f_0(s)| = \sup_{s \in \mathcal{O}} |\underbrace{q(s)}_{\leq \frac{\delta}{2}} \underbrace{f_0(s)}_{\leq 1}| \leq \frac{\delta}{2}$$

which is a contradiction. Hence, $\inf_{s\in\Omega} |q(s)| \geq \frac{\delta}{2}$ and therefore $0 \notin \overline{q(\Omega)}$. The representation (1) is obvious again.

(b) We have $\lambda - M_q = M_{\lambda-q}$. Hence, the claim follows if we apply a) to the operator $M_{\lambda-q}$:

$$\lambda \in \sigma(M_q) \Leftrightarrow 0 \in \sigma(M_{\lambda-q}) \Leftrightarrow M_{\lambda-q} \text{ is not boundedly invertible}$$
$$\stackrel{a)}{\Leftrightarrow} 0 \in \overline{(\lambda-q)(\Omega)} \Leftrightarrow \lambda \in \overline{q(\Omega)}$$