EXERCISES OPERATOR THEORY

SHEET 9

EXERCISE 33
Show: A, B € M,(C) commute = e4t8 = edebl.

Reminder.

To show the claim, we need the binomial theorem for matrices:

Lemma. If A, B € M,(C) commute, then

ey (Ve

Proof. Induction, see e.g. Forster, Analysis 1. 0]
Proof of exercise: Calculation:
AL BT = AIBT SN (L4 m)! AlB™
A B _ a Do _
=D D T T2 2 i = 22 i I+ m)!
=0 m=0 =0 m=0 =0 m=0
o© k 00 k
_ k Lkt KN T e 1 K\ i it
XY AT = Y () A = X ()4
1=0 k=l k=0 1=0 k=0 " n=0
— 1
=> A+ Bt =etts
k=0

EXERCISE 34

Find the semigroup generated by

(a)

(b)

[ev RN ar il \V]
SN =
— o O

Reminder. (Definition 1.0, second part) The semigroup generated by A € M, (C) is given
by et

In both parts, let Id denote the corresponding unit matrix.

Winter term 2018/19. Corrections and comments to peter.kuchling@uni-bielefeld.de.
1



2 SHEET 9

() ()=

And hence A™ = 0 for all n > 2. This means

A - (tA)F
e _ZT_IdHA

k=0

o\ =t 11—t

(b) The matrix A can be written as

(a) We have

Or as matrix,

2 10 2 00 010
020|=1020]+(00O0])=D+N
0 0 1 0 0 1 000

We see easily that N2 = 0, therefore eV = Id+tN. Furthermore, D and N

commute and

et 0 0
tD — 0 62t 0
0 0 ¢

Hence, by exercise 33,

0
6tA — e1£D€tN — 0 62t 0 (Id —I—tN)

0 0 €
et 0 0 0 te* 0 et te?t 0
=10 e 0)l+10 0 0o]l=[0 ¢€* 0
0 0 € 0O 0 O 0 0 ¢

Remark. The matrices in this exercise were “nice” in a sense that no additional calcu-
lations were needed. In general, on needs to find the Jordan (or diagonal) form of the
matriz, A= BJB™! and make use of the identity

et = Be' B

EXERCISE 35

Prove for €4, A € M, (C) that the following are equivalent:

(a) The semigroup is bounded, i.e. there exists M > 1 such that ||e'|| < M for all
t>0.

(b) All eigenvalues A of A satisfy R\ < 0 and whenever RA = 0, then X is a simple
eigenvalue (i.e. the Jordan blocks coresponding to A have size 1)

Remark. Since all norms on a finite-dimensional space are equivalent, we can choose a
norm convenient to us.

Proof. “=": Assume that e/ is bounded, but there exists an eigenvalue \g with ®\g > 0.
Then for A = BJB™!, we have

etA — BetJB—l PN B—letAB — etJ'
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Therefore, for | A| := max;<; j<n |as],
1B~ e MBI > 1B~ e B7H| = [[e”]| = [[e"e™|
= ||e"P[1d +(off-diag. terms)]|| > |e"*| — oo, t — oo

and hence ||| — oo,t — oo, which contradicts our assumption that 4 is
bounded.

Assume that there exists A\; with ®\; = 0 such that the Jordan form has the
following representation:

A1
0 N

0o | ¢

0

J:

where C' is the rest of the Jordan matrix. Denote the upper block by J;. Then

with the same norm as above,
since |e'*1| = 1. The calculation for larger blocks works similarly.

IB=H e MBI = lle™ ]| = fle ]| = flePe™ ]|
eMt 0 0 1 eMt tetil
B H( o ent) M0 0)]|| T\ o e
“«<": Assume that R\ < 0 for all eigenvalues of A and if R\ = 0, A is simple. Let [ be
the number of Jordan blocks, denoted by J;. Then since the Jordan blocks (seen

> [te'| — 0o, t — 00
as sub-matrices) commute:

l
le )l = 1B B~H| < |BIIIB~ | lle”[| < 5] ] lle™”
T i1

Hence, it suffices to show that each Jordan block is bounded. Let us distinguish
the cases for different-sized Jordan blocks:
(a) Block of size one: We have R\; < 0, hence

||etJ¢ — |et)\i

<1

(b) Block of size larger than one: We already know that R\; < 0. Consider the
case where the size is equal to 2:

For Jordan blocks of larger size, the calculations are similar, but the polynomials appearing
will be of higher order. U

i) = fletDie |

ert () 0 1 erit perit
=1 ) oo o)) =)

< max{e™ te} = 0,1 — oo

e

EXERCISE 36

Let M, with maximal domain D(M,) be the multiplication operator on Cy(£2) induced
by some continuous function ¢q. Show:
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(a) M, has a bounded inverse < ¢ has a bounded inverse %, ie. 0 ¢ ¢(2). In this
case, we have

(1) M71:M1

q

(b) a(M,) = ().
Proof. (a) Recall that the norm || - || on Cy(€2) is the supremum norm. Also, let us
recall us a version of Uryson’s Lemma:

Lemma. Let A, B C Q closed and disjoint. Then there exists a continuous func-
tion f: Q —[0,1] such that f =0 on A and f =1 on B.

“<": Let 0 ¢ ¢(€2). Since ¢ is continuous, it is bounded away from zero and hence,
% is bounded and continuous. In this case, we obviously have (1) and

b

= sup
IIfll=1

1
=il <=
q q

since % is bounded.

“=7 Assume that M, has a bounded inverse M, . Then for f € D(M,), we have

LI = 1M M fI < 1M M -
Consider f € D(M,) with || f|| = 1, then
1
(2) 0= (AT < Mo fll = ilélgltz(S)f(S)l

We want to show that ¢ is bounded away from zero. In particular, we want
to show |q| > &.
Assume that infeq |q(s)| < g. Since ¢ is continuous, there exists an open set
O C Q such that ¢(s) < § for all s € O. On the other hand, by Uryson’s
Lemma, we find a function fy € Cy(Q2) such that fo =00n Q\ O and fy =1
on some K C O compact = || fy|| = 1. Therefore,

N

(2)
6 < sup q(s)fo(s)] =sup|q(s) fo(s) | <
EISY) s€O \/6-/\</1-/
<3 =

which is a contradiction. Hence, infyeq |q(s)| > 2 and therefore 0 ¢ ¢(9).
The representation (1) is obvious again.
(b) We have A — M, = M,_,. Hence, the claim follows if we apply a) to the operator
M/\_qi

A€ o(M,) < 0¢€o(My,) < M,_, is not boundedly invertible
o=@ & req®)



