EXERCISES OPERATOR THEORY

SHEET 2

EXERCISE 5
X = (0, 1], operator A on X given by
Ax(t) = x(0) + tz(1).
Find 0(A),7,(A) and Ry(A) for A € p(A).
Spectrum o(A):
(1) 0 € o(A): Consider the function z(t) = ¢(1 —t). Then Axz(t) = 0. Hence,
Ker(A) # {0} and A is not injective. Therefore, 0 € o(A).

(2) 1 € o(A): Consider the function x(t) = t. Then (A —Id)z(t) = 0. By the same
argument as before, 1 € o(A).

Resolvent set p(A) and Resolvent R,(A): A € p(A) for all A ¢ {0,1}: We can
calculate the inverse directly: Let y € C|0, 1]. We need to find = € C|0, 1] such that

(1) (A= XN)z(t) = z(0) + tz(t) — Az(t) = y(t).

For t = 0, we need

(0) = 2(0) = Xx(0) = (1= N)a(0) & (0) = - (0)

For t =1, we need
y(1) =2(0) + 2(1) — Ax(1) = z(0) + (1 — N)x(1)

& (1) = =5(0) ~ T=570(0)

— —y(0) + (1= V(D)

Hence, we can rewrite equation (1) as

(0 + )

11—\ 1— A Ayﬂm—kﬂﬂzy@

& alt) = =300+ 57 [0+ D)~ T500)

Therefore, the inverse is given by
1 1 t
A—N"ty(t) = —=y(t —_ ty(l) — ——
(A= 2)70) = = 30) + 5[40+ ) = 15000

which is also the explicit form of the resolvent. (One can now double-check this by
plugging in y = (A — )z to see that this is in fact the inverse.)

= A — ) is invertible = \ € p(A). As stated before, we also have Ry(A) = (A — \)~!
with the above representation.

Spectral radius r,(A): We obtain the spectral radius directly by definition,
ro(A) = 1.

Corrections, comments to peter.kuchling@uni-bielefeld.de.
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2 SHEET 2

How does one actually find the spectrum? One idea is to just write out the equation to get an idea
how the spectrum could look like: For some A € C, we need

(2) z(0) + tx(1) = Az (¢).
We know that for ¢ = 0, (2) becomes
z(0) =Az(0) ©A=1Vvz(0)=0
Consider the case A = 1:
z(0) + tx(1) = x(t)
For ¢ = 1, we obtain z(0) + (1) = z(1) and see that z(0) = 0. We are left with
z(t) = tz(1)

so the eigenfunction is some linear function.

Now to the case that A\ # 1. By above considerations at t = 0, we know that 2(0) = 0 is necessary
now. This leaves us with the equation

tx(1l) = Ax(t).

at ¢t = 1, this becomes z(1) = Az(1). Since we excluded the case A = 1, we conclude that A = 0 or
2(1) = 0. As it turns out, both conditions are equivalent in our setting. Hence, we only have to find some
continuous function for which (0) = z(1) = 0 holds (e.g. z(t) =t —t?) and we have an eigenfunction to
the eigenvalue A = 0.

Of course, in a more general setting, not all elements of the spectrum are eigenvalues, and this becomes
more complicated. But as a first step, one can try to explicitly calculate the spectrum.

EXERCISE 6

Let X be a Banach space. Suppse A € B(X) and A € o(A). Show that \" € g(A") for
all n € N.

Reminder (Spectral Mapping Theorem). Let f be analytic in some neighbourhood of
o(B). Then
o(f(B)) = f(a(B))
Obviously, the function f(z) = 2" is analytic for all n € N. Hence, the statement of
the exercise follows by the spectral mapping theorem.

Alternatively, we can use an argument from the proof of Theorem 2.23: Assume \ €
0(A). Then A — X is not invertible. We can rewrite (A" — \") as

An_)\n:(A_)\)()\nfl_‘_)\anA_i__'_)\Anf2+Anfl)

Since the operators on the right-hand-side commute, by Lemma 2.3, the operator A™ — A"
is not invertible. Hence, \" € o(A").

EXERCISE 7

A: 2= 12, Az = (M1, Moo, ... ), Ay € C,sup |\,,| < co. Find o(A).
Claim: o(A) = { A\ },en-
(1) A, € 0(A) ¥n € N,
Let e, = (0,...,0,1,0,...). Then
Ae, = (0,...,0,1,,0...) = A\pen.

Hence, A, is an eigenvalue of A and by Lemma 2.7, \,, € o(A).

(2) Let A € {\},en \ {An}nen. Then there exists a subsequence {\,, }ren such that
A, — A,k — o0o. Especially,

1

sup —)\nk _ )\‘

keN

= OQ.
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Assume that A — X is invertible. Then the inverse is given by

1 1
A-N)"ly=
( )y ()\1_)\91,)\2_)\?/2, )

we show that this operator would be unbounded:

(e 1
A—\N1Y = _n - -
A=A = ||S;l||lp1; ( ) S D w vt v
By theorem 2.2 (Banach), a bounded invertible operator has bounded inverse.
Hence, A — X can not be invertible.
(3) A ¢ o(A) for all A ¢ {\.}, cn-

Let A ¢ {An}nen, 1. A # A\, Vn € N We claim that A — X is invertible. By
theorem 2.2, it suffices to show that the operator A — X is bijective.

e A — )\ is injective: For any = € [2, we have

(A=XNzx = (A —Nazg, (Mg — N)zxg,...)

Then
(A-Nz=0& A - Nz, =0¥ne N2z, =0VneN
Hence, Ker(A — X\) = {0} and A — X is injective.
e A— \is surjective: Let y € [2. We need to find z € [? such that (A—\)x =
This means that

1
(p — Nz =y Yn € N2 g =

Ay — A
Hence, we found the desired x and A — X is surjective. It is still left to show
that « € I?. But since A & {\,}, ., there exists ¢ > 0 such that

1 - 1
A — A

(A—e,)\+5)ﬂm .

=0 =sup|\, — A| > e =sup
neN neN

neN

And hence,
1
lzlle < Zllylle = = € 1

and A — ) is surjective.
In total, A — X is bijective and hence by Theorem 2.2 invertible.

Remark. The inverse is given by

1 1
A— Nty =

EXERCISE 8

Consider the operator
t
Az(t) = / x(u)du

on (Cla, b, || - [|s)- Show that o(A) = 0.
(1) A=0¢€0o(A).
Side note: By the fundamental theorem of calculus, A is injective. But A is not
surjective: Since by definition, Az(0) = 0 for all x € C|[a, b], there exists no = such
that Ax =y for e.g. y = 1. Hence, A is not invertible and 0 € o(A).
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(2) A ¢ o(A) for all A #0.
Let A # 0 and consider the equation

(3) Az — Xz =y

for some y € Cla,b]. Since 4 Az(t) = z(t), we can substitute z(t) = Ax(t) €

Clla,b], 2(t) = z(t) and rewrite (3) as
2(t) — A2(t) = y(t), 2(a) =0 <

£() = 1 2(6) — 39(0), 2(0) =0

By variation of constants formula from ODE, this equation has a unique solution

for any fixed y € Cfa, b] given by

t 1 t s
z(t) = ekx/ e xy(s)ds

Especially, we obtain z = 0 for y = 0. Hence, for given y € Cfa,b], we find

x € Cla,b] with Az — A\x = y given by

1 [t 1
z(t) =3 [ e > y(s)ds + 1y(t)

which means that A is bijective and hence invertible. This means A € p(A) and

the claim is shown.
Alternatively, one can show that
(b—a)"
n!

A" <
and use theorem 2.23 to show that
r(A) = lim [|A"||" = 0.
n—o0
And hence o(A) C {0}. Since o(A) # 0 by lemma 2.19, we know that o(A) = {0}.



