EXERCISES OPERATOR THEORY

SHEET 2

Exercise 5

$X=C[0,1]$, operator A on X given by

$$
A x(t)=x(0)+t x(1) .
$$

Find $\sigma(A), r_{\sigma}(A)$ and $R_{\lambda}(A)$ for $\lambda \in \rho(A)$.
Spectrum $\sigma(A)$:
(1) $0 \in \sigma(A)$: Consider the function $x(t)=t(1-t)$. Then $A x(t)=0$. Hence, $\operatorname{Ker}(A) \neq\{0\}$ and A is not injective. Therefore, $0 \in \sigma(A)$.
(2) $1 \in \sigma(A)$: Consider the function $x(t)=t$. Then $(A-\mathrm{Id}) x(t)=0$. By the same argument as before, $1 \in \sigma(A)$.

Resolvent set $\rho(A)$ and Resolvent $R_{\lambda}(A): \lambda \in \rho(A)$ for all $\lambda \notin\{0,1\}$: We can calculate the inverse directly: Let $y \in C[0,1]$. We need to find $x \in C[0,1]$ such that

$$
\begin{equation*}
(A-\lambda) x(t)=x(0)+t x(t)-\lambda x(t)=y(t) . \tag{1}
\end{equation*}
$$

For $t=0$, we need

$$
y(0)=x(0)-\lambda x(0)=(1-\lambda) x(0) \Leftrightarrow x(0)=\frac{1}{1-\lambda} y(0)
$$

For $t=1$, we need

$$
\begin{gathered}
y(1)=x(0)+x(1)-\lambda x(1)=x(0)+(1-\lambda) x(1)=\frac{1}{1-\lambda} y(0)+(1-\lambda) x(1) \\
\Leftrightarrow x(1)=\frac{1}{1-\lambda} y(1)-\frac{1}{(1-\lambda)^{2}} y(0)
\end{gathered}
$$

Hence, we can rewrite equation (1) as

$$
\begin{aligned}
& \frac{1}{1-\lambda} y(0)+\frac{t}{1-\lambda} y(1)-\frac{t}{(1-\lambda)^{2}} y(0)-\lambda x(t)=y(t) \\
\Leftrightarrow & x(t)=-\frac{1}{\lambda} y(t)+\frac{1}{\lambda(1-\lambda)}\left[y(0)+t y(1)-\frac{t}{1-\lambda} y(0)\right]
\end{aligned}
$$

Therefore, the inverse is given by

$$
(A-\lambda)^{-1} y(t)=-\frac{1}{\lambda} y(t)+\frac{1}{\lambda(1-\lambda)}\left[y(0)+t y(1)-\frac{t}{1-\lambda} y(0)\right]
$$

which is also the explicit form of the resolvent. (One can now double-check this by plugging in $y=(A-\lambda) x$ to see that this is in fact the inverse.)
$\Rightarrow A-\lambda$ is invertible $\Rightarrow \lambda \in \rho(A)$. As stated before, we also have $R_{\lambda}(A)=(A-\lambda)^{-1}$ with the above representation.

Spectral radius $r_{\sigma}(A)$: We obtain the spectral radius directly by definition,

$$
r_{\sigma}(A)=1 .
$$

Corrections, comments to peter.kuchling@uni-bielefeld.de.

How does one actually find the spectrum? One idea is to just write out the equation to get an idea how the spectrum could look like: For some $\lambda \in \mathbb{C}$, we need

$$
\begin{equation*}
x(0)+t x(1)=\lambda x(t) \tag{2}
\end{equation*}
$$

We know that for $t=0$, (2) becomes

$$
x(0)=\lambda x(0) \Leftrightarrow \lambda=1 \vee x(0)=0
$$

Consider the case $\lambda=1$:

$$
x(0)+t x(1)=x(t)
$$

For $t=1$, we obtain $x(0)+x(1)=x(1)$ and see that $x(0)=0$. We are left with

$$
x(t)=t x(1)
$$

so the eigenfunction is some linear function.
Now to the case that $\lambda \neq 1$. By above considerations at $t=0$, we know that $x(0)=0$ is necessary now. This leaves us with the equation

$$
t x(1)=\lambda x(t)
$$

at $t=1$, this becomes $x(1)=\lambda x(1)$. Since we excluded the case $\lambda=1$, we conclude that $\lambda=0$ or $x(1)=0$. As it turns out, both conditions are equivalent in our setting. Hence, we only have to find some continuous function for which $x(0)=x(1)=0$ holds (e.g. $x(t)=t-t^{2}$) and we have an eigenfunction to the eigenvalue $\lambda=0$.

Of course, in a more general setting, not all elements of the spectrum are eigenvalues, and this becomes more complicated. But as a first step, one can try to explicitly calculate the spectrum.

Exercise 6

Let X be a Banach space. Suppse $A \in \mathcal{B}(X)$ and $\lambda \in \sigma(A)$. Show that $\lambda^{n} \in \sigma\left(A^{n}\right)$ for all $n \in \mathbb{N}$.

Reminder (Spectral Mapping Theorem). Let f be analytic in some neighbourhood of $\sigma(B)$. Then

$$
\sigma(f(B))=f(\sigma(B))
$$

Obviously, the function $f(z)=z^{n}$ is analytic for all $n \in \mathbb{N}$. Hence, the statement of the exercise follows by the spectral mapping theorem.

Alternatively, we can use an argument from the proof of Theorem 2.23: Assume $\lambda \in$ $\sigma(A)$. Then $A-\lambda$ is not invertible. We can rewrite $\left(A^{n}-\lambda^{n}\right)$ as

$$
A^{n}-\lambda^{n}=(A-\lambda)\left(\lambda^{n-1}+\lambda^{n-2} A+\cdots+\lambda A^{n-2}+A^{n-1}\right)
$$

Since the operators on the right-hand-side commute, by Lemma 2.3, the operator $A^{n}-\lambda^{n}$ is not invertible. Hence, $\lambda^{n} \in \sigma\left(A^{n}\right)$.

Exercise 7

$A: l^{2} \rightarrow l^{2}, A x=\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \ldots\right), \lambda_{n} \in \mathbb{C}, \sup \left|\lambda_{n}\right|<\infty$. Find $\sigma(A)$.
Claim: $\sigma(A)={\overline{\left\{\lambda_{n}\right\}}}_{n \in \mathbb{N}}$.
(1) $\lambda_{n} \in \sigma(A) \forall n \in \mathbb{N}$.

Let $e_{n}=(0, \ldots, 0,1,0, \ldots)$. Then

$$
A e_{n}=\left(0, \ldots, 0, \lambda_{n}, 0 \ldots\right)=\lambda_{n} e_{n} .
$$

Hence, λ_{n} is an eigenvalue of A and by Lemma 2.7, $\lambda_{n} \in \sigma(A)$.
 $\lambda_{n_{k}} \rightarrow \lambda, k \rightarrow \infty$. Especially,

$$
\sup _{k \in \mathbb{N}}\left|\frac{1}{\lambda_{n_{k}}-\lambda}\right|=\infty
$$

Assume that $A-\lambda$ is invertible. Then the inverse is given by

$$
(A-\lambda)^{-1} y=\left(\frac{1}{\lambda_{1}-\lambda} y_{1}, \frac{1}{\lambda_{2}-\lambda} y_{2}, \ldots\right)
$$

we show that this operator would be unbounded:

$$
\left\|(A-\lambda)^{-1}\right\|=\sup _{\|y\|=1} \sum_{n=1}^{\infty}\left(\frac{y_{n}}{\lambda_{n}-\lambda}\right)^{2} \geq \sup _{j \in \mathbb{N}} \sum_{n=1}^{\infty} \frac{\left(e_{j}\right)_{n}^{2}}{\left(\lambda_{n}-\lambda\right)^{2}}=\sup _{j \in \mathbb{N}} \frac{1}{\left(\lambda_{j}-\lambda\right)^{2}}=\infty
$$

By theorem 2.2 (Banach), a bounded invertible operator has bounded inverse. Hence, $A-\lambda$ can not be invertible.
(3) $\lambda \notin \sigma(A)$ for all $\lambda \notin{\overline{\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}}}$.

Let $\lambda \notin\left\{\lambda_{n}\right\}_{n \in \mathbb{N}}$, i.e. $\lambda \neq \lambda_{n} \forall n \in \mathbb{N}$. We claim that $A-\lambda$ is invertible. By theorem 2.2, it suffices to show that the operator $A-\lambda$ is bijective.

- $A-\lambda$ is injective: For any $x \in l^{2}$, we have

$$
(A-\lambda) x=\left(\left(\lambda_{1}-\lambda\right) x_{1},\left(\lambda_{2}-\lambda\right) x_{2}, \ldots\right)
$$

Then

$$
(A-\lambda) x=0 \Leftrightarrow\left(\lambda_{n}-\lambda\right) x_{n}=0 \forall n \in \mathbb{N} \stackrel{\lambda_{n} \neq \lambda}{\Leftrightarrow} x_{n}=0 \forall n \in \mathbb{N}
$$

Hence, $\operatorname{Ker}(A-\lambda)=\{0\}$ and $A-\lambda$ is injective.

- $A-\lambda$ is surjective: Let $y \in l^{2}$. We need to find $x \in l^{2}$ such that $(A-\lambda) x=y$. This means that

$$
\left(\lambda_{n}-\lambda\right) x_{n}=y_{n} \forall n \in \mathbb{N}^{\lambda_{n} \neq \lambda} x_{n}=\frac{1}{\lambda_{n}-\lambda} y_{n}
$$

Hence, we found the desired x and $A-\lambda$ is surjective. It is still left to show that $x \in l^{2}$. But since $\lambda \notin{\left.\overline{\left\{\lambda_{n}\right.}\right\}_{n \in \mathbb{N}}}$, there exists $\varepsilon>0$ such that

And hence,

$$
\|x\|_{l^{2}} \leq \frac{1}{\varepsilon}\|y\|_{l^{2}} \Rightarrow x \in l^{2}
$$

and $A-\lambda$ is surjective.
In total, $A-\lambda$ is bijective and hence by Theorem 2.2 invertible.
Remark. The inverse is given by

$$
(A-\lambda)^{-1} y=\left(\frac{1}{\lambda_{1}-\lambda} y_{1}, \frac{1}{\lambda_{2}-\lambda} y_{2}, \ldots\right)
$$

Exercise 8
Consider the operator

$$
A x(t)=\int_{a}^{t} x(u) d u
$$

on $\left(C[a, b],\|\cdot\|_{\infty}\right)$. Show that $\sigma(A)=0$.
(1) $\lambda=0 \in \sigma(A)$.

Side note: By the fundamental theorem of calculus, A is injective. But A is not surjective: Since by definition, $A x(0)=0$ for all $x \in C[a, b]$, there exists no x such that $A x=y$ for e.g. $y \equiv 1$. Hence, A is not invertible and $0 \in \sigma(A)$.
(2) $\lambda \notin \sigma(A)$ for all $\lambda \neq 0$.

Let $\lambda \neq 0$ and consider the equation

$$
\begin{equation*}
A x-\lambda x=y \tag{3}
\end{equation*}
$$

for some $y \in C[a, b]$. Since $\frac{d}{d t} A x(t)=x(t)$, we can substitute $z(t)=A x(t) \in$ $C^{1}[a, b], \dot{z}(t)=x(t)$ and rewrite (3) as

$$
\begin{aligned}
& z(t)-\lambda \dot{z}(t)=y(t), z(a)=0 \Leftrightarrow \\
& \dot{z}(t)=\frac{1}{\lambda} z(t)-\frac{1}{\lambda} y(t), z(a)=0
\end{aligned}
$$

By variation of constants formula from ODE, this equation has a unique solution for any fixed $y \in C[a, b]$ given by

$$
z(t)=e^{\frac{t}{\lambda}} \frac{1}{\lambda} \int_{a}^{t} e^{-\frac{s}{\lambda}} y(s) d s
$$

Especially, we obtain $z \equiv 0$ for $y \equiv 0$. Hence, for given $y \in C[a, b]$, we find $x \in C[a, b]$ with $A x-\lambda x=y$ given by

$$
x(t)=\frac{1}{\lambda^{2}} \int_{a}^{t} e^{\frac{(t-s)}{\lambda}} y(s) d s+\frac{1}{\lambda} y(t)
$$

which means that A is bijective and hence invertible. This means $\lambda \in \rho(A)$ and the claim is shown.
Alternatively, one can show that

$$
\left\|A^{n}\right\| \leq \frac{(b-a)^{n}}{n!}
$$

and use theorem 2.23 to show that

$$
r(A)=\lim _{n \rightarrow \infty}\left\|A^{n}\right\|^{\frac{1}{n}}=0
$$

And hence $\sigma(A) \subset\{0\}$. Since $\sigma(A) \neq \emptyset$ by lemma 2.19, we know that $\sigma(A)=\{0\}$.

