
EXERCISES OPERATOR THEORY

SHEET 2

Exercise 5

X = C[0, 1], operator A on X given by

Ax(t) = x(0) + tx(1).

Find σ(A), rσ(A) and Rλ(A) for λ ∈ ρ(A).

Spectrum σ(A):

(1) 0 ∈ σ(A): Consider the function x(t) = t(1 − t). Then Ax(t) = 0. Hence,
Ker(A) 6= {0} and A is not injective. Therefore, 0 ∈ σ(A).

(2) 1 ∈ σ(A): Consider the function x(t) = t. Then (A − Id)x(t) = 0. By the same
argument as before, 1 ∈ σ(A).

Resolvent set ρ(A) and Resolvent Rλ(A): λ ∈ ρ(A) for all λ /∈ {0, 1}: We can
calculate the inverse directly: Let y ∈ C[0, 1]. We need to find x ∈ C[0, 1] such that

(1) (A− λ)x(t) = x(0) + tx(t)− λx(t) = y(t).

For t = 0, we need

y(0) = x(0)− λx(0) = (1− λ)x(0)⇔ x(0) =
1

1− λ
y(0)

For t = 1, we need

y(1) = x(0) + x(1)− λx(1) = x(0) + (1− λ)x(1) =
1

1− λ
y(0) + (1− λ)x(1)

⇔ x(1) =
1

1− λ
y(1)− 1

(1− λ)2
y(0)

Hence, we can rewrite equation (1) as

1

1− λ
y(0) +

t

1− λ
y(1)− t

(1− λ)2
y(0)− λx(t) = y(t)

⇔ x(t) = −1

λ
y(t) +

1

λ(1− λ)

[
y(0) + ty(1)− t

1− λ
y(0)

]
Therefore, the inverse is given by

(A− λ)−1y(t) = −1

λ
y(t) +

1

λ(1− λ)

[
y(0) + ty(1)− t

1− λ
y(0)

]
which is also the explicit form of the resolvent. (One can now double-check this by
plugging in y = (A− λ)x to see that this is in fact the inverse.)
⇒ A− λ is invertible ⇒ λ ∈ ρ(A). As stated before, we also have Rλ(A) = (A− λ)−1

with the above representation.

Spectral radius rσ(A): We obtain the spectral radius directly by definition,

rσ(A) = 1.

Corrections, comments to peter.kuchling@uni-bielefeld.de.
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How does one actually find the spectrum? One idea is to just write out the equation to get an idea
how the spectrum could look like: For some λ ∈ C, we need

(2) x(0) + tx(1) = λx(t).

We know that for t = 0, (2) becomes

x(0) = λx(0)⇔ λ = 1 ∨ x(0) = 0

Consider the case λ = 1:

x(0) + tx(1) = x(t)

For t = 1, we obtain x(0) + x(1) = x(1) and see that x(0) = 0. We are left with

x(t) = tx(1)

so the eigenfunction is some linear function.
Now to the case that λ 6= 1. By above considerations at t = 0, we know that x(0) = 0 is necessary

now. This leaves us with the equation

tx(1) = λx(t).

at t = 1, this becomes x(1) = λx(1). Since we excluded the case λ = 1, we conclude that λ = 0 or
x(1) = 0. As it turns out, both conditions are equivalent in our setting. Hence, we only have to find some
continuous function for which x(0) = x(1) = 0 holds (e.g. x(t) = t− t2) and we have an eigenfunction to
the eigenvalue λ = 0.

Of course, in a more general setting, not all elements of the spectrum are eigenvalues, and this becomes

more complicated. But as a first step, one can try to explicitly calculate the spectrum.

Exercise 6

Let X be a Banach space. Suppse A ∈ B(X) and λ ∈ σ(A). Show that λn ∈ σ(An) for
all n ∈ N.

Reminder (Spectral Mapping Theorem). Let f be analytic in some neighbourhood of
σ(B). Then

σ(f(B)) = f(σ(B))

Obviously, the function f(z) = zn is analytic for all n ∈ N. Hence, the statement of
the exercise follows by the spectral mapping theorem.

Alternatively, we can use an argument from the proof of Theorem 2.23: Assume λ ∈
σ(A). Then A− λ is not invertible. We can rewrite (An − λn) as

An − λn = (A− λ)(λn−1 + λn−2A+ · · ·+ λAn−2 + An−1)

Since the operators on the right-hand-side commute, by Lemma 2.3, the operator An−λn
is not invertible. Hence, λn ∈ σ(An).

Exercise 7

A : l2 → l2, Ax = (λ1x1, λ2x2, . . . ), λn ∈ C, sup |λn| <∞. Find σ(A).

Claim: σ(A) = {λn}n∈N.

(1) λn ∈ σ(A) ∀n ∈ N.
Let en = (0, . . . , 0, 1, 0, . . . ). Then

Aen = (0, . . . , 0, λn, 0 . . . ) = λnen.

Hence, λn is an eigenvalue of A and by Lemma 2.7, λn ∈ σ(A).

(2) Let λ ∈ {λn}n∈N \ {λn}n∈N. Then there exists a subsequence {λnk}k∈N such that
λnk → λ, k →∞. Especially,

sup
k∈N

∣∣∣∣ 1

λnk − λ

∣∣∣∣ =∞.
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Assume that A− λ is invertible. Then the inverse is given by

(A− λ)−1y =

(
1

λ1 − λ
y1,

1

λ2 − λ
y2, . . .

)
we show that this operator would be unbounded:

‖(A− λ)−1‖ = sup
‖y‖=1

∞∑
n=1

(
yn

λn − λ

)2

≥ sup
j∈N

∞∑
n=1

(ej)
2
n

(λn − λ)2
= sup

j∈N

1

(λj − λ)2
=∞

By theorem 2.2 (Banach), a bounded invertible operator has bounded inverse.
Hence, A− λ can not be invertible.

(3) λ /∈ σ(A) for all λ /∈ {λn}n∈N.
Let λ /∈ {λn}n∈N, i.e. λ 6= λn ∀n ∈ N. We claim that A − λ is invertible. By

theorem 2.2, it suffices to show that the operator A− λ is bijective.
• A− λ is injective: For any x ∈ l2, we have

(A− λ)x = ((λ1 − λ)x1, (λ2 − λ)x2, . . . )

Then

(A− λ)x = 0⇔ (λn − λ)xn = 0 ∀n ∈ N λn 6=λ⇔ xn = 0 ∀n ∈ N

Hence, Ker(A− λ) = {0} and A− λ is injective.
• A−λ is surjective: Let y ∈ l2. We need to find x ∈ l2 such that (A−λ)x = y.

This means that

(λn − λ)xn = yn ∀n ∈ N λn 6=λ⇔ xn =
1

λn − λ
yn

Hence, we found the desired x and A− λ is surjective. It is still left to show
that x ∈ l2. But since λ /∈ {λn}n∈N, there exists ε > 0 such that

(λ− ε, λ+ ε) ∩ {λn}n∈N = ∅ ⇒ sup
n∈N
|λn − λ| > ε⇒ sup

n∈N

∣∣∣∣ 1

λn − λ

∣∣∣∣ < 1

ε

And hence,

‖x‖l2 ≤
1

ε
‖y‖l2 ⇒ x ∈ l2

and A− λ is surjective.
In total, A− λ is bijective and hence by Theorem 2.2 invertible.

Remark. The inverse is given by

(A− λ)−1y =

(
1

λ1 − λ
y1,

1

λ2 − λ
y2, . . .

)
Exercise 8

Consider the operator

Ax(t) =

∫ t

a

x(u)du

on (C[a, b], ‖ · ‖∞). Show that σ(A) = 0.

(1) λ = 0 ∈ σ(A).
Side note: By the fundamental theorem of calculus, A is injective. But A is not

surjective: Since by definition, Ax(0) = 0 for all x ∈ C[a, b], there exists no x such
that Ax = y for e.g. y ≡ 1. Hence, A is not invertible and 0 ∈ σ(A).
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(2) λ /∈ σ(A) for all λ 6= 0.
Let λ 6= 0 and consider the equation

(3) Ax− λx = y

for some y ∈ C[a, b]. Since d
dt
Ax(t) = x(t), we can substitute z(t) = Ax(t) ∈

C1[a, b], ż(t) = x(t) and rewrite (3) as

z(t)− λż(t) = y(t), z(a) = 0⇔

ż(t) =
1

λ
z(t)− 1

λ
y(t), z(a) = 0

By variation of constants formula from ODE, this equation has a unique solution
for any fixed y ∈ C[a, b] given by

z(t) = e
t
λ

1

λ

∫ t

a

e−
s
λy(s)ds

Especially, we obtain z ≡ 0 for y ≡ 0. Hence, for given y ∈ C[a, b], we find
x ∈ C[a, b] with Ax− λx = y given by

x(t) =
1

λ2

∫ t

a

e
(t−s)
λ y(s)ds+

1

λ
y(t)

which means that A is bijective and hence invertible. This means λ ∈ ρ(A) and
the claim is shown.

Alternatively, one can show that

‖An‖ ≤ (b− a)n

n!
and use theorem 2.23 to show that

r(A) = lim
n→∞

‖An‖
1
n = 0.

And hence σ(A) ⊂ {0}. Since σ(A) 6= ∅ by lemma 2.19, we know that σ(A) = {0}.


