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Local bifurcations
Consider the family of ordinary differential equations (ODEs)

dx(t)
dt = fα(x(t)), x(0) ∈ Rd ,

with smooth vector fields fα, depending on parameter α ∈ R.

(Local) bifurcation at α = α0:

→ equilibrium changes stability and
new objects may appear

α

x

I What if the ODE is replaced by a stochastic differential equation
(SDE)? (climate science, laser dynamics, etc.)

I What kind of random phenomena can we observe and describe, in
particular in multiple dimensions?
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Bifurcations in random dynamical systems from SDEs

Consider a stochastic differential equation (SDE) on Rd

dXt = fα(Xt) dt + σg(Xt) ◦ dWt , X0 = x ∈ Rd ,

where α bifurcation parameter for σ = 0.

Question 1: Is the bifurcation still present in the stochastic case, and, if
yes, in what sense?

Question 2: May noise cause a new bifurcation scenario in interaction
with other parameters?
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Pitchfork bifurcation: fα(x) = −∂x Vα(x) with Vα = −α2 x2 + 1
4 x4.

α = −1 α = 1

3 / 25



For fα(x) = −∂x Vα(x) and g ≡ 1:

The stationary distribution ρ (P∗t ρ = ρ) has the stationary density p
(solves the stationary Fokker-Planck equation L∗p = 0):

α = −1 α = 1
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Random dynamical system (θ, ϕ) as solution of SDE:
For fixed ω ∈ Ω and different xi , we consider ϕ(t, ω, xi ), where

ϕ(0, ω, ·) = id, ϕ(t + s, ω, ·) = ϕ(t, θsω, ·) ◦ ϕ(s, ω, ·) ,

and (θt)t∈R are the time shifts on Ω.

α = −1 α = 1

I Bifurcation destroyed by synchronization of trajectories (λ1 < 0)?
→ Not necessarily, consider finite-time Lyapunov exponents!
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Hopf normal form with additive noise
Hopf-type SDE1 with shear strength b ∈ R (phase-amplitude coupling)

dx = (αx − βy − (ax − by)(x2 + y 2)) dt + σ dW 1
t ,

dy = (αy + βx − (bx + ay)(x2 + y 2)) dt + σ dW 2
t .

Phase portrait for σ = 0:

pα(x , y) =

1
Z

exp
(

2α(x2 + y2)− a(x2 + y2)2

2σ2

)
α < 0 α > 0

1[Wieczorek 2009, DeVille et al. 2011]
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For fixed ω ∈ Ω, convergence to random attractor A for all x ∈ R2:

d(ϕ(t, θ−tω, x),A(ω))→ 0.

α = 1,
b = 1:

α = −1,
b = 20:

t = 0 t = 5 t = 50

Crucial quantity is λ1 from Lyapunov exponents λ1 > · · · > λp with

lim
t→∞

1
t ln ‖Dxϕ(t, ω, x)v‖ ∈ {λi}i=1,...,p, v ∈ Rd \ {0}.
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Random attractors

I Random (pullback) attractors are sets that satisfy for almost
surely

lim
t→∞

dist(ϕ(t, θ−tω, x),A(ω))→ 0

for all x ∈ X , and for all t ∈ T

ϕ(t, ω)A(ω) = A(θtω).

I Weak attractors satisfy the above in probability, and, hence, also

lim
t→∞

dist
(
ϕ(t, ω, x),A(θtω)

)
= 0 in probability,

by P-invariance of θt .
I For (strongly mixing) Markov RDS with unique invariant Markov

measure: A(ω) = suppµω is a weak random attractor.
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Furstenberg-Khasminskii formula
Let f ∈ C 1 and consider, as in our Hopf example, the SDE

dXt = f (Xt) dt + σ dWt , X0 = x ∈ Rd .

Then the finite-time Lyapunov exponents are

λv (t, ω, x) = 1
t ln ‖Dxϕ(t, ω, x)v‖,

where Dxϕ(t, ω, x) solves the linear variational equation
d
dt Φ(t, ω,Z ) = Df (ϕ(t, ω,Z )))Φ(t, ω,Z ) .

We have

λv (t, ω, x) = 1
t

∫ t

0
〈sr (ω, x , v),Df (ϕ(r , ω, x))sr (ω, x , v)〉 dr ,

where st(ω, x , v) = Dxϕ(t,ω,x)v
‖Dxϕ(t,ω,x)v‖ . By ergodicity (and hypoellipticity)

λ1 =
∫
Rd×S1

〈s,Dx f (x)s〉dρ(x , s) .
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Synchronisation and bifurcation to chaos in Hopf model
Theorem (Doan/E./Lamb/Rasmussen 2018)
For |b| small, we have λ1 < 0, and the random attractor A is a
random equilibrium to which almost all trajectories synchronize.

Elements of proof:
I Existence of RDS with random attractor via transformation to

random differential equation
I Upper bounds on λ1, depending on parameters, and using stationary

density pα(x , y) of the process
I Proof of synchronization via properties of additive noise and local

stable manifold theorem [Flandoli/Gess/Scheutzow 2017]

Chaotic case very difficult due to finding lower bounds for

λ1 =
∫
R2×S1

〈s,Dfα,b(x)s〉dρα,b(x , y , s) ,

where ρα,b(x , y , s) solves multidimensional PDE.
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Simplified model for perturbed limit cycles

The model is given by the SDE (inspired by [Lin/Young 2008])

dyt = −αytdt + σ

m∑
i=1

fi (ϑ) ◦ dW i
t ,

dϑt = (1 + byt)dt ,

where
I m ≥ 1
I (y , ϑ) ∈ R× S1 are cylindrical amplitude-phase coordinates,
I W i

t denote m independent one-dimensional Brownian motions,
I α, σ, b > 0 are real parameters,
I we assume that the fi : S1 ' [0, 1)→ R are twice differentiable

almost everywhere.
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Invariant Measures and random attractor

I For our model, there is an ergodic invariant measure µ with
F0
−∞-measurable disintegrations/sample measures (µω)ω∈Ω.

I The measure µ corresponds with the unique stationary measure
ρ for the Markov semigroup induced by the SDE via

µω = lim
t→∞

ϕ(t, θ−tω)ρ and Eµ = ρ.

I A(ω) := supp(µω) is a random attractor, as introduced above.
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The Furstenberg-Khasminskii formula
The variational equation for our model reads

dv =
(
−α 0
b 0

)
v dt + σ

m∑
i=1

(
0 f ′i (ϑ)
0 0

)
v ◦ dW i

t .

Introducing
r = ‖v‖ and (cosφ, sinφ) = v/r ,

the Furstenberg–Khasminskii formula for the first Lyapunov exponent
gives

λ1 =
∫
R×[0,1]×[0,π]

(
− α cos2 φ+ b cosφ sinφ

+ 1
2σ

2

( m∑
i=1

f ′
i (ϑ)2

)
sin2 φ(1− 2 cos2 φ)

)
ρ(dφ,dϑ,dy),

where ρ denotes the joint invariant measure of the three variables.
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Reduction to one-dimensional problem

Proposition
Consider our model and assume that

m∑
i=1

f ′i (ϑ)2 = 1 for all ϑ ∈ S1 .

Then the top Lyapunov exponent is given by

λ1 =
∫ π

0

[
− α cos2 φ+ b cosφ sinφ

+ 1
2σ

2 sin2 φ(1− 2 cos2 φ)
]
p(φ)dφ,

where p(φ) is the solution of the stationary Fokker-Planck equation

L∗p = 0,

associated to φt .
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Main bifucation result

Consider the SDE with m ≥ 2 and fi , i ∈ {1, . . . ,m}, satisfying the sum
condition, as given above.

Theorem (E./Lamb/Rasmussen 2019)
There is a unique value of σ where the first Lyapunov exponent
λ1(α, b, σ) changes sign:

λ1(α, b, σ)


< 0 if 0 < σ < σ0(α, b) ,
= 0 if σ = σ0(α, b) ,
> 0 if σ > σ0(α, b) .
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Figure: In Figure (a) the first Lyapunov exponent λ1 is shown as a function of
σ for fixed b and α. Figure (b) shows the areas of positive and negative λ1 in
the (σ, α)-parameter space being separated by the curve {(σ0(α, 2), α)}.
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Synchronization of trajectories

If 0 < σ < σ−(α, b), the random attractor is an attracting random
equilibrium:

t = 0 t = 10 t = 50

Figure: Approximating the support of µω = limt→∞ ϕ(t, θ−tω)ρ for fixed ω.
The parameters are σ = 0.5, α = 1.5, b = 3 such that λ1 < 0.
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Chaotic attractor

If σ > σ+(α, b) the random attractor is a random strange attractor
(and not an attracting random equilibrium):

t = 0 t = 5 t = 50

Figure: Approximating the support of µω = limt→∞ ϕ(t, θ−tω)ρ for fixed ω.
The parameters are σ = 2, α = 1.5, b = 3 such that λ1 > 0.
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Killed processes and quasi-ergodicity
Observation: Stability and bifurcation phenomena local but noise global!

Consider process (Xt)t≥0 solving SDE on a
bounded domain E ⊂ Rd , with stopping time

T := inf{t ≥ 0,Xt ∈ ∂E}

and let Xt = XT for all t ≥ T .

∂E

Ergodicity is replaced by:
Definition (Breyer/Roberts, Stoch. Proc. Appl. 1999)
The probability measure m is a quasi-ergodic distribution (QED) if for
every bounded and measurable function h and every x ∈ E

lim
t→∞

Ex

(
1
t

∫ t

0
h(Xs) ds|T > t

)
=
∫

E
h dm .

I Typically, the QED dm = η dν, where ν (QSD) and η can be found
as eigenfunctions of Kolmogorov operators L∗ and L.
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Conditioned Lyapunov exponent
Theorem C (E./Lamb/Rasmussen, Trans. Amer. Math. Soc. 2019)
Assume that the unit tangent bundle process (Xt , st) has a joint QED m̃.

Then for all v ∈ Rd \ {0} the conditioned Lyapunov exponent

λc := lim
t→∞

E (λv (t, ·, x)|T (·, x) > t)

exsists and is given by

λc =
∫

Sd−1×E
〈s,Df (x)s〉 m̃(ds,dx) .

Additionally, we have

I Finite-time Lyapunov exponents of the surviving trajectories
converge to λc in Lp, for 1 ≤ p ≤ 2, and in probability.

I For λc < 0, there is local synchronization of trajectories.

I We can see λc > 0 as a measure of chaos.
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Application to stochastic Hopf bifurcation
In polar coordinates (r , ψ), the FK functional 〈s,Df (x)s〉 becomes

e(r , ψ) = α− 2ar 2 + r 2
√

a2 + b2 sinψ.

I Without killing, the largest Lyapunov exponent λ1 is given by

λ1 =
∫
R+×[0,2π)

e(r , ψ)p(r , ψ) dr dψ,

where L∗p = 0 is the stationary Fokker-Planck equation for (rt , ψt).
I On E := Brmax (0) \ Brmin (0), the conditioned Lyapunov exponent

λc =
∫

[rmin,rmax]×[0,2π)
e(r , ψ)η(r , ψ)φ(r , ψ) dr dψ,

where for the largest eigenvalue λ0 < 0, we have
I Lη = λ0η, η = 0 on ∂E , and L∗φ = λ0φ, φ = 0 on ∂E .
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rψ

η(r , ψ)

rψ

φ(r , ψ)

ψr

e(r , ψ)

I Rigorously compute η (eigenvector of L) and φ (eigenvector of L∗).
I Rigorously check that each of these eigenvectors is the correct one.
I Then we can prove whether λc is positive or negative.
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Computer-assisted proof of chaos
Using Matlab + Intlab for the interval arithmetic computations:

Theorem D (Breden/E. 2021)
Consider the killed Hopf process on an annulus Brmax (0) \ Brmin (0) ⊂ R2.

For rmin = 0.5, rmax = 1.5, a = β = α = 1, b = 3.6 and σ = 1.3, the
conditioned Lyapunov exponent λc is positive.
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Figure: [rmin, rmax] = [0.5, 1.5]
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Conditioned Lyapunov exponent λc as a function of σ for fixed parameter
values b = 3.6, α = a = 1, on annuli of different lengths [rmin, rmax].
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Outlook
Other directions:
I Finite-time Lyapunov exponents for simple SPDEs

[Blumenthal/E./Neamtu 2021]

I Random isochronicity/return times for random periodic orbits
(λ1 = 0) [E./Kuehn 2021]

Application-oriented new directions:
I RDS (bifurcation) analysis for chemical Langevin equations (with G.

Olicon-Mendez)
I Oseledets spaces and (finite-time) Lyapunov exponents for

transitions between atmospheric states (with D. Faranda, N.
Vercauteren, A. Viennet)

Future directions:
I Conditioned Lyapunov spectrum
I Large deviation principles for (finite-time) Lyapunov exponents
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Details on computer-assisted proof: operators L and L∗

Setting

f (r) = αr − ar 3 + σ2

2r , g(r , ψ) = 2r 2
(

b +
√

a2 + b2 cosψ
)
,

the Kolmogorov operators take the form

Lu = σ2

2

(
∂2u
∂r 2 + 4

r2
∂2u
∂ψ2

)
+ f (r)∂u

∂r + g(r , ψ) ∂u
∂ψ

,

L∗u = σ2

2

(
∂2u
∂r 2 + 4

r2
∂2u
∂ψ2

)
− f (r)∂u

∂r − g(r , ψ) ∂u
∂ψ
−
(
∂f
∂r + ∂g

∂ψ

)
u,

on

Ω := (rmin, rmax )× (0, 2π) + Dirichlet BC in r and periodic BC in ψ.
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Transforming into F (X ) = 0

How to rigorously compute an eigenpair (u, λ) of L?

I Starting point: a numerical approximation (ū, λ̄): Lū ≈ λ̄ū.

I Consider F : H2
BC (Ω)× C→ L2(Ω)× C defined by

F (u, λ) =
(

Lu − λu
〈u, ū〉 − 1

)
.

I F (ū, λ̄) ≈ 0; we want to prove existence of a true zero of F nearby.

I We introduce the operator T : H2
BC (Ω)× C→ H2

BC (Ω)× C with

T (u, λ) = (u, λ)−
(
F ′(ū, λ̄)

)−1 F (u, λ).

I Our main task is then to prove that T is a contraction on a (small
and explicit) neighborhood of (ū, λ̄).
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F ′(ū, λ̄)

)−1 F (u, λ).

I Our main task is then to prove that T is a contraction on a (small
and explicit) neighborhood of (ū, λ̄).

25 / 25



A theorem2 in the spirit of Newton-Kantorovich

Theorem E
Let X = H2

B(Ω)× C, Y = L2(Ω)× C and ε, κ, γ > 0 such that∥∥F (ū, λ̄)
∥∥
Y ≤ ε∥∥F ′(ū, λ̄)−1∥∥

Y→X ≤ κ∥∥F ′(u, l)− F ′(ū, λ̄)
∥∥
X→Y ≤ γ

∥∥(u, l)− (ū, λ̄)
∥∥
X ∀ (u, l) ∈ X .

If
ε <

1
2κ2γ

,

then F has a unique zero (u, l) ∈ X satisfying
∥∥(u, l)− (ū, λ̄)

∥∥
X ≤ r ,

where

r = 1−
√

1− 2κ2γε

κγ
.

2Inspired from [Nakao/Plum/Watanabe 2019]
25 / 25



A theorem2 in the spirit of Newton-Kantorovich

Theorem E
Let X = H2

B(Ω)× C, Y = L2(Ω)× C and ε, κ, γ > 0 such that∥∥F (ū, λ̄)
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The main estimate
Lu = σ2

2

(
∂2u
∂r 2 + 4

r 2
∂2u
∂ψ2

)
+ f ∂u

∂r + g ∂u
∂ψ

, F (u, λ) =
(

Lu − λu
〈u, ū〉 − 1

)
I Most challenging part of the validation: find κ > 0 such that

‖F ′(ū, λ̄)−1‖Y→X ≤ κ,or equivalently

‖[F ′(ū, λ̄)] (u, λ)‖Y ≥
1
κ
‖(u, λ)‖X ∀ (u, λ) ∈ X .

I Our strategy is to use the Hilbert structure
‖[F ′(ū, λ̄)] (u, λ)‖2

Y =
〈
[F ′(ū, λ̄)] (u, λ), [F ′(ū, λ̄)] (u, λ)

〉
Y

=
〈
[F ′(ū, λ̄)]∗ [F ′(ū, λ̄)] (u, λ), (u, λ)

〉
Y

≥ ν1‖(u, λ)‖2
Y ,

where ν1 is the smallest eigenvalue of [F ′(ū, λ̄)]∗ [F ′(ū, λ̄)].

I We then combine this with a priori estimates of the form
‖[F ′(ū, λ̄)] (u, λ)‖Y ≥ c1‖∇u‖L2 , ‖[F ′(ū, λ̄)] (u, λ)‖Y ≥ c2‖∆u‖L2 ,

in order to get 1/κ.
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in order to get 1/κ.
25 / 25


	Bifurcations in random dynamical systems from SDEs
	Bifurcation via the first Lyapunov exponent: a case study
	Determining the first Lyapunov exponent
	The random attractor

	Quasi-ergodic random dynamics and bifurcations
	Appendix

