EXERCISES OPERATOR THEORY

SHEET 9

Exercise 33
Show: $A, B \in M_{n}(\mathbb{C})$ commute $\Rightarrow e^{A+B}=e^{A} e^{B}$.

Reminder.

$$
e^{A}=\sum_{n=0}^{\infty} \frac{A^{n}}{n!}
$$

To show the claim, we need the binomial theorem for matrices:
Lemma. If $A, B \in M_{n}(\mathbb{C})$ commute, then

$$
(A+B)^{k}=\sum_{l=0}^{k}\binom{k}{l} A^{l} B^{k-l}
$$

Proof. Induction, see e.g. Forster, Analysis 1.
Proof of exercise: Calculation:

$$
\begin{aligned}
e^{A} e^{B} & =\sum_{l=0}^{\infty} \frac{A^{l}}{l!} \sum_{m=0}^{\infty} \frac{B^{m}}{m!}=\sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \frac{A^{l} B^{m}}{l!m!}=\sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \frac{(l+m)!}{l!m!} \frac{A^{l} B^{m}}{(l+m)!} \\
& =\sum_{l=0} \sum_{k=l}^{\infty} \frac{k!}{l!(k-l)!} \frac{1}{k!} A^{l} B^{k-l}=\sum_{k=0}^{\infty} \sum_{l=0}^{k}\binom{k}{l} \frac{1}{k!} A^{l} B^{k-l}=\sum_{k=0}^{\infty} \frac{1}{k!} \sum_{n=0}^{k}\binom{k}{n} A^{l} B^{k-l} \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}(A+B)^{k}=e^{A+B}
\end{aligned}
$$

Exercise 34

Find the semigroup generated by
(a)

$$
\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Reminder. (Definition 1.6, second part) The semigroup generated by $A \in M_{n}(\mathbb{C})$ is given by $e^{t A}$.

In both parts, let Id denote the corresponding unit matrix.
Winter term 2018/19. Corrections and comments to peter.kuchling@uni-bielefeld.de.
(a) We have

$$
A^{2}=\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

And hence $A^{n}=0$ for all $n \geq 2$. This means

$$
e^{t A}=\sum_{k=0}^{\infty} \frac{(t A)^{k}}{k!}=\mathrm{Id}+t A
$$

Or as matrix,

$$
e^{t A}=\left(\begin{array}{cc}
1+t & t \\
-t & 1-t
\end{array}\right)
$$

(b) The matrix A can be written as

$$
\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=: D+N
$$

We see easily that $N^{2}=0$, therefore $e^{t N}=\operatorname{Id}+t N$. Furthermore, D and N commute and

$$
e^{t D}=\left(\begin{array}{ccc}
e^{2 t} & 0 & 0 \\
0 & e^{2 t} & 0 \\
0 & 0 & e^{t}
\end{array}\right)
$$

Hence, by exercise 33,

$$
\begin{aligned}
e^{t A}=e^{t D} e^{t N} & =\left(\begin{array}{ccc}
e^{2 t} & 0 & 0 \\
0 & e^{2 t} & 0 \\
0 & 0 & e^{t}
\end{array}\right)(\operatorname{Id}+t N) \\
& =\left(\begin{array}{ccc}
e^{2 t} & 0 & 0 \\
0 & e^{2 t} & 0 \\
0 & 0 & e^{t}
\end{array}\right)+\left(\begin{array}{ccc}
0 & t e^{2 t} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
e^{2 t} & t e^{2 t} & 0 \\
0 & e^{2 t} & 0 \\
0 & 0 & e^{t}
\end{array}\right)
\end{aligned}
$$

Remark. The matrices in this exercise were "nice" in a sense that no additional calculations were needed. In general, on needs to find the Jordan (or diagonal) form of the matrix, $A=B J B^{-1}$ and make use of the identity

$$
e^{t A}=B e^{t J} B^{-1}
$$

Exercise 35

Prove for $e^{t A}, A \in M_{n}(\mathbb{C})$ that the following are equivalent:
(a) The semigroup is bounded, i.e. there exists $M \geq 1$ such that $\left\|e^{t A}\right\|<M$ for all $t \geq 0$.
(b) All eigenvalues λ of A satisfy $\Re \lambda \leq 0$ and whenever $\Re \lambda=0$, then λ is a simple eigenvalue (i.e. the Jordan blocks coresponding to λ have size 1)

Remark. Since all norms on a finite-dimensional space are equivalent, we can choose a norm convenient to us.

Proof. " \Rightarrow ": Assume that $e^{t A}$ is bounded, but there exists an eigenvalue λ_{0} with $\Re \lambda_{0}>0$. Then for $A=B J B^{-1}$, we have

$$
e^{t A}=B e^{t J} B^{-1} \Leftrightarrow B^{-1} e^{t A} B=e^{t J}
$$

Therefore, for $\|A\|:=\max _{1 \leq i, j \leq n}\left|a_{i j}\right|$,

$$
\begin{aligned}
\left\|B^{-1}\right\|\left\|e^{t A}\right\|\|B\| & \geq\left\|B^{-1} e^{t A} B^{-1}\right\|=\left\|e^{t J}\right\|=\left\|e^{t D} e^{t N}\right\| \\
& =\| e^{t D}[\operatorname{Id}+(\text { off-diag. terms })] \|\left|e^{t \lambda_{0}}\right| \rightarrow \infty, t \rightarrow \infty
\end{aligned}
$$

and hence $\left\|e^{t A}\right\| \rightarrow \infty, t \rightarrow \infty$, which contradicts our assumption that $e^{t A}$ is bounded.

Assume that there exists λ_{1} with $\Re \lambda_{1}=0$ such that the Jordan form has the following representation:

$$
J=\left(\begin{array}{cc|c}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 0 \\
\hline 0 & C
\end{array}\right)
$$

where C is the rest of the Jordan matrix. Denote the upper block by J_{1}. Then with the same norm as above,

$$
\begin{aligned}
\left\|B^{-1}\right\|\left\|e^{t A}\right\|\|B\| & \geq\left\|e^{t J}\right\| \geq\left\|e^{t J_{1}}\right\|=\left\|e^{t D} e^{t N}\right\| \\
& =\left\|\left(\begin{array}{cc}
e^{\lambda_{1} t} & 0 \\
0 & e^{\lambda_{1} t}
\end{array}\right)\left[\operatorname{Id}+t\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)\right]\right\|=\left\|\left(\begin{array}{cc}
e^{\lambda_{1} t} & t e^{\lambda_{1} t} \\
0 & e^{\lambda_{1} t}
\end{array}\right)\right\| \\
& \geq\left|t e^{t \lambda_{1}}\right| \rightarrow \infty, t \rightarrow \infty
\end{aligned}
$$

since $\left|e^{t \lambda_{1}}\right|=1$. The calculation for larger blocks works similarly.
$" \Leftarrow$ ": Assume that $\Re \lambda \leq 0$ for all eigenvalues of A and if $\Re \lambda=0, \lambda$ is simple. Let l be the number of Jordan blocks, denoted by J_{i}. Then since the Jordan blocks (seen as sub-matrices) commute:

$$
\left\|e^{t A}\right\|=\left\|B e^{t J} B^{-1}\right\| \leq \underbrace{\|B\|\left\|B^{-1}\right\|}_{=: \beta}\left\|e^{t J}\right\| \leq \beta \prod_{i=1}^{l}\left\|e^{t J_{i}}\right\|
$$

Hence, it suffices to show that each Jordan block is bounded. Let us distinguish the cases for different-sized Jordan blocks:
(a) Block of size one: We have $\Re \lambda_{i} \leq 0$, hence

$$
\left\|e^{t J_{i}}\right\|=\left|e^{t \lambda_{i}}\right| \leq 1
$$

(b) Block of size larger than one: We already know that $\Re \lambda_{i}<0$. Consider the case where the size is equal to 2 :

$$
\begin{aligned}
\left\|e^{t J_{i}}\right\| & =\left\|e^{t D_{i}} e^{t N_{i}}\right\| \\
& =\left[\left(\begin{array}{cc}
e^{\lambda_{i} t} & 0 \\
0 & e^{\lambda_{i} t}
\end{array}\right)\left[\operatorname{Id}+t\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)\right]\|=\|\left(\begin{array}{cc}
e^{\lambda_{i} t} & t e^{\lambda_{i} t} \\
0 & e^{\lambda_{i} t}
\end{array}\right) \|\right. \\
& \leq \max \left\{e^{t \lambda_{i}}, t e^{t \lambda_{i}}\right\} \rightarrow 0, t \rightarrow \infty
\end{aligned}
$$

For Jordan blocks of larger size, the calculations are similar, but the polynomials appearing will be of higher order.

Exercise 36

Let M_{q} with maximal domain $D\left(M_{q}\right)$ be the multiplication operator on $C_{0}(\Omega)$ induced by some continuous function q. Show:
(a) M_{q} has a bounded inverse $\Leftrightarrow q$ has a bounded inverse $\frac{1}{q}$, i.e. $0 \notin \overline{q(\Omega)}$. In this case, we have

$$
\begin{equation*}
M_{q}^{-1}=M_{\frac{1}{q}} \tag{1}
\end{equation*}
$$

(b) $\sigma\left(M_{q}\right)=\overline{q(\Omega)}$.

Proof. (a) Recall that the norm $\|\cdot\|$ on $C_{0}(\Omega)$ is the supremum norm. Also, let us recall us a version of Uryson's Lemma:
Lemma. Let $A, B \subset \Omega$ closed and disjoint. Then there exists a continuous function $f: \Omega \rightarrow[0,1]$ such that $f \equiv 0$ on A and $f \equiv 1$ on B.
$" \Leftarrow "$: Let $0 \notin \overline{q(\Omega)}$. Since q is continuous, it is bounded away from zero and hence, $\frac{1}{q}$ is bounded and continuous. In this case, we obviously have (1) and

$$
\left\|M_{\frac{1}{q}}\right\|=\sup _{\|f\|=1}\left\|\frac{f}{q}\right\| \leq\left\|\frac{1}{q}\right\|<\infty
$$

since $\frac{1}{q}$ is bounded.
$" \Rightarrow$ " Assume that M_{q} has a bounded inverse M_{q}^{-1}. Then for $f \in D\left(M_{q}\right)$, we have

$$
\|f\|=\left\|M_{q}^{-1} M_{q} f\right\| \leq\left\|M_{q}^{-1}\right\|\left\|M_{q} f\right\|
$$

Consider $f \in D\left(M_{q}\right)$ with $\|f\|=1$, then

$$
\begin{equation*}
\delta:=\frac{1}{\left\|M_{q}^{-1}\right\|} \leq\left\|M_{q} f\right\|=\sup _{s \in \Omega}|q(s) f(s)| \tag{2}
\end{equation*}
$$

We want to show that q is bounded away from zero. In particular, we want to show $|q| \geq \frac{\delta}{2}$.
Assume that $\inf _{s \in \Omega}|q(s)|<\frac{\delta}{2}$. Since q is continuous, there exists an open set $\mathcal{O} \subset \Omega$ such that $q(s)<\frac{\delta}{2}$ for all $s \in \mathcal{O}$. On the other hand, by Uryson's Lemma, we find a function $f_{0} \in C_{0}(\Omega)$ such that $f_{0} \equiv 0$ on $\Omega \backslash \mathcal{O}$ and $f_{0} \equiv 1$ on some $K \subset \mathcal{O}$ compact $\Rightarrow\left\|f_{0}\right\|=1$. Therefore,

$$
\delta \stackrel{(2)}{\leq} \sup _{s \in \Omega}\left|q(s) f_{0}(s)\right|=\sup _{s \in \mathcal{O}}|\underbrace{q(s)}_{\leq \frac{\delta}{2}} \underbrace{f_{0}(s)}_{\leq 1}| \leq \frac{\delta}{2}
$$

which is a contradiction. Hence, $\inf _{s \in \Omega}|q(s)| \geq \frac{\delta}{2}$ and therefore $0 \notin \overline{q(\Omega)}$. The representation (1) is obvious again.
(b) We have $\lambda-M_{q}=M_{\lambda-q}$. Hence, the claim follows if we apply a) to the operator $M_{\lambda-q}$: $\lambda \in \sigma\left(M_{q}\right) \Leftrightarrow 0 \in \sigma\left(M_{\lambda-q}\right) \Leftrightarrow M_{\lambda-q}$ is not boundedly invertible

$$
\stackrel{a}{\Leftrightarrow} 0 \in \overline{(\lambda-q)(\Omega)} \Leftrightarrow \lambda \in \overline{q(\Omega)}
$$

