EXERCISES OPERATOR THEORY

SHEET 2

EXERCISE 5

X = C[0, 1], operator A on X given by

$$Ax(t) = x(0) + tx(1).$$

Find $\sigma(A), r_{\sigma}(A)$ and $R_{\lambda}(A)$ for $\lambda \in \rho(A)$.

Spectrum $\sigma(A)$:

- (1) $0 \in \sigma(A)$: Consider the function x(t) = t(1 t). Then Ax(t) = 0. Hence, $Ker(A) \neq \{0\}$ and A is not injective. Therefore, $0 \in \sigma(A)$.
- (2) $1 \in \sigma(A)$: Consider the function x(t) = t. Then $(A \mathrm{Id})x(t) = 0$. By the same argument as before, $1 \in \sigma(A)$.

Resolvent set $\rho(A)$ and **Resolvent** $R_{\lambda}(A)$: $\lambda \in \rho(A)$ for all $\lambda \notin \{0, 1\}$: We can calculate the inverse directly: Let $y \in C[0, 1]$. We need to find $x \in C[0, 1]$ such that

(1)
$$(A - \lambda)x(t) = x(0) + tx(t) - \lambda x(t) = y(t).$$

For t = 0, we need

$$y(0) = x(0) - \lambda x(0) = (1 - \lambda)x(0) \Leftrightarrow x(0) = \frac{1}{1 - \lambda}y(0)$$

For t = 1, we need

$$y(1) = x(0) + x(1) - \lambda x(1) = x(0) + (1 - \lambda)x(1) = \frac{1}{1 - \lambda}y(0) + (1 - \lambda)x(1)$$

$$\Leftrightarrow x(1) = \frac{1}{1 - \lambda}y(1) - \frac{1}{(1 - \lambda)^2}y(0)$$

Hence, we can rewrite equation (1) as

$$\frac{1}{1-\lambda}y(0) + \frac{t}{1-\lambda}y(1) - \frac{t}{(1-\lambda)^2}y(0) - \lambda x(t) = y(t)$$

$$\Leftrightarrow x(t) = -\frac{1}{\lambda}y(t) + \frac{1}{\lambda(1-\lambda)}\left[y(0) + ty(1) - \frac{t}{1-\lambda}y(0)\right]$$

Therefore, the inverse is given by

$$(A - \lambda)^{-1}y(t) = -\frac{1}{\lambda}y(t) + \frac{1}{\lambda(1 - \lambda)} \left[y(0) + ty(1) - \frac{t}{1 - \lambda}y(0) \right]$$

which is also the explicit form of the resolvent. (One can now double-check this by plugging in $y = (A - \lambda)x$ to see that this is in fact the inverse.)

 $\Rightarrow A - \lambda$ is invertible $\Rightarrow \lambda \in \rho(A)$. As stated before, we also have $R_{\lambda}(A) = (A - \lambda)^{-1}$ with the above representation.

Spectral radius $r_{\sigma}(A)$: We obtain the spectral radius directly by definition,

$$r_{\sigma}(A) = 1.$$

Corrections, comments to peter.kuchling@uni-bielefeld.de.

How does one actually find the spectrum? One idea is to just write out the equation to get an idea how the spectrum could look like: For some $\lambda \in \mathbb{C}$, we need

(2)
$$x(0) + tx(1) = \lambda x(t).$$

We know that for t = 0, (2) becomes

$$x(0) = \lambda x(0) \Leftrightarrow \lambda = 1 \lor x(0) = 0$$

Consider the case $\lambda = 1$:

$$x(0) + tx(1) = x(t)$$

For t = 1, we obtain x(0) + x(1) = x(1) and see that x(0) = 0. We are left with

$$x(t) = tx(1)$$

so the eigenfunction is some linear function.

Now to the case that $\lambda \neq 1$. By above considerations at t = 0, we know that x(0) = 0 is necessary now. This leaves us with the equation

$$tx(1) = \lambda x(t).$$

at t = 1, this becomes $x(1) = \lambda x(1)$. Since we excluded the case $\lambda = 1$, we conclude that $\lambda = 0$ or x(1) = 0. As it turns out, both conditions are equivalent in our setting. Hence, we only have to find some continuous function for which x(0) = x(1) = 0 holds (e.g. $x(t) = t - t^2$) and we have an eigenfunction to the eigenvalue $\lambda = 0$.

Of course, in a more general setting, not all elements of the spectrum are eigenvalues, and this becomes more complicated. But as a first step, one can try to explicitly calculate the spectrum.

EXERCISE 6

Let X be a Banach space. Suppose $A \in \mathcal{B}(X)$ and $\lambda \in \sigma(A)$. Show that $\lambda^n \in \sigma(A^n)$ for all $n \in \mathbb{N}$.

Reminder (Spectral Mapping Theorem). Let f be analytic in some neighbourhood of $\sigma(B)$. Then

$$\sigma(f(B)) = f(\sigma(B))$$

Obviously, the function $f(z) = z^n$ is analytic for all $n \in \mathbb{N}$. Hence, the statement of the exercise follows by the spectral mapping theorem.

Alternatively, we can use an argument from the proof of Theorem 2.23: Assume $\lambda \in \sigma(A)$. Then $A - \lambda$ is not invertible. We can rewrite $(A^n - \lambda^n)$ as

$$A^{n} - \lambda^{n} = (A - \lambda)(\lambda^{n-1} + \lambda^{n-2}A + \dots + \lambda A^{n-2} + A^{n-1})$$

Since the operators on the right-hand-side commute, by Lemma 2.3, the operator $A^n - \lambda^n$ is not invertible. Hence, $\lambda^n \in \sigma(A^n)$.

EXERCISE 7

 $A: l^{2} \to l^{2}, Ax = (\lambda_{1}x_{1}, \lambda_{2}x_{2}, \dots), \lambda_{n} \in \mathbb{C}, \sup |\lambda_{n}| < \infty. \text{ Find } \sigma(A).$ Claim: $\sigma(A) = \overline{\{\lambda_{n}\}}_{n \in \mathbb{N}}.$ (1) $\lambda_{n} \in \sigma(A) \ \forall n \in \mathbb{N}.$ Let $e_{n} = (0, \dots, 0, 1, 0, \dots).$ Then $Ae_{n} = (0, \dots, 0, \lambda_{n}, 0 \dots) = \lambda_{n}e_{n}.$

Hence, λ_n is an eigenvalue of A and by Lemma 2.7, $\lambda_n \in \sigma(A)$.

(2) Let $\lambda \in \overline{\{\lambda_n\}}_{n \in \mathbb{N}} \setminus \{\lambda_n\}_{n \in \mathbb{N}}$. Then there exists a subsequence $\{\lambda_{n_k}\}_{k \in \mathbb{N}}$ such that $\lambda_{n_k} \to \lambda, k \to \infty$. Especially,

$$\sup_{k\in\mathbb{N}}\left|\frac{1}{\lambda_{n_k}-\lambda}\right|=\infty$$

Assume that $A - \lambda$ is invertible. Then the inverse is given by

$$(A - \lambda)^{-1}y = \left(\frac{1}{\lambda_1 - \lambda}y_1, \frac{1}{\lambda_2 - \lambda}y_2, \dots\right)$$

we show that this operator would be unbounded:

$$\|(A-\lambda)^{-1}\| = \sup_{\|y\|=1} \sum_{n=1}^{\infty} \left(\frac{y_n}{\lambda_n - \lambda}\right)^2 \ge \sup_{j \in \mathbb{N}} \sum_{n=1}^{\infty} \frac{(e_j)_n^2}{(\lambda_n - \lambda)^2} = \sup_{j \in \mathbb{N}} \frac{1}{(\lambda_j - \lambda)^2} = \infty$$

By theorem 2.2 (Banach), a bounded invertible operator has bounded inverse. Hence, $A - \lambda$ can not be invertible.

(3)
$$\lambda \notin \sigma(A)$$
 for all $\lambda \notin \{\lambda_n\}_{n \in \mathbb{N}}$.

Let $\lambda \notin \{\lambda_n\}_{n \in \mathbb{N}}$, i.e. $\lambda \neq \lambda_n \forall n \in \mathbb{N}$. We claim that $A - \lambda$ is invertible. By theorem 2.2, it suffices to show that the operator $A - \lambda$ is bijective.

• $A - \lambda$ is injective: For any $x \in l^2$, we have

$$(A - \lambda)x = ((\lambda_1 - \lambda)x_1, (\lambda_2 - \lambda)x_2, \dots)$$

Then

$$(A - \lambda)x = 0 \Leftrightarrow (\lambda_n - \lambda)x_n = 0 \ \forall n \in \mathbb{N} \ \stackrel{\lambda_n \neq \lambda}{\Leftrightarrow} x_n = 0 \ \forall n \in \mathbb{N}$$

Hence, $\operatorname{Ker}(A - \lambda) = \{0\}$ and $A - \lambda$ is injective.

• $A - \lambda$ is surjective: Let $y \in l^2$. We need to find $x \in l^2$ such that $(A - \lambda)x = y$. This means that

$$(\lambda_n - \lambda)x_n = y_n \ \forall n \in \mathbb{N} \stackrel{\lambda_n \neq \lambda}{\Leftrightarrow} x_n = \frac{1}{\lambda_n - \lambda}y_n$$

Hence, we found the desired x and $A - \lambda$ is surjective. It is still left to show that $x \in l^2$. But since $\lambda \notin \overline{\{\lambda_n\}}_{n \in \mathbb{N}}$, there exists $\varepsilon > 0$ such that

$$(\lambda - \varepsilon, \lambda + \varepsilon) \cap \overline{\{\lambda_n\}}_{n \in \mathbb{N}} = \emptyset \Rightarrow \sup_{n \in \mathbb{N}} |\lambda_n - \lambda| > \varepsilon \Rightarrow \sup_{n \in \mathbb{N}} \left| \frac{1}{\lambda_n - \lambda} \right| < \frac{1}{\varepsilon}$$

And hence,

$$\|x\|_{l^2} \le \frac{1}{\varepsilon} \|y\|_{l^2} \Rightarrow x \in l^2$$

and $A - \lambda$ is surjective.

In total, $A - \lambda$ is bijective and hence by Theorem 2.2 invertible.

Remark. The inverse is given by

$$(A - \lambda)^{-1}y = \left(\frac{1}{\lambda_1 - \lambda}y_1, \frac{1}{\lambda_2 - \lambda}y_2, \dots\right)$$

EXERCISE 8

Consider the operator

$$Ax(t) = \int_{a}^{t} x(u) du$$

on $(C[a, b], \|\cdot\|_{\infty})$. Show that $\sigma(A) = 0$.

(1) $\lambda = 0 \in \sigma(A)$.

Side note: By the fundamental theorem of calculus, A is injective. But A is not surjective: Since by definition, Ax(0) = 0 for all $x \in C[a, b]$, there exists no x such that Ax = y for e.g. $y \equiv 1$. Hence, A is not invertible and $0 \in \sigma(A)$.

(2) $\lambda \notin \sigma(A)$ for all $\lambda \neq 0$. Let $\lambda \neq 0$ and consider the equation

$$Ax - \lambda x = y$$

for some $y \in C[a, b]$. Since $\frac{d}{dt}Ax(t) = x(t)$, we can substitute $z(t) = Ax(t) \in C^1[a, b], \dot{z}(t) = x(t)$ and rewrite (3) as

$$z(t) - \lambda \dot{z}(t) = y(t), z(a) = 0 \Leftrightarrow$$
$$\dot{z}(t) = \frac{1}{\lambda} z(t) - \frac{1}{\lambda} y(t), z(a) = 0$$

By variation of constants formula from ODE, this equation has a unique solution for any fixed $y \in C[a, b]$ given by

$$z(t) = e^{\frac{t}{\lambda}} \frac{1}{\lambda} \int_{a}^{t} e^{-\frac{s}{\lambda}} y(s) ds$$

Especially, we obtain $z \equiv 0$ for $y \equiv 0$. Hence, for given $y \in C[a, b]$, we find $x \in C[a, b]$ with $Ax - \lambda x = y$ given by

$$x(t) = \frac{1}{\lambda^2} \int_a^t e^{\frac{(t-s)}{\lambda}} y(s) ds + \frac{1}{\lambda} y(t)$$

which means that A is bijective and hence invertible. This means $\lambda \in \rho(A)$ and the claim is shown.

Alternatively, one can show that

$$||A^n|| \le \frac{(b-a)^n}{n!}$$

and use theorem 2.23 to show that

$$r(A) = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}} = 0.$$

And hence $\sigma(A) \subset \{0\}$. Since $\sigma(A) \neq \emptyset$ by lemma 2.19, we know that $\sigma(A) = \{0\}$.