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Overview

Structure of the course

Lecture 1 Basic definitions and generation of RDS by product of random mappings (Sections

1.1, 1.2)

Lecture 2 RDS from random and stochastic differential equations (Sections 1.3, 1.4)

Lecture 3 Invariant measures and the correspondence theorem for RDS associated with Markov

processes (Sections 1.4, 1.5)

Lecture 4 Proof of correspondence theorem (Section 1.5.2); introduction of Lyapunov exponents

and Subadditive Ergodic Theorem (Section 2.1).

Lecture 5 Proof of Subadditive Ergodic Theorem and Furstenberg-Kesten Theorem (Sections

2.2, 2.3)

Lecture 6 Proof of Multiplicative Ergodic Theorem I (Sections 2.4, 2.5)

Lecture 7 Proof of Multiplicative Ergodic Theorem II (Section 2.5)

Lecture 8 Wrapping up the Multiplicative Ergodic Theorem (in two-sided time) and stable

manifold theorem (Sections 2.5, 2.6)

Lecture 9 Random attractors I: basic definition and proof of existence via absorbing sets (Section

3.1)

Lecture 10 Random attractors II: relations to invariant (Markov) measures (Section 3.2)

Lecture 11 Random attractors III: Discrete and diffuse Markov measures, collapse of random

attractor to point (Section 3.2); Introduction of entropy (Section 3.3)

Lecture 12 Pesin’s formula and SRB measures (Section 3.3); Bifurcations I: Toplogical equiva-

lence and D-bifurcations (Section 4.1)

Lecture 13 Bifurcations II: Random bifurcations in SDEs (4.2) and the example of a stochasti-

cally driven limit cycle (4.3)

Lecture 14 Questions/discussions and outlook to quasi-stationary/quasi-ergodic dynamics
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Main references

The main references for this lecture are [2, 21, 27], but there will be a list of several other

references that are updated throughout the course.



Chapter 0

Some elements of measure theory,

dynamical systems and functional

analysis

0.1 Measures and measure spaces

0.1.1 Basic definitions and properties

We collect the most basic definitions in measure theory, followed by some results which will be

useful in the lectures.

Definition 0.1.1 (Algebra and σ-algebra ). Consider a collection A of subsets of a set X with

∅ ∈ A, and the following properties:

(a) When A ∈ A then Ac := X \A ∈ A.

(b) When A,B ∈ A then A ∪B ∈ A.

(b’) Given a finite or infinite sequence {Ak} of subsets of X, Ak ∈ A, then also
⋃
k Ak ∈ A.

If A satisfies (a) and (b), it is called an algebra of subsets of X; if it satisfies (a) and (b’), it is

called a σ-algebra .

It follows from the definition that a σ-algebra is an algebra, and for an algebra A holds

� ∅, X ∈ A;

� A,B ∈ A ⇒ A ∩B ∈ A;

� A,B ∈ A ⇒ A \B ∈ A;

� if A is a σ-algebra , then {Ak} ⊂ A ⇒
⋂
k Ak ∈ A.

Definition 0.1.2 (Measure). A function µ : A → [0,∞] on a σ-algebra A is a measure if

5
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(a) µ(∅) = 0;

(b) µ(A) ≥ 0 for all A ∈ A; and

(c) µ (
⋃
k Ak) =

∑
k µ(Ak) if {Ak} is a finite or infinite sequence of pairwise disjoint sets from

A, that is, Ai ∩ Aj = ∅ for i 6= j. This property of µ is called σ-additivity (or countable

additivity).

If, in addition, µ(X) = 1, then µ is called a probability measure.

Definition 0.1.3.

(a) If A is a σ-algebra of subsets of X and µ is a measure on A, then the triple (X,A, µ) is

called a measure space. The subsets of X contained in A are called measurable.

(b) If µ(X) <∞ (resp. µ(X) = 1) then the measure space is called finite (resp. probabilistic or

normalized).

(c) If there is a sequence {Ak} ⊂ A satisfying X =
⋃
k Ak and µ(Ak) < ∞ for all k, then the

measure space (X,A, µ) is called σ-finite.

A set N ∈ A with µ(N) = 0 is called a null set. If a certain property involving the points of

a measure space holds true except for a null set, we say the property holds almost everywhere

(we write a.e., which, depending on the context, sometimes means “almost every”). We also use

the word essential to indicate that a property holds a.e. (e.g., “essential bijection”).

Definition 0.1.4. The σ-algebra generated by a collection A0 of subsets of X, also denoted by

σ(A0), is the smallest σ-algebra containing A0, i.e.

σ(A0) =
⋂

A is a σ-algebra with A0⊆A
A.

Given two measurable spaces (X1,A1) and (X2,A2), the σ-algebra generated by the products

of subsets of X1 and X2, i.e.,

A1 ⊗A2 := σ({A1 ×A2 : A1 ∈ A1, A2 ∈ A2})

is called the product σ-algebra .

Analogously we can define the algebra of subsets of X generated by some collection of subsets

of X.

Theorem 0.1.5 (Hahn–Kolmogorov extension theorem). Let X be a set, A0 an algebra of

subsets of X, and µ0 : A0 → [0,∞] a σ-additive function. If A is the σ-algebra generated by

A0, there exists a measure µ : A → [0,∞] such that µ
∣∣
A0

= µ0. If µ0 is σ-finite, the extension

is unique.

This result becomes especially useful if we would like to define measures on sets of sequences.
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Definition 0.1.6 (Cylinder). Let Ak be a σ-algebra for k ∈ N. Let k1 < k2 < . . . < kr be

integers and Aki ∈ Aki , i = 1, . . . , r. A cylinder set (also called rectangle) is a set of the form

[Ak1 , . . . , Akr ] = {{xj}j∈N : xki ∈ Aki , 1 ≤ i ≤ r} .

Definition 0.1.7. Let (Xi,Ai, µi), i ∈ N, be normalized measure spaces. The product measure

space (X,A, µ) =
∏
i∈N(Xi,Ai, µi) is defined by

X =
∏
i∈N

Xi and µ ([Ak1 , . . . , Akr ]) =
r∏
j=1

µkj (Akj ).

An analogous definition holds if we replace N by Z, i.e., if X consists of bi-infinite sequences.

One can see that finite unions of cylinders form an algebra of subsets of X. By Theorem 0.1.5

it can be uniquely extended to a measure on A, the smallest σ-algebra containing all cylinders.

It is often necessary to approximate measurable sets by sets of some sub-class (e.g., an

algebra) of the given σ-algebra :

Theorem 0.1.8. Let (X,A, µ) be a probability space, and let A0 be an algebra of subsets of

X generating A. Then, for each ε > 0 and each A ∈ A there is some A0 ∈ A0 such that

µ(A4A0) < ε. Here, E4F := (E \F )∪ (F \E) denotes the symmetric difference of E and F .

0.1.2 The monotone class theorem

Definition 0.1.9. As sequence of sets {Ak} is called increasing (resp. decreasing) if Ak ⊆ Ak+1

(resp. Ak ⊇ Ak+1) for all k.

The notation Ak ↑ A (resp. Ak ↓ A) means that {Ak} is an increasing (resp. decreasing) sequence

of sets with
⋃
k Ak = A (resp.

⋂
k Ak = A).

Definition 0.1.10 (Monotone class). Let X be a set. A collection M of subsets of X is a

monotone class if whenever Ak ∈M and Ak ↑ A, then A ∈M.

Theorem 0.1.11 (Monotone Class Theorem). A monotone class which contains an algebra,

also contains the σ-algebra generated by this algebra.

Thus, if we show that sets with a certain property form a monotone class, and this class

contains an algebra A of sets, then it contains σ(A). For instance, if we can show that two

measures µ, ν coincide on an algebra, they coincide on the whole σ-algebra generated by it.

This holds true because {µ = ν} is a monotone class.

0.2 Function spaces

In the following let k ∈ N and 0 ≤ δ1.
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Definition 0.2.1 (Functions with Hölder continuous derivatives). a We define Ck,δ as the Frechet

space of functions f : Rd → Rd which are k times continuously differentiable, and whose k-th

derivative is locally δ-Hölder continuous, when 1 > δ > 0, and locally Lipschitz continuous,

when δ = 1, with seminorms

‖f‖k,0;K :=
∑

0≤|α|≤k

sup
x∈K
|Dαf(x)| ,

‖f‖k,δ;K := ‖f‖k,0;K +
∑
|α|=k

sup
x 6=y∈K

|Dαf(x)−Dαf(y)|
|x− y|δ

, 0 < δ ≤ 1,

where K ⊂ Rd are compact convex subsets.

b We define Ck,δb ⊂ Ck,δ as the Banach space of functions f : Rd → Rd with finite norm

‖f‖k,0 := sup
x∈Rd

|f(x)|
1 + |x|

+
∑

1≤|α|≤k

sup
x∈Rd

|Dαf(x)| ,

‖f‖k,δ := ‖f‖k,0 +
∑
|α|=k

sup
x 6=y

|Dαf(x)−Dαf(y)|
|x− y|δ

, 0 < δ ≤ 1.

For functions that are, in addition, time-dependent, we have the following important notions.

Definition 0.2.2. (a) We define Lloc(R, Ck,δ) as the set of measurable functions f : R×Rd →
Rd, for which

� f(t, ·) ∈ Ck,δ for every t ∈ R.

� for every compact set K ⊂ Rd and every bounded interval [a, b] ∈ R∫ b

a
‖f(t, )̇‖k,δ;Kdt <∞, (0.2.1)

defining a family of seminorms that makes Lloc(R, Ck,δ) a Frechet space. The Frechet

space Lloc(R, Ck,δb ) is defined analagously, adapting (0.2.1) to the full norm.

(b) If (t, x) 7→ f(t, x) is continuous, we say that f ∈ C0;k,δ if

� for each t ∈ R, f(t, ·) ∈ Ck,δ,

� for k ≥ 1, the derivatives Dα
xf(t, x) are continuous with respect to (t, x) for all 1 ≤

|α| ≤ k,

� for δ > 0, the derivatives with |α| = k are locally δ-Hölder continuous with respect to

x.

We say that f ∈ C0;k,δ
b if f ∈ C0;k,δ and for each t ∈ R, f(t, ·) ∈ Ck,δb .
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0.3 Markov processes and stationary measures

Definition 0.3.1 (Markov process). Let X,B be a measurable space and T ∈ {R+
0 ,Z

+
0 }. A

Markov process is defined as a collection of the following objects:

� a measurable space (Ω,F) with a filtration {Ft, t ∈ T}

� a family of probability measures (Px)x∈X on (Ω,F) such that the mapping x 7→ Px(A) is

measurable for an A ∈ F

� an X-valued random process (Xt)t∈T adapted to the filtration Ft and satisfying the fol-

lowing for any x ∈ X,B ∈ B, and t, s ∈ T:

Px({X0 = x}) = 1, (0.3.1)

Px({Xt+s ∈ B|Fs}) = P̂t(Xs, B), for Px-almost all ω ∈ Ω, (0.3.2)

where P̂t is the transition function

P̂t(x,B) := Px{Xt ∈ B}, x ∈ X, B ∈ B. (0.3.3)

For any probability measure µ on X, we will write

Pµ =

∫
X
Pxµ(dx), A ∈ F ,

and denote the corresponding expectation by Eµ. It is a famous exercise to check that, for a

Markov process (Xt,Px) we have for all measurable and bounded f : X → R and probability

measures µ that

Eµ[f(Xt+s)|Fs] = EXsf(Xt), Pµ-almost surely. (0.3.4)

To each Markov process, there correspond two families of linear operators, called Markov semi-

groups. They are operating in the space of bounded measurable functions L∞ and of probability

measures P(X) respectively and defined in terms of the Markov transition function as follows:

Pt : L∞(X)→ L∞(X), Ptf(x) =

∫
X
P̂t(x,dz)f(z), (0.3.5)

P ∗t : P(X)→ P(X), P ∗t µ(B) =

∫
X
P̂t(x,B)µ(dx). (0.3.6)

It is a straight-forward exercise to observe that the semigroup (Pt) corresponding with the

Markov process (Xt,Px) can also be written as

Ptf(x) = Ex[f(Xt)] (0.3.7)

Definition 0.3.2. A measure µ ∈ P(X) is said to be stationary for the Markov process (Xt,Px)

if P ∗t µ = µ for all t ∈ T.



Chapter 1

Random dynamical systems and

their generators

1.1 Basic definitions

Firstly, we define what we mean by a random dynamical system throughout this lecture. We will

consider systems in discrete and continuous time, one-and two-sided. Hence, in the following we

will always assume that the index set T satisfies

T ∈
{
R,R+

0 ,Z,Z
+
0

}
.

A random dynamical system on a measurable space (X,B) consists of

(i) a model of the noise on a probability space (Ω,F ,P), formalised as a measurable flow

(θt)t∈T of P-preserving transformations θt : Ω→ Ω,

(ii) a model of the dynamics on X perturbed by noise formalised as a cocycle ϕ over θ.

In technical detail, the definition of a random dynamical system is given as follows:

Definition 1.1.1 (Random dynamical system). Let (Ω,F ,P) be a probability space and (X,B)

be a measurable space.

1. A random dynamical system (RDS) is a pair of mappings (θ, ϕ) such that the following

holds:

• The (B(T) ⊗ F , F)-measurable mapping θ : T × Ω → Ω, (t, ω) 7→ θtω, is a metric

dynamical system, i.e.

(i) θ0 = id and θt+s = θt ◦ θs for t, s ∈ T,

(ii) P(A) = P(θ−1
t A) for all A ∈ F and t ∈ T.

• The (B(T)⊗F⊗B, B)-measurable mapping ϕ : T×Ω×X → X, (t, ω, x) 7→ ϕ(t, ω, x),

is a cocycle over θ, i.e., ϕ(0, ω, ·) = id and

ϕ(t+ s, ω, ·) = ϕ(t, θsω, ϕ(s, ω, ·)) for all ω ∈ Ω and t, s ∈ T . (1.1.1)

10
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2. If X is a topological space with B = B(X) its Borel σ-algebra, and

(t, x) 7→ ϕ(t, ω, x)

is continuous for every ω ∈ Ω, the random dynamical system (θ, ϕ) is called continuous.

3. If X is additionally a smooth, i.e. C∞, d-dimensional manifold (e.g. Rd), and for each

(t, ω) ∈ T× Ω the mapping

ϕ(t, ω) := ϕ(t, ω, ·) : X → X, x 7→ ϕ(t, ω, x)

is Ck, i.e. k-times differentiable in x and the derivatives are continuous in (t, x), the random

dynamical system (θ, ϕ) is called Ck.

We still speak of a random dynamical system, if its cocycle is only defined in forward time, i.e.,

if the mapping ϕ is only defined on R+
0 × Ω ×X or Z+

0 × Ω ×X, while the underlying metric

dynamical system is defined in forward and backward time, i.e., the mappings θt are defined for

all t ∈ R or t ∈ Z respectively. We will make it noticeable whenever this is the case.

Remark 1.1.2. In the following, the metric dynamical system (θt)t∈T is often even ergodic,

i.e. any A ∈ F with θ−1
t A = A for all t ∈ T satisfies P(A) ∈ {0, 1}.

Remark 1.1.3. Further, note that the trajectories of the RDS might explode in finite time.

In this case one can consider it as a local random dynamical system (as opposed to the global

random dynamical system from Definition 1.1.1) being defined only for times bounded by some

random explosion times τ−(ω, x) and τ+(ω, x). We will consider local RDS in more detail in

the context of Chapter 5.

We state our first theorem on two-sided random dynamical systems.

Theorem 1.1.4. Consider an RDS (θ, ϕ) on a measurable space (X,B) and two-sided time set

T, i.e., T = R or T = Z.

(a) For all (t, ω) ∈ T× Ω, the cocycle ϕ(t, ω) is a bimeasurable bijection of (X,B) and,

ϕ(t, ω)−1 = ϕ(−t, θtω) for all (t, ω) ∈ T× Ω,

or, equivalently,

ϕ(−t, ω) = ϕ(t, θ−tω)−1 for all (t, ω) ∈ T× Ω,

Furthermore, the mapping

(t, ω, x) 7→ ϕ(t, ω)−1x

is measurable.

1. If X is a topological space and the RDS is continuous, then for all (t, ω) ∈ T×Ω we have

that ϕ(t, ω) : X → X is a homeomorphism. If
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(a) T = Z, or

(b) T = R, and X is a compact Hausdorff space,

then additionally (t, x) 7→ ϕ(t, ω)−1x is continuous for all ω ∈ Ω.

2. If X is a smooth manifold and the RDS is Ck, then for all (t, ω) ∈ T × Ω we have that

ϕ(t, ω) : X → X is a diffeomorphism. Moreover, (t, x) 7→ ϕ(t, ω)−1x is Ck with respect to

x for all ω ∈ Ω.

Proof. See Exercise sheet 1.

Before we address the question of how such random dynamical systems are generated, we

introduce a distinction that will be highly relevant when we discuss random dynamical systems

in the context of stochastic differential equations. Recall the cocycle property (1.1.1), which in

this form is called the perfect cocycle property. If equation (1.1.1) holds for fixed s ∈ T and all

t ∈ T, P-a.s., where the expectional set Ns with P(Ns) = 0 may depend on s, we call ϕ a crude

cocycle. If equation (1.1.1) holds for fixed s, t ∈ T, P-a.s., where the expectional set Ns,t with

P(Ns,t) = 0 may depend on s, t, we call ϕ a very crude cocycle. The perfection of a very crude

cocycle is easy to observe in discrete time but will require some work in continuous time:

Theorem 1.1.5 (Perfection for discrete time). Let ϕ be a very crude cocycle over θ with discrete

time T. Then there exists a cocycle ψ over θ which is perfect and indistinguishable from ϕ, i.e.,

there exists a set N ∈ F with P(N) = 0 and

{ω : ψ(t, ω) 6= ϕ(t, ω) for some t ∈ T} ⊂ N.

Proof. See Exercise sheet 1.

1.2 Random dynamical systems from products of random map-

pings

In this section, we focus on random dynamical systems in discrete time T ∈ {Z,Z+
0 }. Since,

typically, the family of measure-preserving transformations (θn)n∈T consists of iterations of a

map θ : Ω→ Ω, we adopt the notation (θn)n∈T for this section.

Firstly, we make the following observation:

Proposition 1.2.1. Let (θ, ϕ) be an RDS on X with time T ∈ {Z+
0 ,Z}.

1. If T = Z+
0 , we introduce the time-one mapping

ψ(ω) := ϕ(1, ω) : X → X, (1.2.1)

and obtain

ϕ(n, ω) =

ψ(θn−1ω) ◦ · · · ◦ ψ(ω), n ≥ 1,

id, n = 0.
(1.2.2)



CHAPTER 1. RANDOM DYNAMICAL SYSTEMS AND THEIR GENERATORS 13

The RDS is measurable if and only if (ω, x) 7→ ψ(ω)x is measurable. It is continuous/Ck

if and only if x 7→ ψ(ω)x is continuous/Ck. Conversely, given a family of mappings

ψ(ω) : X → X such that (ω, x) 7→ ψ(ω)x is measurable/continuous/Ck, then ϕ defined

by (1.2.2) is the cocycle of a measurable/continuous/Ck RDS. We say that ϕ is generated

by ψ.

2. If T = Z, we additionally have the time-minus-one mapping

ϕ(−1, ω) = ϕ(1, θ−1ω)−1 = ψ(θ−1ω)−1 (1.2.3)

such that ψ(ω) : X → X is invertible and we obtain

ϕ(n, ω) =


ψ(θn−1ω) ◦ · · · ◦ ψ(ω), n ≥ 1,

id, n = 0,

ψ(θnω)−1 ◦ · · · ◦ ψ(θ−1ω)−1, n ≤ −1,

(1.2.4)

The RDS is measurable if and only if

(ω, x) 7→ ψ(ω)x and (ω, x) 7→ ψ(ω)−1x (1.2.5)

are measurable. It is continuous/Ck if and only if x 7→ ψ(ω)x is a homeomorphism/diffeo-

morphism of order k. Conversely, given a family of invertible mappings ψ(ω) : X → X

such that the mappings (1.2.5) are measurable/continuous/Ck, then ϕ defined by (1.2.4)

is the cocycle of a measurable/continuous/Ck RDS.

Proof. Straight-forward application of the cocycle property (1.1.1).

We can put on record: every one-sided (two-sided) discrete time RDS has the form (1.2.2)

((1.2.4)), also called product of random mappings or iterated function system. Note that we

can write the discrete time cocycle ϕ(n, ω, x) as the solutions of an initial value problem for a

random difference equation

xn+1 = ψ(θnω)xn, n ∈ T, x0 = x ∈ X. (1.2.6)

Consider the following examples:

Example 1.2.2. 1. Linear random dynamical system as product of random matrices: If

X = Rd and the RDS is linear, we can write for n ≥ 1

ϕ(n, ω) = An−1(ω) · · ·A0(ω), Ak(ω) = A(θkω),

where A : Ω → Rd×d is measurable. Two-sided linear RDS correspond with invertible

measurable families of matrices, giving in addition for n ≤ −1

ϕ(n, ω) = An(ω)−1 · · ·A−1(ω)−1, Ak(ω) = A(θkω).
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2. Barnsley’s chaos game: Note that one can approximate a Cantor set by randomly switching

between the maps

T0(x) =
x

2
, T1(x) =

1 + x

2

on X = [0, 1]. Such a switching between random maps can be formalized as an RDS by

considering the finite set ∆ = {0, 1} and the (topological) space of sequences

Ω ≡ ∆N := {ω = (ωn)∞n=0 | ωn ∈ ∆} .

Recall that a cylinder set is of the form

Ci0,i1,...,in = {ω ∈ Ω | ωk = ik, k = 0, 1, . . . , n},

for some n ∈ N. Having the two probabilities 1 > p1 = 1 − p0 > 0, we endow the

measurable space (Ω,B(Ω)) with the infinite product measure P, defined uniquely by its

action on cylinder sets as

P(Ci0,i1,...,in) = pi0 · · · pin .

The metric dynamical system is given by iterations of the shift map θ : Ω→ Ω defined as

θ(ωn)∞n=0 = (ωn+1)∞n=0.

The evolution of the system through time is given by applying the map T0 or T1 with

probabilities p0 or p1, respectively, and this is expressed by the cocycle ϕ : Z+
0 ×X×Ω→ X

as

ϕ(0, ω, x) = x, ϕ(n, ω, x) = Tin−1 ◦ · · ·Ti0(x),

where ω = (ik)
∞
k=0. (See also Exercise sheet 1.)

For discrete-time random dynamical systems with independent increments, we can prove the

following relation to Markov chains:

Theorem 1.2.3. Let ϕ be a measurable cocycle over θ with time T = Z+
0 , generated by ψ(ω) such

that the sequence ψ(θn·) is identically and independently distributed. Then, given any random

variable x0, the orbit (xxn) given by

xn+1 = ψ(θnω)xn, x0 = x ∈ X,

is a time-homogeneous Markov chain on X with transition probability

P (x,B) = P{ω : ψ(ω)x ∈ B} for all B ∈ B. (1.2.7)

Proof. Firstly, note that P (x,B) as defined in (1.2.7) is, indeed, a Markov kernel: P(x, ·) is

a probability measure on (X,B) by definition. Furthermore, we observe that P(·, B) is a

measurable map for any B ∈ B, as follows: Introducing Ψ : (ω, x) 7→ ψ(ω)x and writing
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Ax = {ω ∈ Ω : (ω, x) ∈ A} for A ∈ F ⊗ B, we have

P (x,B) = P(Ax), A = Ψ−1B ∈ F ⊗ B.

We observe by the monotone class theorem that

A = {A ∈ F ⊗ B : P(Ax) is measurable in x}

is a σ-algebra and, hence, A = F ⊗ B.

Let us denote Fn = σ(xx0 , . . . , x
x
n;x ∈ X). Since 1B(ψ(θn·)x) is independent from Fn for

each x ∈ X and B ∈ B, we can deduce by the well-know properties of conditional expectations

that

P(xxn+1 ∈ B|Fn) = E[1B(ψ(θnω)xxn)|Fn] = E[1B(ψ(θnω)xxn)|xxn] = P(xxn+1 ∈ B|xxn).

This shows the Markov property. Moreover, we obtain the time-homogeneity

P(xxn+1 ∈ B|xxn = y) = P(ω : ψ(θnω)y ∈ B) = P(ω : ψ(ω)y ∈ B) = P (y,B),

having used the θn-invariance of P for all n ≥ 1.

Remark 1.2.4. The reverse direction, i.e., the consruction of a discrete-time random dynamical

system as a composition of independent random maps from a Markov chain with given transition

probabilities, is also possible (see [19, Theorem 1.1]), but, in general, uniqueness cannot be

guaranteed. This has to do with the RDS perspective of providing a description of the n-point

motion, i.e., tracking trajectories with different initial conditions but driven by the same noise,

whereas the Markov chain only describes the 1-point motion. We will discuss this distinction in

more detail later on.

[End of Lecture I, 13.04.]

1.3 Random dynamical systems from random differential equa-

tions

In the following, let time be continuous and two-sided, i.e. T = R, and the state space X = Rd

(we could also consider manifolds but concentrate on the Euclidean case for simplicity).

We consider random differential equations (RDEs) of the form

ẋt = f(θtω, xt), (1.3.1)

for some measurable map f : Ω×Rd → Rd, where θ is a metric dynamical system as before. We

say that the map t 7→ ϕ(t, ω, x) solves the RDE (1.3.1) (or the RDE (1.3.1) generates ϕ), if we
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have

ϕ(t, ω, x) = x+

∫ t

0
f(θsω, ϕ(s, ω, x)) ds. (1.3.2)

We can state the following theorem:

Theorem 1.3.1. Consider the RDE (1.3.1) and write fω(t, x) = f(θtω, x). Then the following

holds:

(a) If fω ∈ Lloc(R, C0,1
b ) for all ω ∈ Ω, then equation (1.3.1) uniquely generates a continuous

RDS ϕ over θ. If fω ∈ C0;0,1
b for all ω ∈ Ω, then ϕ is differentiable with respect to t.

(b) If fω ∈ Lloc(R, Ck,0b ) for all ω ∈ Ω and some k ≥ 1, then equation (1.3.1) uniquely generates

a Ck RDS ϕ over θ. If fω ∈ C0;k,0
b for all ω ∈ Ω, then ϕ is differentiable with respect to t.

(c) In case (b), consider the Jacobian of ϕ(t, ω) at x ∈ Rd,

Dxϕ(t, ω, x) :=

(
∂xiϕ(t, ω, x)

∂xj

)
1≤i,j≤d

.

Then (ϕ,Dxϕ) is a Ck−1 RDS on Rd × Rd over θ uniquely generated by the RDE on the

tangent bundle

(ẋt, v̇t) = (f(θtω, xt),Dxf(θtω, xt)vt).

The Jacobian Dxϕ uniquely solves the variational equation

Dxϕ(t, ω, x) = Id +

∫ t

0
Dxf(θsω, ϕ(s, ω, x))Dxϕ(s, ω, x)ds,

and is a matrix cocycle over the skew product Θt(ω, x) := (θtω, ϕ(t, ω, x)).

The determinant det Dxϕ(t, ω, x) satisfies Liouville’s equation

det Dxϕ(t, ω, x) = exp

∫ t

0
(trace Dxf)(θsω, ϕ(s, ω, x))ds,

and is a scalar cocycle over Θ.

Proof. The proofs of (a) and (b) can be directly obtained from classical ODE theory (see e.g. [1]),

now applied for each ω ∈ Ω. For statement (c), see exercise sheet 2.

We would like to give a stationary characterization of sufficient conditions for finding ran-

dom dynamical systems generated by random differential equation. A crucial step towards this

direction is the following observation.

Lemma 1.3.2. Let (Ω,F ,P, (θt)t∈R) be a metric dynamical system and g ∈ L1
P(Ω). Then the

measurable stationary process t 7→ g(θtω) is locally integrable on an invariant set Ω̃ ⊂ Ω with

P(Ω̃) = 1, and for all a, b ∈ R ∫ b

a
g(θt·)dt ∈ L1

P(Ω).
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Proof. The set

Ω̃ := {ω ∈ Ω : t 7→ g(θtω) is locally integrable}

is clearly measurable and θt-invariant (check!). We write mg := E |g(θt·)| < ∞ and for all

a ≤ b ∈ R, using Fubini,

E
∫ b

a
|g(θt·)| dt =

∫ b

a
E |g(θt·)|dt = m(b− a) <∞,

such that, indeed, P(Ω̃) = 1.

We can now directly deduce the following theorem:

Theorem 1.3.3. (a) If f ∈ L1
P(Ω, C0,1

b ) (or if f ∈ L1
P(Ω, Ck,0b ), then fω ∈ L1

loc(R, C
0,1
b ) (or fω ∈

L1
loc(R, C

k,0
b ) on an invariant set of full measure, and the random differential equation (1.3.1)

uniquely generates a continous (or Ck) RDS.

(b) This is, more generally, also the case, if fω ∈ Lloc(R, C0,1) (or if fω ∈ L1
loc(R, Ck,0), and

‖f(ω, x)‖ ≤ α(ω)‖x‖+ β(ω), α, β ∈ L1
P(Ω). (1.3.3)

Proof. Part (a) follows from the definition of the spaces Lloc(R, C0,1), Lloc(R, C0,1
b ) and applying

Lemma 1.3.2 to g(ω) = ‖f(ω, ·)‖0,1;K , and the other norms similarly. Part (b) follows from the

definition of these norms (see Section 0.2).

1.4 Random dynamical systems from stochastic differential equa-

tions

1.4.1 Short overview on SDEs

For a more comprehensive summary concerning stochastic differential equation (SDEs), see for

example [26]. The following is just a short (not completely rigorous) recap of some important

notions.

Firstly, recall the following definition:

Definition 1.4.1 (Brownian motion). (a) A real-valued stochastic process Wt(ω) defined on

R+
0 × Ω is a Brownian motion if

� W0(ω) = 0 almost surely,

� Wt(ω) is almost surely continuous in t

� For every t, s ≥ 0, the increments ∆Ws(ω) = Wt+s(ω) −Wt(ω) are independent from

Wu, u ≤ t, and zero Gaussian random variables with variables with variance

E |∆Ws|2 = s.
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(b) If W 1
t ,W

2
t , . . . ,W

d
t are independent Browinan motions, the vector process

Wt = (W 1
t ,W

2
t , . . . ,W

d
t )>

is called d-dimensional Brownian motion.

Brownian paths are rough, i.e. not very regular in the sense that they are not differentiable at

any t with probability one but only (locally) δ-Hölder continuous for 0 < δ < 1
2 . Hence, defining

integration with respect to Brownian motion is not straight-forward. Here, we just briefly sketch

the meaning of two forms of stochastic differential equations.

Firstly, we consider stochastic differential equations (SDEs) on Rd of Itô type

dXt = f(Xt) dt+ g(Xt) dWt , X0 = x ∈ Rd , (1.4.1)

written in integral form as

Xt = x+

∫ t

0
f(Xs) ds+

∫ t

0
g(Xs) dWs , x ∈ Rd , (1.4.2)

where

� Wt denotes m-dimensional Brownian motion, m ≤ d,

� f : Rd → Rd and g : Rd → Rd×m are globally Lipschitz continuous and of at most linear

growth, i.e. f, gj ∈ C0,1
b (Rd), where gj denote the columns of g.

It can be shown [26, Section 3.3] that for any sequence of partitions of a time interval 0 ≤ tk0 <
tk1 < · · · < tkn = t such that maxi(t

k
i − tki−1)→ 0, we obtain a limit in probability

∫ t

0
g(Xs) dWs = lim

maxi(ti−ti−1)→0

n∑
i=1

g(Xti−1
)[Wti −Wti−1 ],

which is called the Itô integral. Under the above conditions on the coefficients f and g, one can

then show [26, Theorem 4.1.1] that there is an almost surely continuous process Xt adapted to

the filtration Ft generated by the Brownian motion Wt (see below) that solves equation (1.4.2)

for almost all ω ∈ Ω.

Similarly, we consider SDEs on Rd of Stratonovich type

dXt = f(Xt) dt+ g(Xt) ◦ dWt , X0 = x ∈ Rd , (1.4.3)

written in integral form as

Xt = x+

∫ t

0
f(Xs) ds+

∫ t

0
g(Xs) ◦ dWs , x ∈ Rd , (1.4.4)
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where the stochastic integral is given as the limit in probability∫ t

0
g(Xs) ◦ dWs = lim

maxi(ti−ti−1)→0

n∑
i=1

g

(
X ti+ti−1

2

)
[Wti −Wti−1 ].

When the diffusion coefficient g is differentiable, we can apply the famous conversion formula

between Stratonovich and Itô integrals, also called Wong-Zakai corrections:

(∫ t

0
g(Xs) ◦ dWs

)
i

=

(∫ t

0
g(Xs)Ws

)
i

+
1

2

∫ t

0

d∑
j=1

m∑
k=1

gjk(Xs)
∂gik
∂Xj

(Xs) ds. (1.4.5)

Hence, unique solvability of (1.4.4) can then be directly obtained from unique solvability of (1.4.2).

Remark 1.4.2 (Important properties of SDEs). (a) The unique solutions of these SDEs are

Markov processes.

(b) The Stratonovich integral satisfies the usual rules of calculus (product rule and chain rule).

(c) The Itô integral satisfies the chain rule under adding an additional term, i.e., Itô’s formula

for h ∈ C2(Rd,R) and the SDE (1.4.1) reads

dh(Xt) = ∇h(Xt) · f(Xt) dt+∇h(Xt) · (g(Xt) dWt) +
1

2
trace(g∗ hess(h)g) dt. (1.4.6)

(d) Itô integrals are martingales.

1.4.2 The RDS framework for SDEs

Before we state a theorem about the generation of random dynamical systems by stochastic dif-

ferential equations, we introduce the more general notion of random dynamical systems adapted

to a suitable filtration and of white noise type. Following [14], we make the following definition:

Definition 1.4.3 (White noise RDS). Let (θ, ϕ) be a random dynamical system over a prob-

ability space (Ω,F ,P) on a topological space X where ϕ is defined in forward time and θ is

defined in two-sided time. Let (F ts)−∞≤s≤t≤∞ be a family of sub-σ-algebras of F such that

(i) Fut ⊂ Fvs for all s ≤ t ≤ u ≤ v,

(ii) F ts is independent from Fvu for all s ≤ t ≤ u ≤ v,

(iii) θ−1
r (F ts) = F t+rs+r for all s ≤ t, r ∈ R,

(iv) ϕ(t, ·, x) is F t0-measurable for all t ≥ 0 and x ∈ X.

Furthermore we denote by F t−∞ the smallest sigma-algebra containing all F ts, s ≤ t, and by

F∞t the smallest sigma-algebra containing all Fut , t ≤ u. Then (θ, ϕ) is called a white noise

(filtered) random dynamical system.
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Consider an SDE, say of Stratonovich type (1.4.3), that can be solved uniquely. We need the

following probabilistic setting to identfy the solution process with a random dynamical system:

Definition and Proposition 1.4.4 ( Brownian motion as dynamical system). We introduce

the canonical (two-sided) Wiener space (Ω,F ,P) with

1. Ω = C0(R,Rd), i.e. the space of all continuous functions ω : R → Rd satisfying that

ω(0) = 0 ∈ Rd. We endow Ω with the compact-open topology given by the complete

metric

ρ(ω, ω̂) :=
∞∑
n=1

1

2n
‖ω − ω̂‖n

1 + ‖ω − ω̂‖n
, ‖ω − ω̂‖n := sup

|t|≤n
‖ω(t)− ω̂(t)‖ .

2. F = B(Ω), the Borel σ-algebra on (Ω, ρ).

3. the Wiener measure P on (Ω,F) such that the d processes (W 1
t ), . . . , (W d

t ) defined by

(W 1
t (ω), . . . ,W d

t (ω))> := ω(t) for ω ∈ Ω are independent one-dimensional Brownian mo-

tions, i.e. for all x ∈ Rd

P({ω ∈ Ω : ω1(t) ≤ x1, . . . , ωd(t) ≤ xd}) =
1

(2πt)d/2

∫ x1

−∞
· · ·
∫ xd

−∞
e−‖y‖

2/2|t|dy1 · · · dyd.

4. the sub-σ-algebra F ts as the σ-algebra generated by ω(u)− ω(v) for s ≤ v ≤ u ≤ t.

The family of shifts (θt)t∈R on (Ω,F ,P), given by

θtω(·) := ω(t+ ·)− ω(t)

is measure-preserving and ergodic.

Proof. The proof is very similar to Exercises 1 and 2 on the first question sheet, using the time-

one maps ω(n), n ∈ Z. Note, in particular, that we can also define the topology and σ-algebra,

and thereby the measure P, via cylinder sets in Ω (cf. [26, Section 2.2]).

[End of Lecture II, 20.04.]

1.4.3 Main theorem on generation of RDS from SDEs

In this framework, we can now formulate that main theorem of this section. Note that we can

completely formulate it in two-sided time, due to the possibility of using a backward stochastic

integral for t < 0, but will later often only consider the stochastic integral in classical forward

time, in particular in the context of Markov processes:

Theorem 1.4.5 (Cocycle through SDE). Consider the Stratonovich SDE, where we explcitly

right the columns gj of the diffusion matrix g,

dXt = f(Xt) dt+
m∑
j=1

gj(Xt) ◦ dW j
t , X0 = x ∈ Rd , t ∈ R , (1.4.7)
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where, for some k ∈ N and δ ∈ (0, 1], we have f ∈ Ck,δb and gj ∈ Ck+1,δ
b for all j = 1, . . . ,m.

Then there is a unique measurable function (t, ω, x) 7→ ϕ(t, ω, x) such that

� (θ, ϕ) is a Ck RDS,

� ϕ(t, ·, x) is the solution of the SDE (1.4.7).

Proof. See [3] for details. We give the following sketch of proof:

1. As a first step, one may refer to Kunita [22, Chapter 4.7] to establish the fact that solutions

of (1.4.7) can be expressed as a measurable function (s, t, ω, x) 7→ ϕst(ω, x) such that for

all ω ∈ Ω

(s, t, x) 7→ ϕst(ω, x) is continuous for alls ≤ t ∈ R,

and ϕst := ϕst(ω, ·) is a two parameter flow of Ck diffeomorphisms, i.e.,

ϕrt(ω) ◦ ϕsr(ω) = ϕst(ω), ϕss(ω) = id . (1.4.8)

Small exercise: check that the simplest possible SDE dXt = dWt generates a C∞ flow

x 7→ ϕst(ω, x) = x+Wt(ω)−Ws(ω).

2. As a second step, we may observe by the uniqueness of solution that

ϕrt(ω) = ϕ0,t−r(θrω), for almost all ω ∈ Ω.

Small exercise: again check this for the simplest possible SDE dXt = dWt.

By setting ϕ(t, ·) := ϕ0t(·), the two-parameter flow property (1.4.8) becomes (by replacing

t, r, s with t+ s, s, 0) the cocycle property

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω), for almost all ω ∈ Ω and all s, t ∈ R.

The crucial observation is that this only gives the crude cocycle property since the excep-

tional null set may depend on s.

3. Finally, one needs to prove the perfection of cocycle via an abstract argument, using the

notion of Haar measure. [3, Section 5].

Please follow the literature if you are intrested in the highly abstract and lengthy proof.

Remark 1.4.6. We are not always able to work with a global Lipschitz condition which in many

interesting dynamical examples is not satisfied. Instead, we sometimes use a transformation

into a random differential equation to show that the respective stochastic differential equation,

indeed, generates a (global) random dynamical system. For example, consider for σ ≥ 0 an SDE

of the form

dXt = f(Xt)dt+ σdWt , (1.4.9)
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where f is continuous and has dissipative properties but is not globally Lipschitz continuous

or has linearly bounded growth. Consider, for some c > 0, the stationary Ornstein-Uhlenbeck

process

Z∗(θtω) = Z∗(ω)− c
∫ t

0
Z∗(θsω) ds+ ω(t) .

An RDS solution to (1.4.9), i.e.,

ϕ(t, ω, Z) = Z +

∫ t

0
f(ϕ(s, ω, Z)) ds+ σω(t) for all t ∈ [0, T ] .

can be found via the conjugated RDE

Ẏ = g(θtω, Y ) ,

where g(ω, Y ) := f (T (ω, Y )) + cσZ∗(ω) and T (ω, Y ) := Y + σZ∗(ω). See Question sheet 2 for

more details.

1.5 Invariant measures

1.5.1 Basic definition

Let (θ, ϕ) be a random dynamical system with the cocycle ϕ. Then the system generates a skew

product flow, i.e. a family of maps (Θt)t∈T from Ω × X to itself such that for all t ∈ T and

ω ∈ Ω, x ∈ X
Θt(ω, x) = (θtω, ϕ(t, ω, x)) .

The notion of an invariant measure for the random dynamical system is given via the invariance

with respect to the skew product flow, see e.g. [2, Definition 1.4.1]. We denote by T ∗µ the push

forward of a measure µ by a map T , i.e. T ∗µ(·) = µ(T−1(·)).

Definition 1.5.1 (Invariant measure). A probability measure µ on (Ω×X,F ⊗B) is invariant

for the random dynamical system (θ, ϕ) if

(i) Θ∗tµ = µ for all t ∈ T ,

(ii) the marginal of µ on Ω is P, i.e. µ can be factorised uniquely into

µ(dω,dx) = µω(dx)P(dω),

where ω 7→ µω is a random measure (or disintegration or sample measure) on X, i.e.

� µω is a probability measure on X for P-a.a. ω ∈ Ω,

� ω 7→ µω(B) is measurable for all B ∈ B(X).

Recall that we assume the model of the noise to be fixed. Hence, the marginal of µ on the

probability space is demanded to be P.
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We observe the following for topological spaces X with countably generated B(X) (e.g. Polish

spaces):

Proposition 1.5.2. A probability measure µ on (Ω × X,F ⊗ B) with marginal P is invariant

for the random dynamical system (θ, ϕ) if and only if the sample measures satisfy

ϕ(t, ω, ·)µω = µθtω P-a.s. for all t ∈ T . (1.5.1)

Proof. See Question sheet 3.

For white noise random dynamical systems (θ, ϕ) as given by Drfinition 1.4.3, in particular

random dynamical systems induced by a stochastic differential equation, there is a one-to-

one correspondence between certain invariant random measures and stationary measures of the

associated Markov process, first observed in [8]. In the following, we will formulate this a general

property of Markov RDS.

1.5.2 Markov RDS and correspondence theorem

Let in the the following (θ, ϕ) be an RDS on a topological space X, where (θt)t∈T is two-sided

in time and the cocycle is defined for one-sided time t ∈ T+. For any u, v ∈ T with u < v, we

denote by Fvu ⊂ F the sub-σ-algebra generated by (the subsets of F of zero measure) and the

random variable ϕ(t, θsω, x) for x ∈ X and t, s ∈ T with u ≤ s ≤ v and 0 < t ≤ v − s.
This means, in particular, that ϕ(t, θsω, x) is Fs+ts -measurable. We define the σ-algebras

Fv−∞ = σ(Fvu : u ∈ T, u < v),

F∞u = σ(Fvu : v ∈ T, u < v),

F∞−∞ = σ(Fvu : v, u ∈ T, u < v)

Definition 1.5.3. The RDS (θ, ϕ) is said to be Markov if F0
−∞ and F∞0 are indepedent, i.e., if

past and future are independent.

Fur such random dynamical systems, we can prove the following version of the Markov

property:

Proposition 1.5.4. Let the RDS (θ, ϕ) be Markov and consider the filtration given by Fs = Fs−∞
for all s ∈ T. Then, for any F0

−∞-measurable random variable Y : Ω → X and any s, t ∈ T+,

we have

E[f(ϕ(t+ s, ω, Y (ω))|Fs] = E[f(ϕ(t, ·, Z)]|Z=ϕ(s,ω,Y (ω)) for P-almost all ω, (1.5.2)

for ally bounded and measurable functions f : X → R.

Proof. Firstly, note that for any finite or infinite numbers u < v, we have for all t ∈ T that

θ−1
t Fvu = Fv+t

u+t .
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We may conclude that for the given Markov RDS, the σ-algebras F t∞ and F∞t are independent

for any t ∈ T.

Now, consider the function g : Ω×X → R defined as

g(ω, x) = f(ϕ(t, θsω, x)), ω ∈ Ω, x ∈ X.

Then, for any x ∈ X, we have that g(·, x) is F∞s -measurable and that ϕ(s, ·, x) is Fs−∞-

measurable. Due to the independence established above we obtain for almost all ω ∈ Ω

E[g(ω, ϕ(s, ω, Y (ω)))|Fs−∞] = E[g(·, Z)]|Z=ϕ(s,ω,Y (ω)).

Using the cocycle property, we observe that

g(ω, ϕ(ω, s, Y (ω))) = f(ϕ(t, θsω, ϕ(s, ω, Y (ω))) = f(ϕ(t+ s, ω, Y (ω))).

Hence, we can coclude that for almost all ω ∈ Ω

E[f(ϕ(t+ s, ω, Y (ω))|Fs] = E[f(ϕ(t, θs·, Z)]|Z=ϕ(s,ω,Y (ω)),

which concludes the proof.

We can now introduce the transition function for the Markov RDS given by

P̂t(x,B) = P({ϕ(t, ·, x) ∈ B}), x ∈ X, B ∈ B(X), t ∈ T+. (1.5.3)

It is now straightforward to construct a Markov process out of the Markov RDS in a canon-

ical way: We denote by Ω′ = X × Ω the product space endowed with the product σ-algebra

B(X) ⊗ F and introduce F ′t = B(X) × Ft, where Ft = F t−∞ as before. Defining the process

Xt(ω
′) = ϕ(t, ω, x) with ω′ = (x, ω) ∈ Ω′ and the family of probability measures Px = δx ⊗ P,

we observe that (Xt,Px) gives a Markov process with transition function P̂t (1.5.3). We denote

the associated semigroups by Pt and P ∗t , cf. Section 0.3.

In the following, when we consider weak convergence of measures µk → µ on a space X, we

will always mean that

〈f, µk〉 :=

∫
X
f(x)µk(dx)→

∫
X
f(x)µ(dx) =: 〈f, µ〉

for all f ∈ Cb(X), i.e. all bounded and continuous functions from X to R.

We can now turn to the main result of this section, as announced, using one last definition:

Definition 1.5.5 (Markov measure). An invariant measure µ for an RDS (θ, ϕ) is said to be

Markov if its disintegration {µω} is F0
−∞-measurable, i.e., for any B ∈ B(X) the map ω 7→ µω(B)

is (F0
−∞,B(R))-measurable.
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Theorem 1.5.6 (Correspondence theorem). Let (θ, ϕ) be a Markov RDS in a separable com-

pletely metrizable toplogical space X (also called Polish space). Then the following assertions

hold:

(a) Let µ be an invariant Markov measure with disintegrations µω. Then ρ = E[µω] is a sta-

tionary measure for the associated Markov process, i.e., P ∗t ρ = ρ.

Additionally, if µ′ is another invariant Markov measure with disintegrations µ′ω such that

E[µω] = E[µ′ω], then µ = µ′.

(b) Let ρ be a stationary measure for the associated Markov process. Then for any sequence

tk →∞, there is a set Ω̃ ∈ F of full measure such that there is a weak limit

µω = lim
k→∞

ϕ(tk, θ−tkω, ·)
∗(ρ) (1.5.4)

for any ω ∈ Ω̃. If there is another sequence t′k →∞, then the corresponding µ′ω coincide with

µω almost surely. Finally, the measure µ defined by its disintegrations µω is an invariant

Markov measure, and ρ = E[µω].

Summarizingly, there is a one-to-one correspondence between stationary and invariant Markov

measures for the RDS.

[End of Lecture III, 27.04.]

Proof. (a) See Question sheet 3, Exercise 2 (a), for the proof that ρ := E[µω] is a stationary

measure.

We now prove the second part of (a). We fix an increasing sequence, and, using Proposi-

tion 1.5.2, we have almost surely that for all k ≥ 1

ϕ(tk, θ−tkω, ·)
∗µθ−tkω = µω.

Hence, we obtain for any f ∈ Cb(X) that

〈f(ϕ(tk, θ−tkω, ·), µθ−tkω〉 = 〈f, µω〉. (1.5.5)

Setting Gk := F0
−tk for k ≥ 1, we observe that f(ϕ(tk, θ−tkω, x) is Gk-measurable for all x ∈ X,

while µθ−tkω is independent of Gk. Taking conditional expectation with respect to Gk on both

sides of (1.5.5) and writing again ρ := E[µω], we get for almost all ω ∈ Ω that

〈f(ϕ(tk, θ−tkω, ·), ρ〉 = E[〈f, µω〉|Gk]. (1.5.6)

Since µω is F0
−∞-measurable and F0

−∞ = σ{Gk, k ≥ 1}, we observe that the right-hand side of

equation (1.5.6) is a right-closable martingale with respect to the filtration {Gk}. Hence, Doob’s

convergence theorem on right-closed martingale sequences yields

lim
k→∞
〈f(ϕ(tk, θ−tkω, ·), ρ〉 = 〈f, µω〉



CHAPTER 1. RANDOM DYNAMICAL SYSTEMS AND THEIR GENERATORS 26

for any f ∈ Cb(X) and almost all ω ∈ Ω. It follows that µω is uniquely defined by ρ such that

µ′ = µ for any invariant Markov measure µ′ for which ρ′ = ρ.

(b) Take an arbitrary sequence tk → ∞ and assume that is is increasing (without loss of

generality). Given a function f ∈ Cb(X), consider the sequence

ξk(ω) = 〈f, ϕ(tk, θ−tkω, ·)
∗ρ〉.

One may observe that {ξk} is bounded uniformly in k and ω and a martingale with respect to

the filtration Gk = F0
−tk . Hence, by Doob’s martingale convergence theorem, ξk(ω) converges

almost surely (see Question Sheet 3, Exercise 2). Therefore, by [21, Theorem 7.5.2] (this is

where it is needed that X is a Polish space), there is a random probability measure {µω} and

set of full measure Ω̃ such that (1.5.4) holds for all ω ∈ Ω̃.

The fact that the limit (1.5.4) does not depend on the particular choice of {tk} can be

seen as follows: let {t′k} be another sequence going to ∞ and let µ′ω be the corresponding limit.

Considering the sequence {sk} = {t1, t′1, t2, t′2, . . . }, we observe that the limit (1.5.4) with tk = sk

also exists almost surely such that µω = µ′ω for almost all ω ∈ Ω.

We now show that

µ(dω,dx) = µω(dx)P(dω)

is a Markov invariant measure for the RDS. By definition via (1.5.4), the disintegration {µω} is

F0
−∞-measurable. For proving invariance of µ, it is again enough to show that for any t > 0 and

almost all ω ∈ Ω

ϕ(t, ω, ·)∗µω = µθtω.

Let us set tk = kt and choose any ω ∈ Ω̃ such that θtω ∈ Ω̃, which holds with probability one.

Then we have by (1.5.4) and the cocycle property that for all f ∈ Cb(X)

〈f, ϕ(t, ω, ·)∗µω〉 =

∫
X
f(ϕ(t, ω, x))µω(dx) = lim

k→∞

∫
X
f (ϕ(t, ω, ϕ(tk, θ−tkω, x))) ρ(dx)

= lim
k→∞

∫
X
f
(
ϕ(tk+1, θ−tk+1

(θtω), x)
)
ρ(dx)

= lim
k→∞
〈f, ϕ(tk, θ−tk(θtω), ·)∗(ρ)〉 = 〈f, µθtω〉.

It remains to show that E[µω] = ρ: take any f ∈ Cb(X) and note that, due to (1.5.4), we have

almost surely

〈f, µω〉 = lim
k→∞
〈f, ϕ(k, θ−kω, ·)∗ρ〉.

Taking the mean on bothe sides and using the dominated convergence theorem, we obtain

E〈f, µω〉 = lim
k→∞

E〈f, ϕ(k, θ−kω, ·)∗ρ〉

= lim
k→∞

E〈f, ϕ(k, ω, ·)∗ρ〉 = lim
k→∞
〈Pkf, ρ〉 = 〈f, ρ〉,

where we have used the stationarity of ρ. This finishes the proof.
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Remark 1.5.7. We observe similarly to [5] that, in the situation of µ and ρ corresponding in

the way described above,

E[µω(·)|F∞0 ] = E[µω(·)] = ρ(·) ,

and, hence,

E[µ(·)|F∞0 ] = (P× ρ)(·) .

Therefore the probability measure P × ρ is invariant for (Θt)t≥0 on (Ω × X,F∞0 × B(X)). In

words, the product measure with marginals P and ρ is invariant for the random dynamical

system restricted to one-sided path space; see also Question sheet 3. We will discuss a similar

relation for quasi-stationary and quasi-ergodic measures in Chapter 5.



Chapter 2

(Linear and local) stability of

random dynamical systems

In this chapter, we will prove Oseledets’ Multiplicative Ergodic Theorem, which implies the

existence of Lyapunov exponents along corresponding invariant subspaces, describing stability

properties of a differentiable random dynamical system. Big parts of the proof and its prepara-

tion, in particular the proof of the subadditive ergodic theorem, are similar to [27].

2.1 Linear random dynamical systems and Lyapunov exponents

In the following, we will focus on the Euclidean state space X = Rd. Assume that the random

dynamical system (θ, ϕ) is Ck for some k ≥ 1, i.e., the cocycle ϕ(t, ω, ·) ∈ Ck for all t ∈ T and

ω ∈ Ω. The linearization or derivative Dxϕ(t, ω, x) of ϕ(t, ω, ·) at x ∈ X is the Jacobian d × d
matrix

Dxϕ(t, ω, x) =
∂ϕ(t, ω, x)

∂x
.

Differentiating the equation

ϕ(t+ s, ω, x) = ϕ(t, θsω, ϕ(s, ω, x))

on both sides and applying the chain rule to the right hand side yields

Dϕ(t+ s, ω, x) = Dϕ(t, θsω, ϕ(s, ω, x))Dϕ(s, ω, x) = Dϕ(t,Θs(ω, x))Dϕ(s, ω, x) ,

i.e. the cocycle property of Dϕ with respect to the skew product flow (Θt)t∈T.

This will be our main example in mind when we work with linear random dynamical systems

(Φ, θ) in the following.

Definition 2.1.1. A random dynamical system (θ, ϕ) is called linear if the map ϕ(t, ω) : Rd →
Rd, x 7→ ϕ(t, ω, x), is linear for any (t, ω) ∈ R × Ω. We then define Φ : R × Ω → Rd×d by

Φ(t, ω)x := ϕ(t, ω, x).

28
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In the following, we investigate the Lyapunov exponents λ(ω, x), defined, for all 0 6= x ∈ Rd

, by

λ(ω, x) = lim sup
t→∞

1

t
ln ‖Φ(t, ω)x‖.

We will see that, under a suitable integrability assumption, these limits exist beyond the lim sup

and that they correspond with invariant subspaces along the dynamics. A crucial theorem that

we will need is discussed in the following section.

The main example throughout this lecture concerns stochastic differential equations in

Stratonovich form, as given in (1.4.7), by

dXt = f0(Xt)dt+
m∑
j=1

gj(Xt) ◦ dW j
t

where W j
t are independent real valued Brownian motions, f0 is a C1 vector field and f1, . . . , fm

are C2 vector fields satisfying bounded growth conditions, as e.g. (global) Lipschitz continuity,

in all derivatives to guarantee the existence of a (global) random dynamical system for ϕ and Dϕ.

We write the equation in Stratonovich form when differentiation is concerned as the classical

rules of calculus are preserved. If the state space X = Rd, we can apply the conversion formula

to the Itô integral.

It is easy to observe analogously to Theorem 1.3.1, that the derivative Dϕ(t, ω, x) applied to

an initial condition v0 ∈ TxX ∼= Rd solves uniquely the variational equation

dv = Df0(ϕ(t, ω, x))v dt+
m∑
j=1

Dgj(ϕ(t, ω, x))v ◦ dW j
t , v(0) = v0 ∈ TxX . (2.1.1)

In case the derivative can be written as a matrix, as for example for X = Rd, the Jacobian

Dϕ(t, ω, x) satisfies Liouville’s equation

det Dϕ(t, ω, x) = exp

(∫ t

0
trace Df0(ϕ(s, ω, x))ds

+
m∑
j=1

∫ t

0
trace Dfj(ϕ(s, ω, x)) ◦ dW j

s

)
. (2.1.2)

2.2 Kingman’s subadditive ergodic theorem

In this section, we work in discrete time, and consider (Ω,F ,P) with measure-preserving θ :

Ω→ Ω. For a measurable function φ : Ω→ [−∞,∞] we will write

φ+(ω) = max{0, φ(ω)}, φ−(ω) = max{0,−φ(ω)}.

A measurable function φ is called invariant if φ(θω) = φ(ω) for P-almost all ω ∈ Ω.

Definition 2.2.1. A sequence φn : Ω→ [−∞,∞], n ≥ 1 of measurable functions is subadditive,
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relative to θ, if

φn+m ≤ φm + φn ◦ θm for all m,n ≥ 1.

Example 2.2.2. 1. For any measurable function ψ : Ω→ R, the orbital sum φn =
∑n−1

j=0 ψ ◦
θj is subadditive (even additive).

2. Given any measurable map A : Ω → Rd×d, consider the sequence φn(ω) = log ‖An(ω)‖,
where

An(ω) = A(θn−1ω) · · ·A(θω)A(ω).

By sublinearity of matrix products, you may check that the sequence is subadditive. This

is precisely the example that will be important for the Furstenberg-Kesten and the Multi-

plicative Ergodic Theorem.

We can now formulate the main theorem of this section:

Theorem 2.2.3 (Kingman’s subadditive ergodic theorem). Let φn : Ω → [−∞,∞), n ≥ 1, be

a subadditive sequence of measurable functions such that φ+
1 ∈ L1(P). Then (φn/n) converges

P-almost everywhere to some invariant function φ : Ω→ [−∞,∞) (which is constant when P is

ergodic).

Furthermore, the positive part φ+ is integrable and∫
φ dP = lim

n→∞

1

n

∫
φn dP = inf

n

1

n

∫
φn dP ∈ [−∞,+∞).

[End of Lecture IV, 04.05.]

Proof. Firstly, observe that, by subadditivity and induction,

φn ≤ φ1 + φ1 ◦ θ + · · ·+ φ1 ◦ θn−1.

The same holds true if we replace φn and φ1 by φ+
n and φ+

1 . Hence, φ+
1 ∈ L1(P) implies that

φ+
n ∈ L1(P) for all n.

Moreover, observe that

an =

∫
φn dP

is a subadditive sequence in [−∞,∞). Hence, by Exercise 1 on Question Sheet 4, we have that

lim
n→∞

an
n

= inf
n∈N

an
n

=: L ∈ [−∞,∞)

exists (see also QS 4, Exercise 3 (a)). Define now φ− : Ω→ [−∞,∞] and φ+ : Ω→ [−∞,∞] by

φ−(ω) = lim inf
n→∞

φn
n

(ω), φ+(ω) = lim sup
n→∞

φn
n

(ω).

We will show that ∫
φ− dP ≥ L ≥

∫
φ+ dP, (2.2.1)
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provided that every φm is bounded away from −∞. Hence, we obtain the statement of the

theorem for this case with φ = φ− = φ+, which is invariant (see QS 4, Exercise 3 (c)). At the

end, we use a truncation trick to remove the boundedness assumption and obtain the proof in

full generality.

1. We firstly make an important estimate for φn: Assume in the following that φ− > −∞
at every point, and fix ε > 0. We define, for each k ∈ N,

Ek = {ω ∈ Ω : φj(ω) ≤ j(φ−(ω) + ε) for some j ∈ {1, . . . , k}}.

Note that Ek ⊂ Ek+1 for all k and Ω = ∪kEk. We define

ψk(ω) =

 φ−(ω) + ε, if ω ∈ Ek,

φ1(ω), if ω ∈ Eck.

Observing that ψk(ω) decreases to φ−(ω) + ε as k → ∞, for all ω ∈ Ω, we obtain by the

monotonic convergence theorem∫
ψk dP→

∫
(φ− + ε) dP, as k →∞.

The estimate is

φn(ω) ≤
n−k+1∑
i=0

ψk(f
i(ω)) +

n−1∑
i=n−k

max{ψk, φ1}(θiω), (2.2.2)

for any n > k ≥ 1 and P-almost all ω ∈ Ω.

Proof of estimate (2.2.2): For almost all ω ∈ Ω, we have φ−(ω) = φ−(θjω)) for any j ≥ 1

(QS 4, Exercise 3 (c)). Taking such ω, consider now the, possibly finite, sequence

m0 ≤ n1 < m1 ≤ n2 < m2 < · · ·

defined in the following way: Take m0 = 0. Given j ≥ 1, let nj be the smallest integer greater

or equal to mj−1 that satisfies θnjω ∈ Ek (assuming it exists). Then there is an mj with

1 ≤ mj − nj ≤ k such that

φmj−nj (θnjω) ≤ (mj − nj) [φ− (θnjω) + ε] . (2.2.3)

Now given any n ≥ k, let l ≥ 0 be the largest integer such that n ≥ ml. Subadditivity yields

φnj−mj−1 (θmj−1ω) ≤
nj−1∑
i=mj−1

φ1(θiω)
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for any j = 1, . . . , l such that mj−1 6= nj , and similarly for φn−ml (θmlω). We observe that

φn(ω) ≤ φml(ω) + φn−ml(θ
mlω)

≤
l∑

j=1,nj 6=mj−1

φnj−mj−1(θmj−1ω) +

l∑
j=1

φmj−nj (θ
njω) + φn−ml(θ

mlω)

≤
∑
i∈I

φ1(θiω) +
l∑

j=1

φmj−nj (θ
njω), (2.2.4)

where I =
(
∪lj=1[mj−1, nj) ∪ [ml, n)

)
∩ N. Observe that

φ1(θiω) = ψk(θ
iω)

for any

i ∈ I =
(
∪lj=1[mj−1, nj) ∪ [ml,min{nl+1, n})

)
∩ N,

since θiω ∈ Eck in these cases. At the same time, using the invariance of φ− and the fact that

ψk ≥ φ− + ε, we observe from (2.2.3) that

φmj−nj (θnjω) ≤
mj−1∑
i=nj

[
φ−
(
θiω
)

+ ε
]
≤

mj−1∑
i=nj

ψk
(
θiω
)

for every j = 1, . . . , l. We can combine this with (2.2.4) to obtain

φn ≤
min{nl+1,n}−1∑

i=0

ψk
(
θiω
)

+

n−1∑
i=nl+1

φ1

(
θiω
)

Since nl+1 ≥ ml+1 − k > n− k, estimate (2.2.2) is shown.

2. We now use the estimate (2.2.2) to show∫
φ− dP = L, (2.2.5)

whenever φn/n is uniformly bounded from below, i.e., there exists κ > 0 such that φn/n ≥ −κ
for every n, such that, in particular, φ≥ − κ > −∞.

In this situation, we can apply Fatou’s lemma to φn/n + κ to obtain that φ− is integrable

with ∫
φ− dP ≤ lim

n→∞

∫
φn
n

dP = L.

For the opposite inequality we observe from (2.2.2) that

1

n

∫
φn dP ≤ n− k

n

∫
ψkdP +

k

n

∫
max{ψk, φ1} dP.

Noting that max{ψk, φ1} ≤ max{φ− + ε, φ+
1 } and taking n → ∞, we obtain that L ≤

∫
ψk dP
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for any k. Now, letting k →∞, we get

L ≤
∫
φ− dP + ε.

Since ε could be taken arbitrarily small, the proof is finished for this case.

Now, removing the uniform boundedness assumption, we define for each κ > 0,

φκn = max{φn,−κn}, and φκ− = max{φ−,−κ}.

The sequence φκn is clearly subadditive, the positive part of φκ1 is integrable, we clearly have

φκ− = lim infn→∞(1/n)φκn and the uniform boundedness assumption holds. Hence, for any fixed

κ > 0, we deduce from the already shown that∫
φκ− dP = inf

n

1

n

∫
φκn dP. (2.2.6)

By monotone convergence, we additionally observe that∫
φn dP = inf

κ

∫
φκn dP and

∫
φ− dP = inf

κ

∫
φκ− dP. (2.2.7)

Now, combining (2.2.6) and (2.2.7), we obtain∫
φ− dP = inf

κ

∫
φκ− dP = inf

κ
inf
n

1

n

∫
φκn dP = inf

n

1

n

∫
φn dP = L,

which shows the claim (2.2.5).

3. We have shown on Question Sheet 4, Exercise 3 (d), that, if infω∈Ω φn(ω) > −∞ for any

n, we may now deduce that ∫
φ+ P ≤ L.

This shows all the claims of the theorem under the boundedness assumptions.

4. Finally, for the general case, define again for any κ > 0

φκn = max{φn,−κn}, and φκ− = max{φ−,−κ}, and φκ+ = max{φ+,−κ}.

Then the previous arguments hold clearly for the sequence φκn for any fixed κ > 0 such that

φκ+ = φκ− almost surely. At the same time, we have that

φκ− → φ− and φκ+ → φ+ when κ→∞,

such that φ− = φ+ almost surely. This finishes the proof of the theorem, where the fact that

φ is constant almost surely when P is ergodic, follows from the classical fact invariant functions

are constant almost surely with respect to ergodic measures.

We now obtain the famous ergodic theorem by Birkhoff as a corollary:
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Corollary 2.2.4 (Birkhoff’s ergodic theorem). Let φ : Ω→ R be a P-integrable function. Then

for almost all ω there is

φ̃(ω) = lim
n→∞

1

n

n−1∑
j=0

φ(θjω),

such that φ̃ is invariant and integrable with∫
φ̃ dP =

∫
φ dP.

If P is ergodic, we have for almost all ω

φ̃ =

∫
φ dP.

Proof. The statements follow directly from Theorem 2.2.3, considering the (sub-)additive se-

quence
∑n−1

j=0 φ(θjω).

2.3 Theorem about extremal Lyapunov exponents

Consider in the following the setting of a linear random dynamical system in discrete time with

skew product Θ : Ω × Rd → Ω × Rd given by Θ(ω, v) = (θω,A(ω)v), where A : Ω → Rd×d is a

(invertible) matrix generating the RDS. In particular, we will write the cocycle as

Φ(n, ω) = An(ω) = A(θn−1ω) · · ·A(θω)A(ω).

In the following we will write for any x ∈ (0,∞)

log+(x) = max{0, log(x)}.

From the previous subsection it is now easy to infer the following theorem about extremal

Lyapunov exponents, in some cases also called the Furstenberg-Kesten theorem:

Theorem 2.3.1 (Furstenberg-Kesten). If log+ ‖A±1‖ ∈ L1(P), then the extremal Lyapunov

exponents

λ+(ω) = lim
n→∞

1

n
log ‖An(ω)‖ and λ−(ω) = lim

n→∞

1

n
log ‖(An(ω))−1‖−1

exist for almost all ω ∈ Ω.

Furthermore, the functions λ± are invariant and P-integrable, with∫
λ+ dP = lim

n→∞

1

n

∫
log ‖An(ω)‖dP,∫

λ− dP = lim
n→∞

1

n

∫
log ‖(An(ω))−1‖−1 dP.
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Proof. Define

φn = log ‖An(ω)‖

and

ψn = log ‖(An(ω))−1‖.

Then, by the assumptions, we have that φ+
1 , ψ

+
1 ∈ L1(P) and, hence, φ1(ω), ψ1(ω) ∈ [−∞,∞)

for almost all ω ∈ Ω. It is easy to see by sub-multiplicity of the matrix norm and the properties

of log that the sequences φn, ψn are subadditive. Hence, the statements follow from Subadditive

Ergodic Theorem 2.2.3.

[End of Lecture V, 11.05.]

2.4 The Multiplicative Ergodic Theorem in two dimensions

Firstly, let us state and prove the theorem in two dimensions as it possible to already see the

main features without high technical effort.

Consider in the following the setting of a linear random dynamical system in discrete time and

two space dimensions, with skew product Θ : Ω×R2 → Ω×R2 given by Θ(ω, v) = (θω,A(ω)v),

where A : Ω→ R2×2 is an invertible matrix generating the RDS. In particular, we will write the

cocycle as

Φ(n, ω) = An(ω) = A(θn−1ω) · · ·A(θω)A(ω).

Recall the definition of the extremal Lyapunov exponents λ+, λ− from above.

Theorem 2.4.1 (One-sided MET in two dimensions). Consider a measurable family of invertible

matrices A : Ω→ R2×2 such that

log+ ‖A±1‖ ∈ L1(P)

is satisfied. Then for almost all ω ∈ Ω the Lyapunov exponents λ−, λ+ satisfy

(1) either λ−(ω) = λ+(ω) and

lim
n→∞

1

n
log ‖An(ω)v‖ = λ±(ω), for all v ∈ R2.

(2) or λ+(ω) > λ−(ω) and there exists a vector line Es(ω) ⊂ R2 such that

lim
n→∞

1

n
log ‖An(ω)v‖ =

 λ−(ω), if 0 6= v ∈ Es(ω),

λ+(ω), if 0 6= v ∈ R2 \ Es(ω).

Furthermore, A(ω)Es(ω) = Es(θω).

Proof. For the proof we refer to Question Sheet 5.

In two-sided time, we even obtain a full decomposition of R2 with respect to the dynamics.
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Theorem 2.4.2 (Two-sided MET in two dimensions). Assume the situation of Theorem 2.4.1

with the additional assumption that θ : Ω → Ω is invertible almost surely. Then for almost all

ω ∈ Ω the Lyapunov exponents λ−, λ+ satisfy

(1) either λ−(ω) = λ+(ω) and

lim
n→±∞

1

n
log ‖An(ω)v‖ = λ±(ω), for all v ∈ R2.

(2) or λ+(ω) > λ−(ω) and there exists a direct sum decomposition R2 = Es(ω) ⊕ Eu(ω) such

that

lim
n→∞

1

n
log ‖An(ω)v‖ =

 λ−(ω), if 0 6= v ∈ Es(ω),

λ+(ω), if 0 6= v ∈ R2 \ Es(ω),

and

lim
n→−∞

1

n
log ‖An(ω)v‖ =

 λ−(ω), if 0 6= v ∈ R2 \ Eu(ω),

λ+(ω), if 0 6= v ∈ Eu(ω).

Furthermore, A(ω)Es(ω) = Es(θω) and A(ω)Eu(ω) = Eu(θω), and

lim
n→±∞

1

n
log |sin](Eu(θnω), Es(θnω))| = 0.

Proof. Similarly to QS 5, we deal only with A(ω) ∈ SL(2) since the statement can then easily

be transferred to the general setting. Let us write again λ(ω) = λ+(ω) = −λ−(ω).

The case λ(ω) = 0 directly follows from Theorem 2.4.1 applied to the RDS Θ and its

inverse Θ−1. Hence, from now on we assume that λ(ω) > 0. From Theorem 2.4.1, we can take

Es(ω) = Rs(ω) and Eu(ω) = Ru(ω) for Θ and Θ−1 respectively. Hence, we need to show that

the vectors s(ω) and u(ω) are non-collinear for almost all ω such that λ(ω) > 0.

For that, it is enough to show that

lim
n→−∞

1

n
log ‖An(ω)|Es(ω)‖ = −λ(ω),

since we have limn→−∞
1
n log ‖An(ω)|Eu(ω)‖ = λ(ω) from applying Theorem 2.4.1 to Θ−1. Let

us denote

ψ(ω) := lim
n→−∞

1

n
log ‖An(ω)|Es(ω)‖,

which exists by applying Theorem 2.4.1 to Θ−1, and consider the sequences of functions

ψn(ω) :=
1

−n
log ‖A−n(ω)|Es(ω)‖ and φn(ω) :=

1

−n
log ‖(An(ω)|Es(ω))−1‖.

Note from the definition of A−n that ψn(ω) = φn(θ−nω) for all n ≥ 1. Since Es is one-

dimensional, we may even write φn(ω) = 1
n log ‖An(ω)|Es(ω)‖, such that we can see that
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limn→∞ φn(ω) = −λ(ω). In particular, we have that

lim
n→∞

P{ω : |φn(ω) + λ(ω)| > δ} = 0 for any δ > 0.

Using the measure invariance of θ, we conclude

lim
n→∞

P{ω :
∣∣φn(θ−nω) + λ(θ−nω)

∣∣ > δ} = 0 for any δ > 0.

With the above and the invariance of λ we obtain

lim
n→∞

P{ω : |ψn(ω) + λ(ω)| > δ} = 0 for any δ > 0,

i.e. ψn converges to −λ in probability. Using that ψn converges to ψ almost everywhere, we

obtain ψ = λ− as claimed.

It remains to show that, for α(ω) := ](Es(ω), Eu(ω)), we get

lim
n→±∞

1

n
log |sinα(θnω)| = 0.

It is an elementary exercise to show that

‖A(ω)‖−2 ≤ |sinα(θω)|
|sinα(ω)|

≤ ‖A(ω)‖2.

Hence, we observe that

|log |sinα(θω)| − log |sinα(ω)|| ≤ 2 log ‖A(ω)‖,

such that log |sinα| ◦ θ− log |sinα| ∈ L1(P). In combination with Exercise 1, QS 5, this finishes

the proof.

2.5 The MET in arbitrary dimensions

For the following, let Θt : Ω× Rd → Ω× Rd be a linear RDS given as skew product Θt(ω, x) =

(θtω,Φ(t, ω)x), where t can be discrete or continuous time. In discrete time, we will have as before

a generating matrix A(ω) = Φ(1, ω). In contiuous time, you can think of Φ(t, ω) = Dyϕ(t, ω̃, y)

where ϕ(t, ω̃, y) solves a random or stochastic differential equation and Φ is a cocycle over

Θ̃t : Ω := Ω̃× Rd → Ω̃× Rd, Θ̃t(ω) = Θt(ω̃, y) = (θ̃tω̃, ϕ(t, ω̃, y),

which itself is an RDS with invariant measure P̃.

For the following we need the following notions: a Grassmannian manifold Gr(l, d), 0 ≤ l ≤ d,

is the set of all l-dimensional linear subspaces of Rd. The Grassmannian of Rd is the disjoint

union Gr(d) of the Grassmanian manifolds Gr(l, d). A map ω 7→ Vω with values in Gr(d) is

measurable if and only if there exist measurable, linearly independent vector fields that span Vω
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at each point (see Question Sheet 6). Furthermore, we have the following definition:

Definition 2.5.1. A flag in Rd is a decreasing family W 1 ) · · · )W k ⊃ {0} of vector subspaces

of Rd. The flag is called complete if k = d and dimW j = d+ 1− j for all j = 1, . . . , d.

We can now use all our observations from before to prove the following major theorems of

the course. We will firstly state both theorems, the Multiplicative Ergodic Theorem in one-sided

and in two-sided time, and then give (sketches) of the proof afterwards.

Theorem 2.5.2 (Oseledets MET in one-sided time). Consider a linear RDS Θ = (θ,Φ) on

Ω × Rd, i.e. Φ(t, ω) : Rd → Rd is a linear cocycle over the metric DS (Ω,F ,P, θt). Then the

following statements holds:

(A) Let time T = N and the generator satisfy

log+ ‖A±1‖ ∈ L1(P). (2.5.1)

Then for almost every ω there are k = k(ω), numbers λ1(ω) > · · · > λk(ω) and a flag

Rd = V 1
ω ) · · · ) V k

ω ) {0} such that for all i = 1, . . . , k:

(a) k(θω) = k(ω), λi(θω) = λi(ω) and A(ω)V i
ω = V i

θω;

(b) the maps ω 7→ k(ω), ω 7→ λi(ω) and ω 7→ V i
ω with values in N, R and Gr(d), respectively,

are measurable;

(c)

lim
n→∞

1

n
log ‖An(ω)v‖ = λi(ω) for all v ∈ V i

ω \ V i+1
ω (with V k+1

ω = {0}).

If P is ergodic, then k(ω) and each Lyapunov exponent λi(ω) are constant almost surely,

and so are the dimensions of the Oseledets subspaces V i
ω.

(B) Let T = R+ and Φ(t, ω) ∈ GL(d). If we have

sup
0≤t≤1

log+ ‖Φ(t, ·)±1‖ ∈ L1(P), (2.5.2)

then all statements of part (A) hold with n, θ and An(ω) replaced with t, θt and Φ(t, ω).

We call dimV i
ω − dimV i+1

ω the multiplicity of the corresponding Lyapunov exponent. The

Lyapunov spectrum of the RDS is the set of all Lyapunov exponents, each counted with mul-

tiplicity. The Lyapunov exponent is simple if all Lyapunov exponents have multiplicity 1 or,

equivalently, if the Oseledets flag is complete.

In two-sided time, we get the even stronger statement:

Theorem 2.5.3 (Oseledets MET in two-sided time). Consider the situation of Theorem 2.5.2

with now θt : Ω→ Ω being invertible. Then the following statements hold:

(A) Let time T = N and the generator satisfy (2.5.1). Then for almost every ω there exists a

direct sum decomposition Rd = E1(ω)⊕ · · · ⊕ Ek(ω) such that, for all i = 1, . . . , k:
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(a)

A(ω)Ei(ω) = Ei(θω) and V i
ω =

k⊕
j=i

Ej(ω),

(b)

lim
n→±∞

1

n
log ‖An(ω)v‖ = λi(ω) for all v ∈ Ei(ω) \ {0},

(c)

lim
n→±∞

1

n
log

∣∣∣∣∣∣sin]

⊕
i∈I

Ei(θnω),
⊕
j∈J

Ej(θnω)

∣∣∣∣∣∣ = 0 when I ∩ J = ∅,

where the angle between two subspaces is the smallest angle between non-zero vectors of

these subspaces.

(B) Let T = R+ and Φ(t, ω) ∈ GL(d). If we have

sup
0≤t≤1

log+ ‖Φ(t, ·)±1‖ ∈ L1(P), (2.5.3)

then all statements of part (A) hold with n, θ and An(ω) replaced with t, θt and Φ(t, ω).

Note that the multiplicity of each Laypunov exponent λi coincides with the dimension

dimEi(ω) = dimV i
ω − dimV i+1

ω of the associated Oseledets space Ei(ω). Thus the Lyapunov

spectrum is simple if and only if dimEi(ω) = 1 for all i.

Proof of Theorem 2.5.2. (A) We will focus on the proof for discrete time and sketch how one

extends to continuous time later.

1. Constructing the Oseledets flag: For each v ∈ Rd \ {0} and ω ∈ Ω, we set

λ(ω, v) = lim sup
n→∞

1

n
log ‖An(ω)v‖. (2.5.4)

Recall the extremal Lyapunov exponents λ±(ω) and observe the following properties:

Lemma 2.5.4. For almost all ω ∈ Ω and any v, v′ ∈ Rd \ {0},

(i) λ−(ω) ≤ λ(ω, v) ≤ λ+(ω);

(ii) λ(ω, cv) = λ(ω, v) for c 6= 0;

(iii) λ(ω, v + v′) = max{λ(ω, v), λ(ω, v′)} if v + v′ 6= 0;

(iv) λ(ω, v) = λ(θω,A(ω)v).

This lemma is shown in Exercise 2, QS 6.

Let us now take ω as in the above Lemma and k(ω) ≥ 1 to be the number of elements of the

set

L := {λ(ω, v) : v ∈ Rd \ {0}}.
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Let λ1(ω) > · · · > λk(ω) be those elements and define

V i
ω = {v ∈ Rd \ {0} : λ(ω, v) ≤ λi(ω)} ∪ {0} for i = 1, . . . , k(ω).

From Lemma 2.5.4, we obtain that V i
ω is a vector space for every i. Furthermore, we get the

flag property from these definitions, i.e.,

Rd = V 1
ω ) · · · ) V k(ω)

ω ) {0},

where k(ω) ≤ d. We also observe that

λ(ω, v) = λi(ω) for every v ∈ V i
ω \ V i+1

ω ,

and

λ−(ω) ≤ λi(ω) ≤ λ+(ω) for all i = 1, . . . , k(ω).

Finally, we obtain the invariance of k(ω), λi(ω) and V i
ω with respect to (θ,A) from Lemma 2.5.4

(iv), and the fact that A(ω) is a bijection. Note in particular that we need the invertibility of

A(ω) at precisely this point.

We have shown part (a) of the theorem.

2. Measurability: For the proof of measurability, as stated in (b), we need the following

statements (for proofs see Castaing and Valadier [7]):

Proposition 2.5.5 (Theorem III.23 in [7]). Let (Ω,F ,P) be a complete probability space and

Y be a separable metric space. Let further F ⊗ B(Y ) be the product σ-algebra in Ω × Y and

π : Ω× Y be the canonical projection. Then π(E) ∈ F for every E ∈ F ⊗ B(Y ).

Proposition 2.5.6 (Theorem III.30 in [7]). Let (Ω,F ,P) be a complete probability space and Y

be a separable metric space. Let K(Y ) be the space of compact subsets of Y , with the Haudorff

topology. The following are equivalent:

(a) a map ω 7→ Kω from Ω to K(Y ) is measurable;

(b) the graph {(ω, y) : y ∈ Kω} is in F ⊗ B(Y );

(c) {ω ∈ Ω : Kω ∩ U 6= ∅} ∈ F for any open set U ⊂ Y .

We obtain the following as a corollary of Proposition 2.5.6:

Proposition 2.5.7. Let (Ω,F ,P) be a complete probability space and ω 7→ Vω be a map from Ω

to the Grassmannian Gr(d). Then the following are equivalent:

(a) the map ω 7→ Vω is measurable

(b) the graph {(ω, v) ∈ Ω× Rd : v ∈ Vω} is in F × B(Rd).
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Without loss of generality, we may assume that our probability space (Ω,F ,P) is complete

(otherwise it can be completed). Hence, we can apply these propositions.

Let e1, . . . ed be an arbitrary basis of Rd and note with Lemma 2.5.4 that

λ1(ω) = max{λ(ω, ei) : 1 ≤ i ≤ d}.

Since (ω, v) 7→ λ(ω, v) is measurable, it follows that ω 7→ λ1(ω) is measurable and

V 2
∗ = {(ω, v) ∈ Ω× Rd \ {0} : λ(ω, v) < λ1(ω)}

is a measurable subset of Ω× Rd. Observe that

π(V 2
∗ ) = {ω ∈ Ω : λ(ω, v) < λ1(ω) for some v ∈ Rd \ {0}}

= {ω ∈ Ω : k(ω) ≥ 2}.

By Proposition 2.5.5 this is a measurable subset of Ω. For ω ∈ π(V 2
∗ ) we define

V 2
ω = {v ∈ Rd : (ω, v) ∈ V 2

∗ } ∪ {0}.

Since V 2
∗ ∪ (Ω× {0}) is a measurable subset of Ω× Rd, Proposition 2.5.7 gives that ω → V 2

ω is

a measurable map on π(V 2
∗ ). Hence, by Exercise 1 on Question Sheet 6, each

Ω2
l = {ω ∈ π(V 2

∗ ) : dimV 2
ω = l}, 1 ≤ l ≤ d

is a measurable subset and for each l there exist measurable functions

v1, . . . , vl : Ω2
l → Rd

such that {v1(ω), . . . , vl(ω)} is a basis of V 2
ω for every ω. Then, in particular

λ2(ω) = max{λ(ω, vi(ω)) : 1 ≤ i ≤ l}

is a measurable function on Ω2
l for every 1 ≤ l ≤ d.

Repeating these arguments, we find that

(i) For every c ≥ 1 the set {ω ∈ Ω : k(ω) ≥ c} is measurable such that the map ω → k(ω) is

measurable,

(ii) each Lyapunov exponent λi(ω) is a measurable function of ω on the set π(V i
∗ ) = {ω ∈ Ω :

k(ω) ≥ i},

(iii) each Oseledets space V i
ω is a measurable function of ω on π(V i

∗ ).

Hence, we are done with part (b) of the theorem.

[End of Lecture VI, 18.05.]
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3. Finding the Lyapunov exponents as limits in Oseledets spaces: Part (c) turns out

to be by far the hardest part of the proof. First of all we establish a statement about the time

averages of skew products. Let X be a compact metric space. We introduce the space C(Ω×X)

as the space of measurable observables H : Ω ×X → R such that H(ω, ·) ∈ C0(X) for almost

all ω and ω 7→ ‖H(ω, ·)‖∞ is integrable. We can then define the complete norm

‖H‖1 =

∫
‖H(ω, ·)‖∞ dP(ω) (2.5.5)

on C(Ω×X). For continuous discrete-time RDS (Θ) : Ω×X → Ω×X, we can then state:

Proposition 2.5.8. For any H ∈ C(Ω×X), define

I(ω) = lim
n→∞

1

n
inf
v∈X

n−1∑
j=0

H
(
Θj(ω, v)

)
and S(ω) = lim

n→∞

1

n
sup
v∈X

n−1∑
j=0

H
(
Θj(ω, v)

)
.

Then the limit exists at P-almost every point and there are invariant measures µI and µS of Θ

such that ∫
H dµI =

∫
I dP and

∫
H dµS =

∫
S dP. (2.5.6)

The proof can be done via the subadditive ergodic theorem and using Proposition 2.5.6.

Similarly, by using Birkhoff’s ergodic theorem and Proposition 2.5.5, one obtains the following

corollary:

Corollary 2.5.9. For almost all ω ∈ Ω there are vI(ω) ∈ X and vS(ω) ∈ X such that

I(ω) = lim
n→∞

1

n

n−1∑
j=0

H
(
Θj(ω, vI(ω))

)
and S(ω) = lim

n→∞

1

n

n−1∑
j=0

H
(
Θj(ω, vS(ω))

)
.

3.1 Coinciding matrix limits in Oseledets spaces: We now apply these observations to

linear cocycles. In more detail, we prove that for any measurable invariant subbundle ω 7→ Vω

for Θ, i.e. Vω ⊂ Rd is a linear subspace and A(ω)Vω = Vθω, we have for almost all ω ∈ Ω

lim
n→∞

1

n
log ‖(An(ω)|Vω)−1‖−1 = min{λ(ω, v) : v ∈ Vω \ {0}}; (2.5.7)

lim
n→∞

1

n
log ‖(An(ω)|Vω)‖ = max{λ(ω, v) : v ∈ Vω \ {0}}. (2.5.8)

Taking Vω = Rd, this immediately implies λ+(ω) = λ1(ω) and λ−(ω) = λk(ω) for almost all

ω ∈ Ω.

To prove (2.5.7) and (2.5.8), we may suppose that dimVω = l for all ω, up to restricting

to invariant subsets of Ω. Note that using Gram-Schmidt we can find measurable functions

{v1(ω), . . . , vl(ω)} that are an orthonormal basis of Vω, identifying Vω with Rl through an isom-

etry.

We will denote D(ω) = A(ω)|Vω and let ΘD : Ω × Rl → Ω → Rl be given by ΘD(ω, v) =

(θω,D(ω)v). We clearly may induce log+ ‖D±1‖ ∈ L1(P). Denoting by PRl the projective
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space with respect to Rl, i.e. the space of vector lines through {0} in Rl, we introduce the

projectivization of ΘD

Θ̃D : Ω× PRl → Ω× PRl.

Consider H : Ω× PRl → R, defined by

H(ω, [v]) = log
‖D(ω)v‖
‖v‖

.

Note that clearly H ∈ C(Ω× PRl). For any v ∈ Rl \ {0} and any n ≥ 0,

lim sup
n→∞

1

n

n−1∑
j=0

H
(

Θ̃j
D(ω, [v])

)
= lim sup

n→∞

1

n
log

n−1∏
j=0

‖Dj+1(ω)v‖
‖Dj(ω)v‖

= lim sup
n→∞

1

n
log
‖Dn(ω)v‖
‖v‖

= λD(ω, v),

where λD(ω, v) denotes the corresponding exponents (2.5.4) for D. We observe that for every

n ≥ 0

In(ω) := inf
[v]∈PRl

n−1∑
j=0

H
(

Θ̃j
D(ω, [v])

)
= log ‖Dn(ω)−1‖−1

and

Sn(ω) := sup
[v]∈PRl

n−1∑
j=0

H
(

Θ̃j
D(ω, [v]

)
= log ‖Dn(ω)‖.

Hence, in the sense of Proposition 2.5.8, we have that

I(ω) = lim
n→∞

1

n
In(ω) = λD−(ω) and S(ω) = lim

n→∞

1

n
Sn(ω) = λD+(ω).

In particular, with Corollary 2.5.9, we deduce that

min{λD(ω, v) : v ∈ Rl \ {0}} = λD−(ω), max{λD(ω, v) : v ∈ Rl \ {0}} = λD+(ω),

which shows equations (2.5.7) and (2.5.8).

3.2: Dimension reduction: We will now reduce the problem to two-dimensional cocycles

and then be able to wrap up the proof. For a measurable invariant subbundle ω → Vω, let

α(ω) < β(ω) be measurable invariant functions such that almost surely

(i) λ(ω, v) ≤ α(ω) for all v ∈ Vω \ {0};

(ii) λ(ω, u) ≥ β(ω) for all u ∈ Rd \ Vω.

By relation (2.5.8), we observe that

(iii) limn→∞
1
n log ‖An(ω)|Vω‖ ≤ α(ω).

Let V ⊥ω be the orthogonal complement of Vω, where ω → V ⊥ω is measurable since the orthogonal

complement map ⊥ : Gr(l, d)→ Gr(d− l, d) is a diffeomorphism for every l.
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Note that we may write A, when taken relatively to the direct sum decomposition Rd =

V ⊥ω ⊕ Vω, as

A(ω) =

(
B(ω) 0

C(ω) D(ω)

)
, (2.5.9)

where again D(ω) is the restriction A(ω)|Vω. Clearly, we may infer

log+ ‖B±1‖, log+ ‖C±1‖, log+ ‖D±1‖ ∈ L1(P).

The last two observations that we have to prove before putting together the full proof are the

following: for almost all ω, any u ∈ V ⊥ω \ {0} and any v ∈ Vω

(a) lim supn→∞
1
n log ‖Bn(ω)u‖ = lim supn→∞

1
n log ‖An(ω)(u+ v)‖,

(b) if limn→∞
1
n log ‖Bn(ω)u‖ exists, then limn→∞

1
n log ‖An(ω)(u+v)‖ exists for all v ∈ Vω and

the two limits coincide.

Firstly, it is easy to observe (check!) that for any u ∈ V ⊥ω \ {0} and any v ∈ Vω

lim sup
n→∞

1

n
log ‖An(ω)u‖ = lim sup

n→∞

1

n
log ‖An(ω)(u+ v)‖.

So from now on we just consider the problem for v = 0. We will further use the following fact:

Lemma 2.5.10. For any ε > 0, there is a measurable function dε(ω) > 0 such that

‖Dn(θm(ω))‖ ≤ dεeα(ω)n+(m+n)ε for all m,n ≥ 0. (2.5.10)

Proof. See QS 7. The main idea is to define

1 ≤ bε(ω) = sup{‖Dnω‖e−n(α(ω)+ε) : n ≥ 0} <∞

and to deduce that

dε(ω) := sup{bε(θmω)e−εm : m ≥ 0}

is finite almost surely. Then it is straightforward to derive the claim.

Now observe that we may write, for every n ≥ 0,

An(ω) =

(
Bn(ω) 0

Cn(ω) Dn(ω),

)

where

Cn(ω) =

n−1∑
j=0

Dn−j−1(θj+1ω)C(θjω)Bj(ω). (2.5.11)
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Fixing ω ∈ Ω and u ∈ Vω \ {0}, we consider

γ = max

{
α(ω), lim sup

n→∞

1

n
log ‖Bn(ω)u‖

}
.

Hence, by definition, we have for any ε > 0 a real number bε such that

‖Bj(ω)u‖ ≤ bεej(γ+ε) for every j. (2.5.12)

Using the already often deployed subexponential growth of measurable observables whose loga-

rithm is integrable, we observe that there is a measurable function cε such that

‖C(θjω)‖ ≤ cε(ω)ejε for every j. (2.5.13)

Combining estimates (2.5.10), (2.5.12) and (2.5.13) in (2.5.11) we deduce

‖Cn(ω)u‖ ≤
n−1∑
j=0

dε(ω)e(n−j−1)α(ω)+nεcε(ω)ejεbεe
j(γ+ε) ≤ nαεen(γ+3ε),

where αε = bεcε(ω)dε(ω). This yields

lim sup
n→∞

1

n
log ‖Cn(ω)u‖ ≤ γ + 3ε.

Since u ∈ V ⊥ω , we have An(ω)u = (Bn(ω)u,Cn(ω)u)> and, in particular,

‖An(ω)u‖2 = ‖Bn(ω)u‖2 + ‖Cn(ω)u‖2.

Hence, we obtain, due to ε being arbitrary,

lim sup
n→∞

1

n
log ‖Bn(ω)u‖ ≤ lim sup

n→∞

1

n
log ‖An(ω)u‖ ≤ γ. (2.5.14)

By our definitions of α and β we infer

α(ω) < β(ω) ≤ lim sup
n→∞

1

n
log ‖An(ω)u‖ ≤ γ.

and, hence, from the definition of γ we can now deduce that

lim sup
n→∞

1

n
log ‖Bn(ω)u‖ = γ. (2.5.15)

Thus, the relations (2.5.14) and (2.5.15) yield part (a) above.

Now to part (b). Note that

‖An(ω)(u+ v)‖2 = ‖Bn(ω)u‖2 + ‖Cn(ω)u+Dn(ω)v‖2,
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and, hence, under the assumption of the limit existing,

lim inf
n→∞

1

n
log ‖An(ω)(u+ v)‖ ≥ lim inf

n→∞

1

n
log ‖Bn(ω)u‖ = lim sup

n→∞

1

n
log ‖Bn(ω)u‖.

Hence, the claim follows immediately from part (a).

3.3 Completion of the proof in discrete time: We will now use the previous observations

to show that

lim
n→∞

1

n
log ‖An(ω)v‖ (2.5.16)

exists for almost all ω ∈ Ω and every v ∈ V i
ω \V i+1

ω , 1 ≤ i ≤ k. Then, obviously, λ(ω, v) = λi(ω).

Under replacing Ω by suitable invariant subsets, we may assume that k(ω) =: k is inde-

pendent from ω, and so is the dimension l ≥ 1 of the invariant subbundle Vω := V k
ω . Let

α(ω) = λk(ω) and β(ω) = λk−1(ω) such that we are in the situation of part 3.2 of the proof

with (a) and (b) being true. Furthermore, observe that we can apply (2.5.8) and (2.5.7) to see

lim
n→∞

1

n
log ‖(An(ω)|Vω)−1‖−1 = λk(ω) = lim

n→∞

1

n
log ‖An(ω)|Vω‖

and, hence,

λk(ω) = lim
n→∞

1

n
log ‖An(ω)v‖ for all v ∈ Vω \ {0}. (2.5.17)

Recall our expression for A with respect to the direct sum decomposition Rd = V ⊥ω ⊕ Vω. We

may again identify V ⊥ω with Rd−l and view each B(ω) as an element of GL(d − l). Define now

for all i = 1, . . . , k

U iω = V ⊥ω ∩ V i
ω.

Then by property (a) above, we have for all 1 ≤ i ≤ k − 1 and u ∈ U iω \ U i+1
ω

lim sup
n→∞

1

n
log ‖Bn(ω)u‖ = lim sup

n→∞

1

n
log ‖An(ω)u‖ = λi(ω).

Thus, Rd−l = U1
ω ) · ) Uk−1

ω ) {0} is the Oseledets flag of B with Lyapunov exponents

λ1(ω), . . . , λk−1(ω). Hence, we can now derive the limit for λk1 analagously as in (2.5.17), and

by induction obtain

lim
n→∞

1

n
log ‖Bn(ω)u‖ = λi(ω) for all u ∈ U iω \ U i+1

ω

and every i = 1, . . . , k − 1. Hence, by (b) above, we can deduce the final statement.

4 Transition to continuous time: For reasons of time and space, we refrain from giving

detailed arguments here and refer to [2, Section 3.4] and, even more specifically, [24, Chapter 5,

§2]. The main observation is that one may use the cocycle property to observe for any t ∈ R+

with t = n+ s, n ∈ N and s ∈ [0, 1],

Φ(t, ω) = Φ(n+ s, ω) = Φ(n, θsω)Φ(s, ω) = Φ(s, θnω)Φ(n, ω),
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such that, under condition (2.5.2), the statements can be inferred from discrete time relatively

straight-forwardly.

We can now immediately go to finishing the proof of the MET in two-sided time, i.e. up-

grading the Oseledets flag to a decomposition and proving the subexponential decay of the

angles.

[End of Lecture VII, 25.05.]

Proof of Theorem 2.5.3. In the following, we will again take without loss of generality k(ω) and

dimension l of Vω := V k
ω to be constant in ω, and set α(ω) = λk(ω) and β(ω) = λk−1(ω).

We again write A as a lower triangular matrix (2.5.9) with respect to Rd = V ⊥ω ⊕ Vω, and

get, now also in two-sided time,

lim
n→±∞

1

n
log ‖Dn(ω)−1‖−1 = lim

n→±∞

1

n
log ‖Dn(ω)‖ = α(ω) (2.5.18)

for almost all ω. From the proof of Theorem 2.5.2 we observe that for almost all ω

lim
n→±∞

1

n
log ‖Bn(ω)−1‖−1 = β(ω) (2.5.19)

We can use these facts to show the following:

Proposition 2.5.11. If θ : Ω → Ω is invertible, there exists a measurable invariant subbundle

ω →Wω such that Rd = Wω ⊕ Vω for almost all ω.

Proof. Let L be the space of measurable maps L : ω → Lω where Lω : V ⊥ω → Vω is a linear

map. We introduce the graph transform T : L → L as the transformation characterized by the

condition that for all ω ∈ Ω the image of the graph of Lω under A(ω) coincides with the graph

of T (L)θω, i.e.

A(ω)

(
v

Lωv

)
=

(
w

T (L)θωw

)
.

In particular this yields the relation

T (L)θω = [C(ω) +D(ω)Lω]B(ω)−1 for all ω. (2.5.20)

Note that the graph of some L ∈ L gives an invariant subbundle if and only if T (L)ω = Lω

for almost all ω. Hence, proving the proposition amounts to finding a fixed point of the graph

transform.

We rewrite (2.5.20) as

T (L)ω̃ = Rω̃ + S(L)ω̃ for all ω̃, (2.5.21)

where

R : ω̃ 7→ Rω̃ = C(θ−1ω̃)B(θ−1ω̃)−1
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is an element of L and S : L → L is the linear operator defined by

S(L)ω̃ = D(θ−1ω̃)Lθ−1ω̃B(θ−1ω̃)−1.

Claim: There exist measurable functions α(ω) > 0 and ε(ω) > 0 such that

‖Sk(R)ω̃‖ ≤ a(ω̃)e−kε(ω̃) for every k ≥ 0 and almost all ω̃. (2.5.22)

Assuming this for now, we may define

L : ω̃ 7→ Lω̃ =
∞∑
k=0

Sk(R)ω̃

as an element of L. In particular, observe that

T (L)ω̃ = Rω̃ + S(L)ω̃ = Rω̃ + S

( ∞∑
k=0

Sk(R)

)
ω̃

= Rω̃ +
∞∑
k=1

Sk(R)ω̃ =
∞∑
k=0

Sk(R)ω̃ = Lω̃.

Hence, it only remains to prove the claim (2.5.22), which has been done on QS 7, Exercise 2,

using Lemma 2.5.10 in combination with (2.5.18) and (2.5.19).

Observe that, by relation (2.5.18),

λk(ω) = α(ω) = lim
n→±∞

1

n
log ‖An(ω)v‖ for all v ∈ Vω \ {0}. (2.5.23)

Using the decomposition Rd = Wω⊕Vω, we may identify Wω with Rd−l and let Ã : Ω→ GL(d−l)
be given by Ã(ω) = A(ω)|Wω. Define now for all i = 1, . . . , k

W i
ω = Wω ∩ V i

ω.

Then by property (a) from the proof of Theorem 2.5.2, we have for all 1 ≤ i ≤ k − 1 and

u ∈W i
ω \W i+1

ω

lim sup
n→∞

1

n
log ‖Ãn(ω)u‖ = lim sup

n→∞

1

n
log ‖An(ω)u‖ = λi(ω).

Thus, Rd−l = W 1
ω ) · ) W k−1

ω ) {0} is the Oseledets flag of Ã with Lyapunov exponents

λ1(ω), . . . , λk−1(ω). Hence, we can now derive the limit for λk−1 analagously as in (2.5.23), and

by induction obtain an Ã-invariant splitting Wω = E1(ω)⊕ · · · ⊕ Ek−1(ω) such that

W j
ω =

k−1⊕
i=j

Ei(ω) for every j = 1, . . . , k − 1,

lim
n→∞

1

n
log ‖An(ω)u‖ = λi(ω) for all u ∈ Ei(ω).
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Denoting Ek(ω) = Vω = V k
ω , we obtain the A-invariant splitting

Rd =
k⊕
i=1

Ei(ω)

with

V j
ω = V k

ω ⊕W j
ω =

k⊕
i=j

Ei(ω) for every j = 1, . . . , k − 1,

This proves part (a) and (b).

It remains to show the subexponential decay of angles (c). Given disjoint subsets I and J

of {1, . . . , k}, define

φ(ω) =

∣∣∣∣∣∣sin]

⊕
i∈I

Ei(θnω),
⊕
j∈J

Ej(θnω)

∣∣∣∣∣∣ .
Due to the invariance of the Oseledets subspaces, we obtain

φ(θω)

φ(ω)
=

∣∣∣sin]
(
A(ω)

⊕
i∈I E

i(θnω), A(ω)
⊕

j∈J E
j(θnω)

)∣∣∣∣∣∣sin]
(⊕

i∈I E
i(θnω),

⊕
j∈J E

j(θnω)
)∣∣∣ .

Similarly to before one can observe by elementary linear algebra (check!) that

(‖A(ω)‖‖A(ω)−1‖)−1 ≤

∣∣∣sin]
(
A(ω)

⊕
i∈I E

i(θnω), A(ω)
⊕

j∈J E
j(θnω)

)∣∣∣∣∣∣sin]
(⊕

i∈I E
i(θnω),

⊕
j∈J E

j(θnω)
)∣∣∣ ≤ ‖A(ω)‖‖A(ω)−1‖.

Hence, we obtain that log φ ◦ θ − log φ is P-integrable, and equivalently, that log φ ◦ θ−1 − log φ

is P-integrable. Hence, applying our well-known statement about sublinear growth of integrable

observables we get

lim
n→±∞

1

n
φ (θnω) = 0,

which finishes the proof for discrete time.

The transition to the time-continuous case is as before.

We add a couple of remarks to Theorems 2.5.2 and 2.5.3.

Remark 2.5.12. (a) Note that one can write the discrete time part of Theorem 2.5.2 also for

non-invertible matrix generators A(ω), i.e. the main condition reduces to

log+ ‖A(·)‖ ∈ L1(P).

Then all the statements hold for a forward invariant set Ω̃ ⊂ Ω of full measure, allowing for

λk(ω) = −∞ as a well-defined limit by considering R ∪ {−∞}. The Oseledets subspaces are



CHAPTER 2. (LINEAR AND LOCAL) STABILITY OF RANDOM DYNAMICAL
SYSTEMS 50

then only forward-invariant, i.e.

A(ω)Vi(ω) ⊂ Vi(θω)

for all i = 1, . . . , k(ω).

(b) Recall from Theorem 2.5.2 that, if the underlying measure P is ergodic, then the number of

spaces k(ω) and the dimension of V i
ω, for all i = 1, . . . , k, is constant for almost all ω. Hence,

we find for fixed ω ∈ Ω̃, where Ω̃ is the invariant set of full measure for which the MET holds,

and an Oseledets flag space V i
ω with dimension l, a measurable basis {v1(ω), . . . , vl(ω)} of

V i
ω (also cf. QS 6, Exercise 1). Setting vj(θω) = A(ω)vj(ω) ∈ V i

θω, we observe that

0 =
l∑

j=1

λjvj(θω) = A(ω)
l∑

j=1

λjvj(ω)

implies λ1 = · · · = λl = 0. Hence, {v1(θω), . . . , vl(θω)} is a measurable basis of V i
θω, such

that we obtain an invariant basis for each Oseledets subspace on Ω̃.

(c) Note that in the proof of the two-sided theorem 2.5.3, we actually showed

lim
n→±∞

1

n
log ‖(An(ω)|Ei(ω))−1‖−1 = lim

n→±∞

1

n
log ‖An(ω)|E(ω)i‖ = λi(ω).

From this, we obtain, by bounding the determinant from above and below by the corre-

sponding powers of the matrix norm, that

lim
n→±∞

1

n
log
∣∣det

(
An(ω)|Ei(ω)

)∣∣ = λi(ω) dimEi(ω)

almost surely. Using Theorem 2.5.3 (c), i.e. the subexponential decay of angles between

subspaces, we obtain

lim
n→±∞

1

n
log

∣∣∣∣∣det

(
An(ω)|

⊕
i∈I

Ei(ω)

)∣∣∣∣∣ =
∑
i∈I

λi(ω) dimEi(ω)

for any I ⊂ {1, . . . , k(ω)}. In particular, we obtain

lim
n→±∞

1

n
log |det(An(ω)| =

k(ω)∑
i=1

λi(ω) dimEi(ω), (2.5.24)

and the formulas

lim
n→±∞

1

n
log |det(An(ω)|Eu(ω))| =

∑
λi(ω)>0

λi(ω) dimEi(ω) (2.5.25)

lim
n→±∞

1

n
log |det(An(ω)|Es(ω))| =

∑
λi(ω)<0

λi(ω) dimEi(ω) (2.5.26)
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where Es(ω)) =
⊕

λi(ω)<0E
i(ω) is the stable and Eu(ω)) =

⊕
λi(ω)>0E

i(ω) the unstable

bundle.

(d) Note that there are various notions of the Multiplicative Ergodic Theorem, that extend our

result for Euclidean state space Rd to general smooth manifolds, and also infinite-dimensional

spaces, i.e. Hilbert and Banach spaces. Extending such formulations is still part of active

research and an interesting field to engage in.

Note that the following two subsections have not been discussed in the lecture

and are only there the convenience of the reader.

2.5.1 The MET for differentiable continuos-time RDS

The background given in Section 2.1 plus the MET given in the previous section lead to the

following formulation of the MET, which can be applied to differentiable RDS induced by SDEs

with unique, and therefore ergodic, invariant Markov measure. The proof directly follows from

the previous parts of this chapter:

Theorem 2.5.13 (Multiplicative Ergodic Theorem for derivative cocycle). Suppose the C1-

random dynamical system (θ, ϕ) on Rd, defined in one-sided time, has an ergodic invariant

measure ν and satisfies the integrability condition

sup
0≤t≤1

log+ ‖Dϕ(t, ω, x)±1‖ ∈ L1(ν).

(a) Then there exist a Θ-invariant set ∆ ⊂ Ω × X with ν(∆) = 1, a number 1 ≤ k ≤ d and

real numbers λ1 > · · · > λk, the Lyapunov exponents with respect to ν, such that for all

0 6= v ∈ TxX ∼= Rd and (ω, x) ∈ ∆

λ(ω, x, v) := lim
t→∞

1

t
ln ‖Dϕ(t, ω, x)v‖ ∈ {λ1, . . . , λk} .

Furthermore, the tangent space TxX ∼= Rd admits a flag

Rd = V1(ω, x) ) V2(ω, x) ) · · · ) Vk(ω, x) ) Vk+1(ω, x) = {0} ,

for all (ω, x) ∈ ∆ such that

λ(ω, x, v) = λi ⇐⇒ v ∈ Vi(ω, x) \ Vi+1(ω, x) for all i ∈ {1, . . . , k} .

In particular, we have for all (ω, x) ∈ ∆

lim
t→∞

1

t
ln det |Dϕ(t, ω, x)| =

k∑
i=1

diλi , (2.5.27)

where di is the multiplicity of the Lyapunov exponent λi and
∑p

i=1 di = d.



CHAPTER 2. (LINEAR AND LOCAL) STABILITY OF RANDOM DYNAMICAL
SYSTEMS 52

(b) If the cocycle ϕ is defined in two-sided time and satisfies the above integrability condition

also in backwards time, there exists the Oseledets splitting

Rd = E1(ω, x)⊕ · · · ⊕ Ek(ω, x)

of the tangent space into random subspaces Ei(ω, x), the Oseledets spaces, for all (ω, x) ∈ ∆.

These have the following properties for all (ω, x) ∈ ∆:

(i) The Oseledets spaces are invariant under the derivative flow, i.e. for all t ∈ R

Dϕ(t, ω, x)Ei(ω, x) = Ei(Θt(ω, x)) ,

(ii)

lim
t→±∞

1

t
ln ‖Dϕ(t, ω, x)v‖ = λi ⇐⇒ v ∈ Ei(ω, x) \ {0} for all i ∈ {1, . . . , p} ,

(iii) The dimension equals the multiplicity of the associated Lyapunov exponent, i.e.

dimEi(ω, x) = di .

2.5.2 The Furstenberg-Khasminskii formula

The standard method for deriving an explicit formula of the largest Lyapunov exponent λ1 for

RDS coming from SDEs is given by the Furstenberg-Khasminskii formula, which is developed

on QS 7, based on [16].

Consider the linear Stratonovich equation

dYt = A0Yt dt+

m∑
j=1

AjYt ◦ dW j
t , Y0 = v ∈ Rd , (2.5.28)

where A0, . . . , Am ∈ Rd×d and W 1, . . . ,Wm are independent Wiener processes in two-sided time.

For keeping things simple, we let A0, . . . , Am ∈ Rd×d not depend on an underlying random

system. Thus, equation (2.5.28) induces a linear cocycle Φ over the family of shifts (θt)t∈R on

the Wiener space Ω.

We introduce the change of variables rt = ‖Yt‖ and st = Yt/rt, so that st lies on the unit

sphere Sd−1. The stochastic differential equation in polar coordinates is given by

dst = (A0st − 〈st, A0st〉st) dt+
m∑
j=1

(Ajst − 〈st, Ajst〉st) ◦ dW j
t ,

and

drt = 〈st, A0st〉rt dt+
m∑
j=1

〈st, Ajst〉rt ◦ dW j
t ,



CHAPTER 2. (LINEAR AND LOCAL) STABILITY OF RANDOM DYNAMICAL
SYSTEMS 53

We define

gA(s) = As− 〈s,As〉s for A ∈ Rd×d, s ∈ Sd−1 ,

and denote by L(gA0 , . . . , gAm)(s) the Lie algebra generated by these vector fields at s. We

impose the classical Hörmander condition on the hypoellpticity of these vector fields driving the

dynamics of st:

dimL(gA0 , . . . , gAm)(s) = d− 1 for all s ∈ Sd−1 . (2.5.29)

According to [15], condition 2.5.29 guarantees that the distribution of the Oseledets space Ei(ω)

possesses a smooth density for any i ∈ {1, . . . , p}. The hypoellipticity condition (2.5.29) fur-

ther implies irreducibility of the Markov semigroup induced by (st)t≥0 on Sd−1, and since the

unit sphere is a compact manifold, we can conclude that (st)t≥0 possesses a unique stationary

probability measure with smooth density p. The density p solves the stationary Fokker-Planck

equation

L∗p = 0 ,

where

L = gA0 +
1

2

m∑
j=1

g2
Aj

is the generator of (st)t≥0 in Hörmander notation and L∗ is the formal adjoint of L. On QS 7

these insights are used to derive the the Furstenberg–Khasminskii formula for the top Lyapunov

exponent, given by

λ1 =

∫
Sd−1

hA0(s) +
m∑
j=1

kAj (s)

 p(s) ds , (2.5.30)

where

hA(s) = 〈s,As〉 ,

kA(s) =
1

2
〈(A+A∗)s,As〉 − 〈s,As〉2 .

2.6 Stable manifold theorem

We conclude this chapter with a statement about stable manifolds. In the literature, there are

several distinctions on sufficient conditions for such a theorem to hold. We will not deal with

these subtleties here but may come back to these when needed later.

We assume that our RDS (θ, ϕ) on Rd is C2 and that all derivatives satisfy the integrability

condition of the Multiplicative Ergodic Theorem with respect to an invariant measure ν. For

simplicity we will assume that ν is ergodic (but the statements could again be also stated without

ergodicity, with the corresponding dependencies on (ω, x)). An example would be the situation

of Theorem 1.4.5 for k = 2, with unique stationary measure ρ such that ν = P×ρ, when regarded

in one-sided forward time as suitable for a stable manifold theorem (see Remark 1.5.7). Again,

one can formulate the MET for the derivative cocycle in continuous time, where the proof is



CHAPTER 2. (LINEAR AND LOCAL) STABILITY OF RANDOM DYNAMICAL
SYSTEMS 54

classically based on the discrete time version for iterates of time-one maps, which in the case

of Theorem 1.4.5 are the C2 random diffeomorphisms ϕ(n, ω, x) and their derivatives. This is

also the way one typically proves the following theorem, deriving first an intricate local stable

manifold theorem that we omit here for brevity.

Theorem 2.6.1 (Global stable manifold theorem for C2 RDS). Take a C2 RDS Θ = (θ, ϕ)

on Rd with ergodic invariant measure ν and assume that all derivatives satisfy the integrability

condition of the Multiplicative Ergodic Theorem 2.5.2 (either in discrete or continuous time

t ∈ T). Let λs1 > · · · > λsp be the strictly negative Lyapunov exponents and define W sp(ω, x) ⊂
· · · ⊂W s1(ω, x) by

W si(ω, x) =

{
y ∈ Rd : lim sup

t→∞

1

t
log ‖ϕ(t, ω, x)− ϕ(t, ω, y)‖ ≤ λsi

}
, 1 ≤ i ≤ p.

(a) Then for ν-almost all (ω, x), we have that W si(ω, x) is the image of the Oseledets subspace

V si(ω, x) under an injective immersion of class C1,1 and is tangent to V si(ω, x) at x.

(b) If y ∈W si(ω, x), then

lim sup
t→∞

1

t
log ds(ϕ(t, ω, x), ϕ(t, ω, y)) ≤ λsi ,

where ds denotes the distance along the submanifold ϕ(t, ω, ·)W si(ω, x) ⊂W si(θtω, ϕ(t, ω, x)).

(c) In particular, we have that the global stable manifold

W s(ω, x) =

{
y ∈ Rd : lim sup

t→∞

1

t
log ‖ϕ(t, ω, x)− ϕ(t, ω, y)‖ < 0

}
satisfies ν-almost surely

W s(ω, x) = W s1(ω, x),

and hence is the image of the Oseledets subspace V s1(ω, x) under an injective immersion of

class C1,1 and is tangent to V s1(ω, x) at x.

Proof. See [24, Theorem III, 3.2 and Theorem V, 2.2]. There the theorems are formulated on

compact manifolds but this imposes no restrictions for us, as shown by Biskamp [6].

[End of Lecture VIII, 01.06.]



Chapter 3

Random attractors

3.1 Basic definitions, examples and an existence result

Let (θ, ϕ) be a random dynamical system on a Polish, i.e. complete and separable metric,

space (X, d). Due to the non-autonomous nature of the RDS, there are no fixed attractors for

dissipative systems and different notions of a random attractor exist. We introduce these related

but different definitions of random attractors in the following, with respect to tempered sets. A

random variable R : Ω→ R+ is called tempered if

lim
t→±∞

1

|t|
logR(θtω) = 0 for almost all ω ∈ Ω ,

see also [2, p. 164].

Definition 3.1.1. A set D ∈ F ⊗ B(X) is called a random set. The ω-section of a random set

D is defined by

D(ω) = {x : (x, ω) ∈ D}, ω ∈ Ω.

The set is called tempered if there exist a tempered random variable R and a point x0 ∈ X such

that

D(ω) ⊂ BR(ω)(x0) for almost all ω ∈ Ω ,

where BR(ω)(x0) denotes a ball centered at x0 with radius R(ω). If X is a vector space, we

typically choose x0 = 0, when not further specified.

Note that in particular all deterministic bounded sets are tempered.

D is called a compact (or closed) random set if D(ω) ⊂ X is compact (or closed) for

almost all ω ∈ Ω. In this case, measurability of D amounts to measurability of the mapping

ω 7→ infy∈D(ω) d(x, y) for every x ∈ X.

Denote by D the set of all tempered sets D ∈ F ⊗ B(X) and by

dist(E,F ) := sup
x∈E

inf
y∈F

d(x, y)

55
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the Hausdorff seperation or semi-distance. We now define different notions of a random attractor

with respect to a family of sets S ⊂ D, see also [20, Definition 14.3] and [9, Definition 15].

Definition 3.1.2 (Random attractor). Let S ⊂ D be a class of tempered sets. A compact

random set A ∈ D that is strictly ϕ-invariant, i.e.

ϕ(t, ω)A(ω) = A(θtω) for all t ≥ 0 and almost all ω ∈ Ω ,

is called

(i) a random pullback attractor with respect to S if for all D ∈ S we have

lim
t→∞

dist
(
ϕ(t, θ−tω)D(θ−tω), A(ω)

)
= 0 for almost all ω ∈ Ω ,

(ii) a random forward attractor with respect to S if for all D ∈ S we have

lim
t→∞

dist
(
ϕ(t, ω)D(ω), A(θtω)

)
= 0 for almost all ω ∈ Ω ,

(iii) a weak random attractor if it satisfies the convergence property in (i) (or (ii)) with almost

sure convergence replaced by convergence in probability,

(iv) a (weak) random (pullback or forward) point attractor if it satisfies the corresponding

properties above for S = {D ⊂ X : D = {y} for some y ∈ X}, i.e. for single points

y ∈ X.

(v) a minimal random attractor of any of the above kinds, if it is contained in any random

attractor of its kind.

Note that due to the P-invariance of θt for all t ∈ R, it is easy to derive that weak attraction

in the pullback and the forward sense are the same and, hence, the notion of a weak random

attractor in Definition 3.1.2 (iii) is consistent (see exercises).

However, random pullback attractors and random forward attractors with almost sure con-

vergence, as defined above, are generally not equivalent (see [25] for counter-examples). In the

following, we will be careful with this distinction, yet in our main examples the random pullback

attractor and random forward attractor will be the same. In this case we will simply speak of

the random attractor.

Before we look at some examples, we add some remarks on Definition 3.1.2.

Remark 3.1.3. Note that we require that the random attractor is measurable with respect to

F⊗B(X), in contrast to a weaker statement often used in the literature (see also [9, Remark 4]).

Remark 3.1.4. In many cases, the family of sets S is chosen to be the family of all bounded

or compact (deterministic) subsets B ⊂ X, as for example in [14]. Note that our definition of

random attractors is a generalization of this weaker definition.
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Example 3.1.5. 1. Consider the already often used example of a pitchfork bifurcation with

additive noise

dXt =
(
αXt −X3

t

)
dt+ σdWt. (3.1.1)

Then you will see on Question sheet 8 that the random attractor A is a singleton almost

surely with respect to S = D, i.e. A(ω) = {a(ω)} for a stationary solution a(ω) of the

SDE (3.1.1).

2. Consider now the same example with linear multiplicative noise

dXt =
(
αXt −X3

t

)
dt+ σXt ◦ dWt. (3.1.2)

Then one can observe that the cocycle solving the SDE (3.1.2) is given by

ϕ(t, ω, x) =
xeαt+σWt(ω)(

1 + 2x2
∫ t

0 e
2(αs+σWs(ω))ds

)1/2
(3.1.3)

for all x ∈ R. We have two cases:

(i) For α ≤ 0, the random attractor is given by A(ω) = {0} for all ω ∈ Ω, with respect

to S = D.

(ii) For α > 0, the attractor for all tempered subsets (e.g. with respect to x0 = 1) of

(0,∞) is A(ω) = {a(ω)} for

a(ω) =

(
2

∫ 0

−∞
e2(αs+σWs(ω)

)−1/2

and for all tempered subsets of (−∞, 0) is A(ω) = {−a(ω)}.

3. Consider the planar stochastic differential equation

dx =
(
x− y − x

(
x2 + y2

))
dt+ σx ◦ dWt ,

dy =
(
x+ y − y

(
x2 + y2

))
dt+ σy ◦ dWt .

(3.1.4)

where Wt denotes a one-dimensional standard Brownian motion and the noise is of Stratonovich

type. We denote the cocycle of the induced random dynamical system by ϕ = (ϕ1, ϕ2).

Equation (3.1.4) can be transformed into polar coordinates (ϑ, r) ∈ [0, 2π)× [0,∞)

dϑ = 1 dt,

dr = (r − r3) dt+ σr ◦ dWt .
(3.1.5)
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Similarly to before, equation (3.1.5) has an explicit unique solution given by

ϕ̂(t, ω, (ϑ0, r0)) =

ϑ0 + t mod 2π,
r0et+σWt(ω)(

1 + 2r2
0

∫ t
0 e

2(s+σWs(ω))ds
)1/2


=: (ϑ(t, ω, ϑ0), r(t, ω, r0)) .

Moreover, there is a stationary solution for the radial component, satisfying r(t, ω, r∗(ω)) =

r∗(θtω), and given by

r∗(ω) =

(
2

∫ 0

−∞
e2s+2σWs(ω)ds

)−1/2

. (3.1.6)

In particular, one can see from a straightforward computation that for all (x, y) 6= (0, 0)

and almost all ω ∈ Ω

(
ϕ1(t, θ−tω, x)2 + ϕ2(t, θ−tω, y)2

)1/2 → r∗(ω) as t→∞ ,

and also (
ϕ1(t, ω, x)2 + ϕ2(t, ω, y)2

)1/2 → r∗(θtω) as t→∞ .

Hence, the planar system (3.1.4) has a random attractor A in the pullback and forward

sense, with respect to S = D\{{0}}, where D denotes the set of all compact tempered sets

D ∈ F ⊗ B(R2), and the fibers of A are given by (see Figure 3.1)

A(ω) = {r∗(ω)(cosα, sinα) : α ∈ [0, 2π)}. (3.1.7)

We derive a criterion for the existence of random attractors via Ω-limit sets and absorbing

and attracting sets. In more details, let us assume continuity of our RDS in the following and

introduce the following definition:

Definition 3.1.6. Given a random set K, the set

ΩK(ω) =
⋂
τ≥0

⋃
t≥τ

ϕ(t, θ−tω)K(θ−tω)

is called the Ω-limit set of K. Clearly, ΩK(ω) is closed.

Note that we may identify, in analogy to deterministic dynamical systems,

ΩK(ω) = {y ∈ X : there are tn →∞, xn ∈ K(θ−tnω) s.t. ϕ(tn, θ−tnω, xn)→ y}.

One may observe the following:

Lemma 3.1.7. The Ω-limit set of an arbitrary random set K is forward-invariant, i.e. for all

t ≥ 0

ϕ(t, ω)ΩK(ω) ⊂ ΩK(θtω).
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(a) T = 0
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(b) T = 1

x

y

(c) T = 5

x

y

(d) T = 10

x

y

(e) T = 0

x

y

(f) T = −1

x

y

(g) T = −5

x

y

(h) T = −10

Figure 3.1: Numerical simulations in (x, y)-coordinates, using Euler-Marayama integration with step size
dt = 10−2, of forward and pullback dynamics of system (3.1.4) for a set B of initial conditions generated
by a trajectory of (3.1.4) ((a) and (e)). In (b)–(d), we show the numerical approximation of ϕ(T, ω,B)
for some ω ∈ Ω, approaching the fiber A(θTω) of the random attractor, changing in forward time. In
(f)–(h), we show the numerical approximation of ϕ(−T, θ−Tω,B) for some ω ∈ Ω, approaching the fiber
A(ω) of the random attractor, fixed by the pullback mechanism.

Proof. Exercise.

Additionally, we introduce the following notion:

Definition 3.1.8. A set K ∈ D is called an absorbing set for D ∈ D, if there exists an absorption

time TD(ω) > 0 such that for P-almost all ω ∈ Ω

ϕ(t, θ−tω)D(θ−tω) ⊂ K(ω) for all t ≥ TD(ω) .

We can formulate the following result concerning the properties of the set ΩB for a set B

which is absorbed by some compact set K:

Proposition 3.1.9. Suppose K,B ∈ D are non-empty random sets with K absorbing B, where

K(ω) is compact almost surely. Then for P-almost all ω ∈ Ω we have that

(i) ΩB(ω) ⊂ K(ω) is non-empty and compact;

(ii) ΩB is even strictly invariant, i.e. ΩB(θtω) ⊂ ϕ(t, ω)ΩB(ω) for all t ≥ 0;

(iii) ΩB(ω) attracts B, i.e.

dist(ϕ(t, θ−tω)B(θ−tω),ΩB(ω))→ 0 as t→∞.

Proof. Firstly, note that for any sequence tn → ∞ and sequence bn with bn ∈ B(θ−tnω), we

have for tn ≥ tB(ω) that ϕ(tn, θ−tnω)bn ∈ K(ω). Hence, by compactness of K(ω), there is a

convergent subsequence to some y ∈ X.
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For (i), this means that the limit of such a sequence y = limϕ(tn, θ−tnω)bn satisfies y ∈
ΩB(ω), such that ΩB(ω) is non-empty. Furthermore,

ΩB(ω) ⊂
⋂

τ≥TB(ω)

⋃
t≥τ

ϕ(t, θ−tω)B(θ−tω) ⊂ K(ω).

(ii) Exercise.

(iii) If ΩB(ω) would not attract B, there would be δ > 0, a sequence tn → ∞ and bn ∈
B(θ−tnω) such that for all n ∈ N

dist(ϕ(t, θ−tω, bn),ΩB(ω)) ≥ δ.

But, as remarked above, ϕ(tn, θ−tnω, bn) has a convergent subsequence with a limit in ΩB(ω),

which leads to a contradiction by continuity of ϕ(t, ω).

We are ready to prove the main existence theorem for a random attractor, when taking

S ⊂ D to be the set of all bounded deterministic subsets of X. The theorem can be extended to

all tempered random sets D, but under heavy notation that we avoid here (see [9] for remarks

on that):

Theorem 3.1.10 (Existence of random attractors). Suppose that (θ, ϕ) is a continuous random

dynamical system on a Polish space X and that there exists a compact random set K ∈ D
absorbing every bounded nonrandom set B ⊂ X. Then there exists a random pullback attractor

A, given by

A(ω) =
⋃
B⊂X

ΩB(ω) for almost all ω ∈ Ω.

Furthermore, ω 7→ A(ω) is measurable with respect to F0
−∞, i.e. the past of the system.

[End of Lecture IX, 08.06.]

Proof. Since ΩB ⊂ K(ω) by Proposition 3.1.9(i), for any bounded set B, we obtain that A ∈ D
is a compact random set. Since

ω 7→
⋃
B⊂X

ΩB(ω)

is strictly invariant by Proposition 3.1.9(ii), we obtain that A is invariant by the continuity of

ϕ, and, in fact, strictly invariant using compactness of A.

For measurability, note that for any x ∈ X, t ≥ 0 and any B ⊂ X, the map

ω 7→ dist(x, ϕ(t, θ−tω)B) = inf
y∈B

d(x, ϕ(t, θ−tω, y))

is measurable with respect to F0
−∞ by separability of X and continuity of ϕ. For each τ ≥ 0

dist (x,∪t≥τϕ(t, θ−tω)B) = inf
t≥τ

dist(x, ϕ(t, θ−tω)B).
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Hence, in discrete time, measurability of ΩB with respect to F0
−∞ follows immediately. For

continuous time, one has to work with the projection theorem [7, Theorem III.23] to deduce

that ΩB is measurable. Since A can be obtained using only a countable number of Bs, the

assertion is proved.

This leaves open uniqueness. In fact, even without existence of an absorbing set, we can

show that weak attractors (and thereby also random pullback attractors) are unique, if they

exist.

For the proof, we need the following proposition:

Lemma 3.1.11 (Tightness of random compact sets). Suppose that ω 7→ K(ω) is a compact

random set. Then for every ε > 0, there exists a (non-random) compact set Kε ⊂ X such that

P{ω : K(ω) ⊂ Kε} ≥ 1− ε.

Proof. See Exercise 1 on QS 9.

We now easily obtain the following uniqueness result.

Proposition 3.1.12. Weak attractors (and hence pullback attractors) with respect to determin-

istic bounded sets (or also more generally with respect to tempered random sets D) are unique

in the sense, that if an RDS has two weak attractors, then they agree almost surely.

Proof. LetA, Ã be two weak random attractors. Since Ã is a random compact set, by Lemma 3.1.11,

for each ε > 0, there is a compact deterministic set Kε such that

P{Ã ⊂ Kε} ≥ 1− ε.

Since A weakly attracts bounded, and in particular compact, sets, for all δ, ε > 0, there is a

t0(δ, ε) such that for all t ≥ t0

P{dist(ϕ(t, ω,Kε), A(θtω)) > δ} ≤ ε.

Hence, we get that for all t ≥ t0

P{dist(ϕ(t, ω, Ã(ω)), A(θtω)) > δ} ≤ 2ε.

Using invariance of Ã and θt, we obtain for all t ≥ t0

P{dist(Ã(ω), A(ω)) > δ} = P{dist(Ã(θtω), A(θtω)) > δ} ≤ 2ε.

Since ε was arbitrary, we conclude

P{dist(Ã(ω), A(ω)) > δ} = 0 for all δ > 0,

which implies the claim.
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This holds not true for point attractors as we explain with the following illustrative example,

which also is an example for distinguishing weak and pullback attractors.

Example 3.1.13. Let X := S1 be the unit circle which we identify with the interval [0, 2π)

equipped with the usual metric d(x, y) := min {|x− y| , 2π − |x− y|} . Consider the SDE

dXt = cos(Xt) dW 1
t + sin(Xt) dW 2

t

on X, where W 1 and W 2 are independent standard Brownian motions. Then there exists a

stable point ω → S(ω), which is measurable with respect to F0
−∞, supporting a random invariant

measure, and whose Lyapunov exponent is negative (see [4]). The random set {S(ω)} is a

(minimal) weak point attractor of the RDS generated by the SDE. As the system is invertible,

we can reverse time and use the same argument to find an unstable point ω 7→ U(ω), measurable

with respect to F∞0 which is a weak point repeller. The basin of attraction of {S(ω)} is X\{U(ω)}
and that of {U(ω)} for the time-reversed flow is X \ {S(ω)}. One can directly see that the weak

attractor for all bounded deterministic sets (and all tempered random sets, more generally) is

the full circle X.

In fact, also the unique pullback point attractor of ϕ is the whole space X, since Ωx(ω) = X

almost surely for each fixed x ∈ X; this can be seen by noting that for each fixed y ∈ X, the

process t 7→ ϕ(−t, ω, y) is a Brownian motion on X and therefore hits x for some arbitrarily

large values of t, showing that y ∈ Ωx(ω) for almost all ω ∈ Ω.

We mention one more important property of random attractors in connected spaces such as

Euclidean space Rd:

Proposition 3.1.14. Suppose ϕ is an RDS on a connected space X. If ϕ has an attractor A

for all bounded sets B ⊂ X, then P-a.s. A is connected.

Proof. Question sheet 9, Exercise 2.

3.2 Attractors and invariant measures

Recall the set CΩ(X) of functions f : X×Ω→ R such that f(x, ·) is measurable for each x ∈ X,

f(·, ω) is continuous and bounded for each ω ∈ Ω and ω 7→ sup {|f(x, ω)| : x ∈ X} is integrable

with respect to P, where two such functions f and g are identified if P{ω : f(·, ω) 6= g(·, ω)} = 0

(measurable by continuity of f and g together with separability of X).

We define the narrow toplogy on the space of probability measures PΩ(X) with projection

P on Ω to be the topology generated by the functions

µ 7→
∫
X×Ω

f(x, ω) dµ(x, ω) = µ(f)

for f ∈ CΩ(X). Recall that the skew-product flow (Θt)t∈T acts as a flow of continuous transfor-

mations on PΩ(X).
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Definition 3.2.1. Let πX denote the canonical projection from X × Ω onto X, i.e. for all

B ∈ B(X),

(πXµ)(B) = µ(B × Ω) =

∫
Ω
µω(B) dP(ω) = E[µω(B)].

A subset Γ ⊂ PΩ(X) is said to be tight if πXΓ ⊂ P(X) is tight, i.e. for every ε > 0 there exists

a compact set Kε ⊂ X such that µ(Kε × Ω) ≥ 1− ε for all µ ∈ Γ.

We can now formulate Prohorov’s Theorem for random measures:

Theorem 3.2.2. Suppose that Γ ⊂ PΩ(X). Then Γ is tight if and only if it is relatively compact

with respect to the narrow topology. In this case, it is also relatively sequentially compact.

Proof. See for example [10, Chapter 4].

To show that such a set Γ is tight, we can use the following characterizations.

Proposition 3.2.3. For Γ ⊂ PΩ(X), consider the following assertion:

(a) For every ε > 0 there is a compact random set ω 7→ Kε(ω) such that for every γ ∈ Γ

γω(Kε(ω)) ≥ 1− ε

for almost all ω ∈ Ω.

(b) For every ε > 0 there is a compact random set ω 7→ Kε(ω) such that for every γ ∈ Γ∫
Ω
γω(Kε(ω))dP(ω) ≥ 1− ε.

(c) Γ is tight.

Then (a) implies (b), and (b) and (c) are equivalent.

Proof. Clearly (a) implies (b) and (c) implies (b) by taking Kε := Kε(ω) to be the set in

Definition 3.2.1.

Assume (b) holds and, for ε > 0, choose Cε ⊂ X compact such that P{Kε/2(ω) ⊂ Cε} ≥
1− ε/2, as in Lemma 3.1.11. Then for every γ ∈ Γ

πXγ(Cε) =

∫
Ω
γω(Cε) dP(ω)

≥
∫
{Kε/2(ω)⊂Cε}

γω(Cε) dP(ω)

≥≥
∫
{Kε/2(ω)⊂Cε}

γω(Kε/2(ω)) dP(ω)

≥ (1− ε/2)2 ≥ 1− ε,

which shows the claim.
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We have now everything together to show the following theorem:

Theorem 3.2.4 (Existence of invariant measures supported on attractor). For an RDS (θ, ϕ)

on a Polish space X with ϕ-forward invariant random compact set ω 7→ A(ω), i.e. ϕ(t, ω)A(ω) ⊂
A(θtω) for all t ≥ 0, we have the following:

(a) There exists an invariant measure µ which is supported on A, i.e. µω(A(ω)) = 1 almost

surely.

(b) If ω 7→ A(ω) is measurable with respect to the past F0
−∞, then there exists an invariant

measure µ supported by A such that ω 7→ µω is measurable with respect to the past F0
−∞.

In particular, this holds for random attractors of any form.

Proof. For (a), note that

Γ = {µ ∈ PΩ(X) : µω(A(ω)) = 1 a.s.}

is tight with Proposition 3.2.3. Γ is also closed, since for any sequence µn in Γ converging to

some µ ∈ PΩ(X) in the narrow topology we have

1 = lim sup
n→∞

µn(A) ≤ µ(A) =

∫
Ω
µω(A(ω)) dP(ω),

and, hence, µ ∈ Γ. Clearly, Γ is convex and invariant under Θt, t ≥ 0. Thus, the statement

follows from the Markov-Kakutani fixed point theorem (see e.g. [12, Theorem V., 10.6.]).

For (b), observe that the set of all probability measures with ω 7→ µω measurable with

respect to the past F0
−∞ is a closed subset of L∞(Ω;P(X)). We have seen before that the set of

F0
−∞-measurable measures is invariant under the linear continuous action induced by Θt. Hence,

it is enough to establish a F0
−∞-measurable measure ω 7→ µω supported by A(ω); we obtain this

by choosing a measurable selection ω 7→ x(ω) ∈ A(ω) and setting µω = δx(ω).

Using the Correspondence Theorem 1.5.6, we observe that for Markov RDS (past and future

are independent, and correspondence with Markov process) with random pullback attractor,

we can directly obtain an invariant probability measure ρ for the Markov semi-group (Pt)t≥0

(stationary measure) via ρ = E[µω]. If there exists a unique invariant probability measure ρ for

the Markov semi-group (Pt)t≥0, then the invariant Markov measure, supported on A, is uniquely

given by the Correspondence Theorem 1.5.6.

We say that a Markov semi-group is strongly mixing if

Ptf(x)
t→∞−−−→

∫
X
f(y)ρ(dy) for all continuous and bounded f : X → R and x ∈ X .

Similarly, we say that the associated cocycle ϕ is strongly mixing if the law of ϕ(t, ·, x) converges

to ρ for t→∞ for all x ∈ X. More generally, we introduce

E0 :=
{
x ∈ X : lim

t→∞
P̂t(x, ·) = ρ

}
,
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where P̂t(x, ·) denotes the transition probability and convergence is to be understood in the

weak* sense. We cite the following additional insight without a proof:

Proposition 3.2.5. Assume that a Markov RDS has a unique invariant Markov measure µ

such that Ã(ω) = suppµω is almost surely compact. Then Ã is a weak point attractor of the set

E0. In particular, if ϕ is strongly mixing, then Ã is a minimal weak random point attractor.

Proof. See [14, Proposition 2.20].

If A is a random pullback attractor for tempered sets, then obviously Ã(ω) = suppµω ⊂ A(ω)

for almost all ω ∈ Ω, see also Example 3.1.13.

[End of Lecture X, 15.06.]

Concerning the support of µω, we can additionally make the following observation:

Lemma 3.2.6. Let µω be the disintegration of an ergodic invariant Markov measure µ for an

injective Markov RDS (θ, ϕ), then we have the following: either µω consists of finitely many

atoms of the same mass P-a.s., i.e. there is an N ∈ N and F0
−∞-measurable random variables

a1, . . . , aN such that

µω =
1

N

N∑
i=1

δai(ω),

or µω does not have point masses almost surely.

Proof. Assume that µω has point masses with positive probability and define g(ω, x) := µω({x}).
Then for µ-almost all (ω, x), we have

g(Θt(ω, x)) = µθtω({ϕ(t, ω, x)}) = µω
(
ϕ(t, ω, ·)−1{ϕ(t, ω, x)}

)
= g(ω, x),

where in the last equality, we have used injectivity. Due to ergodicity, we can can conclude

that g is constant µ-almost surely. Hence, all point masses of µω have the same mass m ∈ R+,

P-almost surely. By assumption, we have that m > 0. Then we have for almost all ω ∈ Ω

m =

∫
X
g(ω, x) dµω(x) =

∫
X
µω({x}) dµω(x) = N(ω)m2,

where N(ω) denotes the number of point masses of µω. This implies N(ω) = 1/m almost surely,

which finishes the proof.

We can give a criterion for the Markov measures being discrete that can then be linked to

negative top Lyapunov exponents. We will also make a similar statement about the case of

positive top Lyapunov exponent being linked to the Markov measure having no point masses.

Definition 3.2.7. Let U ⊂ X be a deterministic non-empty open set.

1. We say that ϕ is asymptotically stable on U , if there exists a sequence tn →∞ such that

P
(
ω ∈ Ω : lim

n→∞
diam(ϕ(tn, ω, U)) = 0

)
> 0 .
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2. More generally, we say that ϕ is weakly asymptotically stable on U if there exsist a (de-

terministic) sequence tn → ∞ and a set M ⊂ Ω of positive P-measure such that for all

x, y ∈ U
1M(·)d(ϕ(tn, ·, x), ϕ(tn, ·, y))→ 0 as n→∞. (3.2.1)

in probability.

Proposition 3.2.8. Let (θ, ϕ) be an injective Markov RDS on a Polish space X with unique

stationary measure ρ and associated Markov measure µω.

(a) If ϕ is weakly asymptotically stable on U with ρ(U) > 0, then µω is discrete.

(b) If in addition ϕ is strongly mixing, then there is an N ∈ N and F0
−∞-measurable random

variables a1, . . . , an such that

A(ω) = supp(µω) = {ai(ω) : i = 1, . . . , N}

is a minimal weak point attractor.

Proof. (a) With Lemma 3.2.6, we only have to show that µω has point mass with positive

probability. Let ∆ := {(x, x) : x ∈ X} ⊂ X × X be the diagonal in X × X and ψ : X̂ :=

(X ×X) \∆→ [0,∞) be measurable such that ψ(x, y)→∞ for d(x, y)→ 0 and

E
∫
X̂
ψ(x, y) dµω(x)dµω(y) <∞.

In order to make sure the existence of such a ψ, we define ν := E[µω⊗µω] on X×X and observe

that ν(∆ε \∆) → 0 as ε → 0, where ∆ε denotes the ε-neighbourhood of ∆. Choosing εk → 0

with εk ≤ ε0 = 1 such that ν(∆ε \∆) ≤ e−k, we set

ψ(x, y) =

 k, if (x, y) ∈ ∆εk \∆εk+1

0, if |x− y| ≥ 1.

Let U , M and tn be as in the definition of weak asymptotic stability and define

C(n, x, y,R) := {ω ∈ Ω : ψ(ϕ(tn, ω, x), ϕ(tn, ω, y)) ≥ R}

such that we observe for all x, y ∈ U

lim inf
n→∞

P (C(n, x, y,R)) ≥ P(M).
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Observe that

E
∫
X̂
ψ(x, y) dµω(x)dµω(y)

≥ E
∫
X̂

1U (x)1U (y)ψ(ϕ(tn, ω, x), ϕ(tn, ω, y)) dµω(x)dµω(y)

≥ RE
∫
X̂

1U (x)1U (y)1C(n,x,y,R)(ω) dµω(x)dµω(y).

Since µω is F0
−∞-measurable, C(n, x, y,R) is F∞0 -measurable and F0

−∞ and F∞0 are independent,

we conclude

E
∫
X̂

1U (x)1U (y)1C(n,x,y,R)(ω) dµω(x)dµω(y)

= EE
[∫

X̂
1U (x)1U (y)1C(n,x,y,R)(ω) dµω(x)dµω(y)|F0

−∞

]
= EẼ

∫
X̂

1U (x)1U (y)1C(n,x,y,R)(ω̃) dµω(x)dµω(y)

= E
∫
X̂

1U (x)1U (y)P(C(n, x, y,R)) dµω(x)dµω(y)

Taking the lim inf and using Fatou’s Lemma we obtain

E
∫
X̂
ψ(x, y) dµω(x)dµω(y)

≥ RE
∫
X̂

1U (x)1U (y) lim inf
n→∞

P(C(n, x, y,R)) dµω(x)dµω(y)

≥ P[M]RE
∫
X̂

1U (x)1U (y) dµω(x)dµω(y).

If we now assume that µω has no point masses, then (µω ⊗ µω)(∆) = 0 and therefore

E
∫
X̂

1U (x)1U (y) dµω(x)dµω(y) = E
∫
X×X

1U (x)1U (y) dµω(x)dµω(y)

= E(µω(U)2) ≥ ρ(U)2 > 0.

Since R > 0 is arbitrary, we obtain a contradiction, and, hence, the proof of (a) is complete,

considering Lemma 3.2.6.

(b) This follows from (a) in combination with Proposition 3.2.5.

Let us now assume we are in the setting of a smooth ergodic RDS induced by an SDE in Rd

such that we can apply the Multiplicative Ergodic Theorem and the Stable Manifold Theorem.

It is then easy to observe that λ1 > 0 implies that ϕ is asymptoatically stable, in particular

weakly asymptotically stable, (Exercise!!!) such that we find the minimal weak attractor to

consist of points, being the equidistributed support of the invariant Markov measure.

Concerning general set attractors, we can state the following (weak) synchronization state-

ment:
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Theorem 3.2.9 (Collapse of the random attractor). We assume that a random dynamical

system (θ, ϕ) is

(i) asymptotically stable on a fixed non-empty open set U ⊂ Rd, in the sense that there exists

a sequence tn →∞ such that

P
(
ω ∈ Ω : lim

n→∞
diam(ϕ(tn, ω, U)) = 0

)
> 0 .

(ii) swift transitive, i.e. for all x, y ∈ Rd and r > 0, there exists a t > 0 such that

P
(
ω ∈ Ω : ϕ(t, ω,Br(x)) ⊂ B2r(y)

)
> 0 .

(iii) contracting on large sets, i.e. for all R > 0, there exist y ∈ Rd and t > 0 such that

P
(
ω ∈ Ω : diam(ϕ(t, ω,BR(y))) ≤ R

4

)
> 0 .

Suppose further that (θ, ϕ) has a weak random attractor A with F0
−∞-measurable fibers. Then

A(ω) is a singleton P-almost surely.

Proof. See [14, Theorem 2.14].

3.3 Some properties of chaotic random attractors

In the following, we are concerned with random attractors for differentiable RDS on X = Rd

(one could also consider smooth manifolds), where the first Lyapunov exponent λ1 > 0. We will

call such attractors chaotic attractors. A first justification for this term is given by the following

observation. The proof uses similar arguments as for the (weakly) asymptotically stable case of

λ1 < 0, also considering the two-point motion on X ×X and the diagonal ∆.

Theorem 3.3.1 (Positive λ1 implies atomless µω). Consider a smooth ergodic RDS induced by

an SDE in X = Rd (or on a compact manifold X = M) such that we can apply the Multiplicative

Ergodic Theorem, and assume that the top Lyapunov exponent λ1 is positive. Then for ν =

E[µω ⊗ µω] as above, we have

ν
(
X̂
)

= 1

or equivalently µω is atomless almost surely.

Proof. See [13, Section 5.1].

3.3.1 Pesin’s formula

In this section, we want to investigate what positive Lyapunov exponents imply for the entropy

of the system. We will follow [6, 19, 24].



CHAPTER 3. RANDOM ATTRACTORS 69

Entropy for discrete time systems

Firstly, we formulate the statements for Rd and random dynamical systems in discrete time

generated by composed maps
{
fnω : n ≥ 0, ω ∈

(
ΩN,B(Ω)N, νN

)}
which will be referred to as

X+(Rd, ν) (we will also consider two-sided time in a moment). Here, Ω denotes the set of two-

times differentiable diffeomorphisms on Rd with the topology induced by uniform convergence

on compact sets for all derivatives up to order 2. The maps are i.i.d. with law ν, and for a

sequence ω = (f0(ω), f1(ω), . . . ) ∈ ΩN the compositions are given as

f0
ω = id , fnω = fn−1(ω) ◦ fn−2(ω) ◦ · · · ◦ f0(ω) .

Recall from the exercises:

Definition 3.3.2 (Stationary measure). A Borel probability measure ρ on Rd is called a sta-

tionary measure of X+(Rd, ν) if

ρ(·) =

∫
Ω
ρ
(
f−1(·)

)
ν(df) .

Note in particular that the associated Markov chain Xn has ρ as its stationary measure in

this case.

If ξ is a finite partition of a Lebesgue space (X,B, µ) and C1, . . . , Ck denote the elements of

ξ, we define the entropy of ξ with respect to µ by

Hµ(ξ) = −
k∑
j=1

µ(Cj) log(µ(Cj)) .

Furthermore, for two partitions ξ1 and ξ2 we define

ξ1 ∨ ξ2 = {A ∩B : A ∈ ξ1, B ∈ ξ2} ,

such that elements of
∨n−1
i=0 (f iω)−1ξ are of the form

{x : x ∈ Cj0 , fωx ∈ Cj1 , . . . , fn−1
ω x ∈ Cjn−1}

for some (j0, . . . , jn−1) sometimes called the address of the orbit.

Following [6, 24], we define the entropy of a random dynamical system in the following way:

Definition and Lemma 3.3.3 (Entropy). For any finite partition ξ of Rd and stationary

measure ρ of X+(Rd, ν) the limit

hρ

(
X+(Rd, ν), ξ

)
:= lim

n→∞

1

n

∫
ΩN
Hρ

(
n−1∨
k=0

(fkω)−1ξ

)
νN(dω)

exists. The number hρ
(
X+(Rd, ν), ξ

)
is called the entropy of X+(Rd, ν) with respect to ξ. The
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number

hρ

(
X+(Rd, ν)

)
:= sup

ξ
hρ

(
X+(Rd, ν), ξ

)
is called the entropy of X+(Rd, ν).

Consider the product spaces ΩN × Rd and ΩZ × Rd with the respective product σ-algebras,

as usual.

[End of Lecture XI, 22.06.]

As before, we denote the left shift operator on ΩN and ΩZ by θ, i.e.

fn(θω) = fn+1(ω)

for all ω ∈ ΩN, n ∈ N and ω ∈ ΩZ, n ∈ Z respectively, and the associated skew product systems

on ΩN × Rd or ΩZ × Rd respectively by

Θ(ω, x) = (θω, f0(ω)x).

Recall from before that ρ is a stationary measure for X+(Rd, ν) iff νN×ρ is an invariant measure

for the one-sided skew product system Θ on ΩN × Rd. Furthermore, by the correspondence

theorem 1.5.6, we again get the existence of a unique Borel probability measure µ on ΩZ × Rd

such that Θµ = µ and Pµ = νN×ρ, where P denotes the projection to the measures on ΩN×Rd.
As we have seen many times before, we can consider the associated Markov process and,

hence, when also considering two-sided time, we can separate past and future σ-algebras. For

reasons of brevity, we will not do this here in more detail, but we want to remark that one may

also consider the conditional entropy with respect to the future of the two-sided time system

and show that this is the same as hµ
(
X+(Rd, ν)

)
.

Furthermore, we recall Oseledets’ Multiplicative Ergodic Theorem 2.5.3 and apply it to

(Θ, µ) under assuming the integrability condition, without µ being necessarily ergodic. There is

an Oseledets splitting

Rd = E1(ω, x)⊕ · · · ⊕ Ep(ω,x)(ω, x)

such that for µ-a.e. (ω, x)

lim
n→±∞

1

n
ln ‖Dfnωv‖ = λi(ω, x) if 0 6= v ∈ Ei(ω, x) . (3.3.1)

The maps (ω, x) 7→ p(ω, x), λi(ω, x),dimEi(ω, x) are measurable and constant along orbits of

Θ. In fact, there are functions p, λi,mi : Rd → R such that for µ-a.e. (ω, x)

p(ω, x) = p(x), λi(ω, x) = λi(x) and dimEi(ω, x) = mi(x) ,

where di is the multiplicity of λi. This can be seen by using ergodic decompositions of invariant

measures; we refer to Kifer [19, Appendix A.1] for the ergodic decomposition and to [24, Chapter

1, Remark 3.1] for its application. As before, if µ is ergodic, these functions are constant, i.e. the
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x-dependence also vanishes.

In [6] we find five integrability assumptions that amount to the fact that all derivatives are

satisfying the conditions of the MET in forward and backward time. We call this assumption

(A). It is not necessary for our purposes to list these here specifically as the assumptions are

satisfied for sufficiently regular stochastic flows. The theorem confirming Pesin’s formula in this

setting reads as follows:

Theorem 3.3.4 (Pesin’s formula). Let X+(Rd, ν) be a random dynamical system which has an

absolutely continuous stationary probability measure ρ and satisfies (A). Then we have

hρ

(
X+(Rd, ν)

)
=

∫
Rd

∑
i

λi(x)+mi(x)ρ(dx) , (3.3.2)

where λi(x)+ are the positive Lyapunov exponents and mi(x) their multiplicities.

Proof. See [6].

Entropy for stochastic flows

Assume now that we are in the situation of Theorem 1.4.5 for an SDE (1.4.7) inducing a Ck

random dynamical system (θ, ϕ). We relate the system to a stochastic flow of Ck diffeomorphisms

in the sense of [22] by defining the maps

ϕ̃ : R+
0 × R+

0 × Ω̄× Rd → Rd, ϕ̃s,t(ω̄, x) = ϕ(t− s, θsω̄, x) ,

where (Ω̄,F ,P) is the canonical Wiener space. By this definition ϕ̃s,t(ω̄, ·) is a Ck diffeomorphism

for each s, t ≥ 0 and ω̄ ∈ Ω̄.

Now let k ≥ 2 and define Ω as above as the space of C2 diffeomorphisms equipped with the

uniform topology on compact sets. In this case, the measure

ν(·) = P{ω̄ ∈ Ω̄ : ϕ̃0,1(ω̄, ·) ∈ ·} (3.3.3)

on (Ω,B(Ω)) and the random diffeomorphisms

f0(ω) = ϕ̃0,1(ω̄, ·) = ϕ(1, ω̄, ·) (3.3.4)

generate, as before, a random dynamical system in discrete time

X+(Rd, ν) =
{
fnω : n ≥ 0, ω ∈

(
ΩN,B(Ω)N, νN

)}
.

Observe that the measure ρ is stationary for this system if for any set A ∈ B(Rd)

ρ(A) =

∫
Ω̄
ρ
(
(ϕ̃0,1(ω̄, ·))−1(A)

)
P(dω̄) .
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Let P (t, x, ·) denote the transition probabilities associated to the stochastic differential equation.

Then we make the following observation:

Lemma 3.3.5. Any invariant probability measure ρ for the Markov semi-group associated to

the stochastic differential equation (1.4.7) is stationary for the induced discrete time system

X+(Rd, ν).

Proof. For all A ∈ B(Rd) we have with Fubini that

ρ(A) =

∫
Rd
P (1, x, A) ρ(dx) =

∫
Rd

∫
Ω̄
1A(ϕ̃0,1(ω̄, x))P(dω̄)ρ(dx)

=

∫
Ω̄

∫
Rd
1A(ϕ̃0,1(ω̄, x)) ρ(dx)P(dω̄) =

∫
Ω̄
ρ
(
(ϕ̃0,1(ω̄, ·))−1(A)

)
P(dω̄) ,

which shows the claim.

Using the relations between stochastic flows, continuous-time random dynamical systems

and discrete time random dynamical systems as explained above, we can now formulate Pesin’s

formula for random dynamical systems induced by stochastic differential equations:

Theorem 3.3.6 (Pesin’s formula for SDEs). Let (θ, ϕ) be a random dynamical system induced

by a stochastic differential equation of the form (1.4.7) and let the assumptions of Theorem 1.4.5

be satisfied. Let further be ρ an absolutely continuous stationary probability measure satisfying∫
Rd

(log(|x|+ 1)1/2 ρ(dx) <∞ . (3.3.5)

Then the discrete time random dynamical system X+(Rd, ν) associated with (θ, ϕ) satisfies (A)

and, hence,

hρ

(
X+(Rd, ν)

)
=

∫
Rd

∑
i

λi(x)+mi(x)ρ(dx)

holds.

Proof. A direct consequence of [6, Theorem 9.1].

In particular, we obtain that RDS with random attractors that support invariant Markov

measures and are associated with positive Lyapunov exponents, can also be associated with

positive entropy.

3.3.2 SRB measures

Another more profound notion of chaos could be given by showing the SRB-property of the

random measures µω, which are the disintegrations of an invariant probability measure µ for the

two-sided skew product system, i.e. µ(dx,dω) = µω(dx)νZ(dω).

Let us assume we are in exactly the same setting of a discrete time random dynamical

system as above with the only difference that the state space is a compact smooth manifold M ,

calling such a system X+(M,ν), generated by C2 diffeomorphisms and a law ν. Let the sample
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measures µω be associated with a stationary measure ρ and write Ei(ω, x) for the Oseledets

spaces corresponding with the Lyapunov exponents λi(x). We follow [23] for the following

definitions and results.

Definition 3.3.7. Let (ω, x) ∈ ΩZ×M be s.t. λi(x) > 0 for some i. Then the unstable manifold

and the stable manifold of the skew product flow Θ at (ω, x) are given by

W u(ω, x) =

{
y ∈M : lim sup

n→∞

1

n
ln d(f−nω x, f−nω y) < 0

}
,

W s(ω, x) =

{
y ∈M : lim sup

n→∞

1

n
ln d(fnωx, f

n
ωy) < 0

}
.

At µ-a.e. (ω, x) with λi(x) > 0 for some i, W u(ω, x) is a
(∑

λi>0 dimEi(ω, x)
)
-dimensional

C2 immersed submanifold of M ; this follows from the time-reversed version of Theorem 2.6.1.

We set W u(ω, x) = {x} if λi(x) ≤ 0 for all i. If η is a partition of ΩZ ×M , ηω denotes the

restriction of η to the fibre {ω} ×M which is a partition of M . We write ηω(x) for the element

of ηω that contains x.

Definition 3.3.8. A measurable partition η of ΩZ × M is called subordinate to W u if for

µ-a.e. (ω, x), ηω(x) ⊂ W u(ω, x) and contains an open neighbourhood of x in W u(ω, x), this

neighbourhood being taken in the submanifold topology of W u(ω, x).

Identifying σ-algebras with their generating partitions, we denote by σ the partition of

ΩZ ×M into sets of the form {ω} ×M . If η is a partition subordinate to W u, µ disintegrates

into a system of conditional measures on elements of η ∨ σ, denoted by
{
µη∨σ(ω,x)

}
. For µ-a.e.

(ω, x) we have the identification µη∨σ(ω,x) = (µω)ηωx . Finally let λWu(ω,x) denote the Riemannian

measure on W u(ω, x).

Definition 3.3.9 (SRB measures). The sample measures µω are called SRB measures or ab-

solutely continuous conditional measures on W u-manifolds if for every measurable partition η

subordinate to W u, µη∨σ(ω,x) is absolutely continuous with respect to λWu(ω,x) for µ-a.e. (ω, x).

Ledrappier & Young [23] can then prove the following statement.

Theorem 3.3.10. Suppose the stationary measure ρ of the random dynamical system X+(M,ν)

is absolutely continuous with respect to the Lebesgue measure and
∫
λ1dρ > 0. Then the sample

measures µω are SRB measures.

Similarly to before, we can then formulate the following corollary for stochastic differential

equations. As usual for the manifold case, we use the Stratonovich integral due to its classical

properties in terms of the chain rule:

Corollary 3.3.11. Let (θ, ϕ) be a random dynamical system induced by a stochastic differential

equation with C2 coefficients and stationary absolutely continuous probability distribution ρ on

a compact manifold M . Let further
∫
λ1dρ > 0 and µ̃ be the invariant probability measure of

(θ, ϕ) corresponding to ρ. Then the sample measures µ̃ω̄ are SRB measures.
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Proof. By Lemma 3.3.5, ρ is stationary for the induced discrete time system X+(M,ν). Then

the claim follows immediately from Theorem 3.3.10 if we can show that µ̃ω̄ are the disintegrations

µω of the invariant measure µ of X+(M,ν) associated to ρ. By the correspondence theorem,

the probability measures µω are given by

µω = lim
n→∞

fnτ−nωρ for νZ-a.e. ω .

However, identifying ω and ω̄ via relation (3.3.4) we also have that µ̃ω̄ satisfies

µ̃ω̄ = lim
n→∞

ϕ(n, θ−nω̄, ·)ρ = lim
n→∞

fnτ−nωρ for νZ-a.e. ω .

Hence, the claim follows.



Chapter 4

Bifurcations in random dynamical

systems

4.1 Bifurcations via topological equivalence and D-bifurcations

The classical definition in deterministic dynamical systems for finding a bifurcation at some

parameter value α0 ∈ R, is that the respective system is topologically not equivalent for α ≤ α0

and α > α0 in some neighbourhood of α0, i.e. there is no conjugacy between the two parameter

regimes. We translate the notion of topological equivalence into the random context as follows:

Definition 4.1.1 (Topological equivalence). Let (Ω,F ,P) be a probability space, θ : T×Ω→ Ω

a metric dynamical system and (X1, d1), (X2, d2) be Polish spaces. Then, for T̃ ∈ {T,T+
0 }, the

random dynamical systems (θ, ϕ1 : T̃×Ω×X1 → X1) and (θ, ϕ2 : T̃×Ω×X2 → X2) are called

topologically equivalent if there exists a conjugacy h : Ω × X1 → X2 satisfying the following

properties:

(i) For almost all ω ∈ Ω, the function x 7→ h(ω, x) is a homeomorphism from X1 → X2.

(ii) The mappings (ω, x1) 7→ h(ω, x1) and (ω, x2) 7→ h−1(ω, x2) are measurable.

(iii) The random dynamical systems ϕ1 and ϕ2 are cohomologous, i.e.

ϕ2(t, ω, h(ω, x)) = h(θtω, ϕ1(t, ω, x)) for all t ∈ T̃, x ∈ X1 and almost all ω ∈ Ω.

This allows us to introduce bifurcations for RDS, already for multidimensional bifurcation

parameters α ∈ Rk. We will focus on state space Rd in the following:

Definition 4.1.2 (Bifurcation point). Let (ϕα)α∈Rk be a family of continuous RDS on Rd. A

parameter value α0 is called a bifurcation point of the family if the family is not structurally

stable at α0, i.e. if in any neighbourhood of α0 there are parameter values α such that ϕα and

ϕα0 are not topologically equivalent.

We can easily make the following observation:

75
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Lemma 4.1.3. Let ϕ1 and ϕ2 be topologically equivalent as in Definition 4.1.1. Then if ϕ1

has an invariant measure µ with disintegrations µω, then ϕ2 has an invariant measure ν with

disintegrations νω given by

νω(B) = µω
(
h(ω, ·)−1B

)
for all B ∈ B(X2) (and, of course, vice versa).

Proof. Exercise on Question Sheet 11.

Remark 4.1.4. This one-to-one correspondence is very helpful for us to determine bifurcations,

given all knowledge about invariant measures that we have collected in the previous chapters.

In particular, considering results of the previous chapter, we have the following: If we consider

a differentiable ergodic RDS, say for example from a strongly mixing SDE, that depends on a

parameter α, and where the first Lyapunov exponent λ1(α) crosses through zero at some α0,

then the invariant measure changes from a discrete to a diffuse support A(ω) = suppµω (which

is a random point attractor); in particular, the RDS exhibits a bifurcation at α0.

In Arnold’s book [2] you find the following more specific definition that has been motivated

by SDEs with multiplicative noise:

Definition 4.1.5 (D-bifurcation point). Let (ϕα)α∈Rk be a family of (local) C1 RDS in Rd

with a respective family of ergodic invariant measures µα. A parameter value αD is calles a

D-bifurcation point of (ϕα, µα)α∈Rk if in each neighbourhood of αD there is an α for which there

is an invariant measure να 6= µα with να → µαD weakly as α→ αD.

Example 4.1.6. Recall the pitchfork example with linear multiplicative noise 3.1.2

dXt =
(
αXt −X3

t

)
dt+ σXt ◦ dWt,

with cocycle solution

ϕ(t, ω, x) =
xeαt+σWt(ω)(

1 + 2x2
∫ t

0 e
2(αs+σWs(ω))ds

)1/2

for all x ∈ R. Recall the two cases:

(i) For α ≤ 0, the only invariant measure is given by µαω = δ0 for all ω ∈ Ω.

(ii) For α > 0, we have the three invariant Markov measures µαω = δ0 and να±,ω = δ±aα(ω),

where

aα(ω) =

(
2

∫ 0

−∞
e2(αs+σWs(ω)

)−1/2

.

Note that Ea2
α = α. The Lyapunov exponent λ1 of the linearized SDE

dvt =
(
α− 3X2

t

)
vtdt+ σvt ◦ dWt,

with respect to the three measures is
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(i) For µαω = δ0, we have λ(µα) = α,

(ii) For να±,ω = δ±aα(ω), we have λ(να) = α− 3Ea2
α = −2α.

In summary, we have a D-bifurcation at the reference measure δ0 at αD = 0.

[End of Lecture XII, 29.06.]

4.2 Random bifurcations (in additive noise SDEs)

Recall from the exercise that in the situation of the pitchfork example with additive noise, the

invariant Markov measure is given by δAα(ω), where Aα(ω) is the attracting random equilibrium

for any α ∈ R; similarly this is the situation for the Hopf bifurcation with additive noise (and

no large shear). In both situations, however, one may still see more subtle bifurcations that

cannot be captured by a D-bifurcation, or more generally, loss of topological equivalence. A

crucial criterion here is to compare if attraction is uniform and if the toplogical equivalence is

uniformly continuous. This motivates the following definitions and the subsequent observation:

Definition 4.2.1 (Uniform topological equivalence). Let (Ω,F ,P) be a probability space, θ :

T × Ω → Ω a metric dynamical system and (X1, d1), (X2, d2) be Polish spaces. Then, for T̃ ∈
{T,T+

0 }, the random dynamical systems (θ, ϕ1 : T̃×Ω×X1 → X1) and (θ, ϕ2 : T̃×Ω×X2 → X2)

are called uniformly topologically equivalent with respect to a random equilibrium {a(ω)}ω∈Ω of

ϕ1 if there exists a conjugacy h : Ω×X1 → X2 satisfying the following properties:

(i) For almost all ω ∈ Ω, the function x 7→ h(ω, x) is a homeomorphism from X1 → X2.

(ii) The mappings (ω, x1) 7→ h(ω, x1) and (ω, x2) 7→ h−1(ω, x2) are measurable.

(iii) The random dynamical systems ϕ1 and ϕ2 are cohomologous, i.e.

ϕ2(t, ω, h(ω, x)) = h(θtω, ϕ1(t, ω, x)) for all t ∈ T̃, x ∈ X1 and almost all ω ∈ Ω.

(iv) We have

lim
δ→0

ess sup
ω∈Ω

sup
x∈Bδ(a(ω))

d2(h(ω, x), h(ω, a(ω))) = 0

and

lim
δ→0

ess sup
ω∈Ω

sup
x∈Bδ(h(ω,a(ω)))

d1(h−1(ω, x), a(ω)) = 0.

Definition 4.2.2 (Uniform attractivity). In the following, we say that a random equilibrium

a(ω) is locally uniformly attractive if there is a δ > 0 such that

lim
t→∞

ess sup
ω∈Ω

sup
x∈Bδ(a(ω))

d(ϕ(t, ω, x), a(θtω)) = 0. (4.2.1)

Proposition 4.2.3. Let (Ω,F ,P) be a probability space, θ : T × Ω → Ω a metric dynamical

system, (X1, d1), (X2, d2) be Polish spaces, and, for T̃ ∈ {T,T+
0 }, the random dynamical systems
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(θ, ϕ1 : T̃× Ω×X1 → X1) and (θ, ϕ2 : T̃× Ω×X2 → X2) be uniformly topologically equivalent

with respect to a random equilibrium {a(ω)}ω∈Ω of ϕ1. Let h : Ω×X1 → X2 be the conjugacy.

Then {a(ω)}ω∈Ω is locally uniformly attractive for ϕ1 if and only if {h(ω, a(ω))}ω∈Ω is locally

uniformly attractive for ϕ2.

Proof. Suppose that {a(ω)}ω∈Ω is locally uniformly attractive for ϕ1 and let η > 0. By assump-

tion, there exists a γ > 0 such that

ess sup
ω∈Ω

sup
x∈Bγ(a(ω))

d2(h(ω, x), h(ω, a(ω))) ≤ η.

Since {a(ω)}ω∈Ω is locally uniformly attractive for ϕ1, there exists a δ > 0 and a T > 0 such

that

ess sup
ω∈Ω

sup
x∈Bδ(a(ω))

d1(ϕ(t, ω, x), a(θtω))) ≤ γ

2
for all t ≥ T.

Hence, for all t ≥ T , we have

ess sup
ω∈Ω

sup
x∈Bδ(a(ω))

d2(h(θtω, ϕ1(t, ω, x)), h(θtω, a(θtω))) ≤ η.

This means that, for all t ≥ T ,

ess sup
ω∈Ω

sup
x∈Bδ(a(ω))

d2(ϕ2(t, ω, h(ω, x))), h(θtω, a(θtω))) ≤ η.

By continuity of h−1(ω, ·), there exists a β > 0 such that

ess sup
ω∈Ω

sup
x∈Bβ(h(ω,a(ω)))

d1(h−1(ω, x), a(ω)) ≤ δ

2
.

Finally, this yields all together that for t ≥ T

ess sup
ω∈Ω

sup
x∈Bβ(h(ω,a(ω)))

d2(ϕ2(t, ω, x), h(θtω, a(θtω))) ≤ η,

which means that {h(ω, a(ω)}ω∈Ω is locally uniformly attractive for ϕ2. The converse is proved

analogously.

Example 4.2.4. 1. We have seen in the exercises, that for the standard example with addi-

tive noise

dXt =
(
αXt −X3

t

)
dt+ σ dWt,

the random equilibrium aα(ω) looses uniform attractivity when α crosses 0. Hence, the

random dynamical systems for α < 0 on the one hand and α > 0 on the other are not

uniformly topologically equivalent. One may also call this a random bifurcation.
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2. The other main example from the exercises

dx = (αx− βy − (ax− by)(x2 + y2)) dt+ σ dW 1
t ,

dy = (αy + βx− (bx+ ay)(x2 + y2)) dt+ σ dW 2
t ,

with b sufficiently small and all other parameters fixed, in fact, exhibits also this loss of

uniform topological equivalence when α crosses 0 (see [11]).

4.3 Bifurcation of a stochastically driven limit cycle

We consider the following model of a stochastically driven limit cycle

dy = −αy dt+ σ
∑m

i=1 fi(ϑ) ◦ dW i
t ,

dϑ = (1 + by) dt ,
(4.3.1)

where (y, ϑ) ∈ R× S1 are cylindrical amplitude-phase coordinates, m ≥ 2 is a natural number,

and W i
t for i ∈ {1, . . . ,m} denote independent one-dimensional Brownian motions entering the

equation as noise of Stratonovich type.

In the absence of noise (σ = 0), the ordinary differential equation (4.3.1) has a globally

attracting limit cycle at y = 0 if α > 0. In the presence of noise (σ 6= 0), the amplitude is driven

by phase-dependent noise. The real parameter b induces shear: if b 6= 0, the phase velocity dϑ
dt

depends on the amplitude y. The stable limit cycle turns into a random attractor if σ 6= 0. The

main question we address in the following concerns the nature of this random attractor. The

crucial quantity is the sign of the first Lyapunov exponent λ1 = λ1(α, b, σ) with respect to the

invariant measure associated to the random attractor.

The functions fi : S1 ' [0, 1) → R are assumed to be C2,δ for some 0 < δ ≤ 1 to guarantee

differentiability of the random dynamical system, and, to facilitate the analysis, we require

m∑
i=1

f ′i(ϑ)2 = 1 for all ϑ ∈ S1 . (4.3.2)

A simple example is given by

m = 2, f1(ϑ) = cos(ϑ), f2(ϑ) = sin(ϑ) . (4.3.3)

Using an explicit formula of Furstenberg–Khasminskii type for the top Lyapunov exponent λ1

derived by Peter Imkeller and Christian Lederer [17], we obtain the following bifurcation result

with such choices of the amplitude-phase coupling.

Theorem 4.3.1. Consider the SDE (4.3.1) with m ≥ 2 and fi, i ∈ {1, . . . ,m}, satisfying

assumption (4.3.2). Then there is c0 ≈ 0.2823 such that for all α > 0 and b 6= 0, the number

σ0(α, b) = α3/2

c
1/2
0 |b|

> 0 is the unique value of σ where the top Lyapunov exponent λ1(α, b, σ) of
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(4.3.1) changes sign:

λ1(α, b, σ)


< 0 if 0 < σ < σ0(α, b) ,

= 0 if σ = σ0(α, b) ,

> 0 if σ > σ0(α, b) .

As long as b, σ 6= 0, the amplitude variable y can be rescaled so that the shear parameter b

becomes equal to 1 and the effective noise amplitude becomes σb. Hence, the above result also

holds with the roles of σ and b interchanged. Note that σ0(α, b) is an increasing function of α.

If σ = 0, we clearly have λ1 = 0 for all α > 0. The case α = 0 is obviously not of any interest

in our model.

4.3.1 Explicit formula for the Lyapunov exponents

Consider the stochastic differential equation of Stratonovich type (4.3.1) fulfilling condition (4.3.2),

and assume that the three parameters fulfill α > 0, σ > 0 and b ∈ R. Note that the equation

reads the same in Itô form according to the Itô–Stratonovich conversion formula.

Since the drift and diffusion coefficients are Lipschitz continuous and satisfy linear growth

conditions, the SDE (4.3.1) generates a continuous random dynamical system (θ : R × Ω →
Ω, ϕ : R+

0 × Ω× R× S1 → R× S1).

In the case of (4.3.1), the variational equation on the tangent space Tx(R× S1) ∼= R2 takes

the form

dv =

(
−α 0

b 0

)
︸ ︷︷ ︸

=:A

v dt+ σ
m∑
i=1

(
0 f ′i(ϑ)

0 0

)
︸ ︷︷ ︸

=:Bi

v ◦ dW i
t . (4.3.4)

Note that we omit the (t, ω)-dependence of ϑ and B. Observe that the cocycle ϕ is differentiable

in x and recall that its partial derivative Dϕ(t, ω, x) with respect to x applied to an initial

condition v0 ∈ R2 solves uniquely the variational equation (4.3.4). The random dynamical

system (θ, ϕ) has an ergodic invariant measure ν associated with the stationary measure ρ

for (4.3.1) and clearly satisfies the integrability condition

sup
0≤t≤1

log+ ‖Dϕ(t, ω, x)‖ ∈ L1(ν).

Hence, the MET gives the existence of at least one λ1 and at most two Lyapunov exponents

λ1 ≥ λ2 for ϕ via its derivative Dϕ such that

lim
t→∞

1

t
log ‖Dϕ(t, ω, x)v‖ ∈ {λ1, λ2} ,

for all v ∈ R2 and ν-almost all (ω, x) ∈ Ω× R× S1.

We observe that

Ut :=

m∑
i=1

∫ t

0
f ′i(ϑs)dW

i
s (4.3.5)
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defines a standard Brownian motion under condition (4.3.2). Hence, the variational equa-

tion (4.3.4) can be replaced by

dv =

(
−α 0

b 0

)
v dt+

(
0 σ

0 0

)
v ◦ dUt , (4.3.6)

and the Lyapunov exponents for ϕ can be computed from this equation.

The following theorem is now a direct corollary of a result by Imkeller and Lederer [17,

Theorem 3], using the Furstenberg-Khasminskii formula (2.5.30).

Theorem 4.3.2. Consider the stochastic differential equation (4.3.1) with m ≥ 2 and fi, i ∈
{1, . . . ,m}, satisfying assumption (4.3.2). Then the two Lyapunov exponents are given by

λ1(α, b, σ) = −α
2

+
|bσ|
2

∫ ∞
0

v mσ,b,α(v) dv , (4.3.7)

λ2(α, b, σ) = −α
2
− |bσ|

2

∫ ∞
0

v mσ,b,α(v) dv , (4.3.8)

where

mσ,b,α(v) =

1√
v

exp
(
− |bσ|6 v3 + α2

2|bσ|v
)

∫∞
0

1√
u

exp
(
− |bσ|6 u3 + α2

2|bσ|u
)

du
. (4.3.9)

Proof. Replacing v =

(
v1

v2

)
by v̂ =

(
v2

v1
σ

)
leaves the Lyapunov exponents invariant and trans-

forms (4.3.6) into the equation

dv =

(
0 σb

0 −α

)
v dt+

(
0 0

1 0

)
v ◦ dW 1

t . (4.3.10)

The matrices in this equation satisfy the assumptions of [17, Theorem 3] which gives the formu-

las (4.3.7) and (4.3.8).

4.3.2 Bifurcation from negative to positive top Lyapunov exponent

We now use Theorem 4.3.2 to prove Theorem 4.3.1, which asserts that there is a bifurcation

from negative to positive Lyapunov exponent for the stochastic differential equation (4.3.1).

Proof of Theorem 4.3.1. We fix α > 0 and b 6= 0. Introducing the change of variables v = α
|bσ|u

in (4.3.9), we obtain

λ1(α, b, σ) =
α

2

(∫ ∞
0

u m̃σ,b,α(u) du− 1

)
, (4.3.11)

where

m̃σ,b,α(u) =

1√
u

exp
(
− α3

σ2b2

[
1
6u

3 − 1
2u
])

∫∞
0

1√
w

exp
(
− α3

σ2b2

[
1
6w

3 − 1
2w
])

dw
.
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Defining c := α3

σ2b2
, we observe that λ1(α, b, σ) has the same sign as the function G : (0,∞)→ R

given by

G(c) :=

∫ ∞
0

(√
u− 1√

u

)
exp

(
−c
[

1

6
u3 − 1

2
u

])
du . (4.3.12)

Using dominated convergence, we may interchange the order of differentiation and integration

and consider

G′(c) =

∫ ∞
0

h1(u)h2(u) exp (c h2(u)) du , h1(u) =
√
u− 1√

u
, h2(u) = −1

6
u3 +

1

2
u .

Note that h1h2, and thereby the integrand, has positive sign on the interval (1,
√

3) and negative

sign on (0, 1) and (
√

3,∞). Moreover, |h1(1− δ)| > h1(1 + δ) and h2(1− δ) > h2(1 + δ) for all

δ ∈ (0,
√

3− 1) so that

G′(c) <

∫ √3

2−
√

3
h1(u)h2(u) exp (c h2(u)) du < 0 for all c ∈ (0,∞) .

Hence, G is strictly decreasing. Furthermore, we observe that G(c) → ∞ as c ↘ 0 (using

monotone convergence on [
√

3,∞)) and that G(c) → −∞ as c → ∞ (using similar arguments

as for G′ and monotone convergence on (0, 2−
√

3)).

Combining these observations, we conclude that there is a unique c0 such that G(c0) = 0,

G(c) > 0 for all c ∈ (0, c0) and G(c) < 0 for all c ∈ (c0,∞). This proves the claim with

σ0(α, b) = α3/2

c
1/2
0 |b|

. Numerical integration gives c0 ≈ 0.2823.

Note that, as explained already above, the same result holds if we interchange the roles of σ

and b. This can be seen also directly from the proof.

Remark 4.3.3. The random dynamical system induced by (4.3.1) has a random set attractor

{Ã(ω)}ω∈Ω for all parameter values, as can be seen similarly to [18]. Furthermore, the random

dynamical system possesses an ergodic invariant Markov measure µ which is associated to the

unique invariant measure (also called stationary measure) for the corresponding Markov semi-

group. The disintegrations µω of the ergodic invariant measure µ are supported on subsets of

the fibers Ã(ω), i.e. A(ω) := supp(µω) ⊂ Ã(ω). In fact, the measurable random compact set

{A(ω)}ω∈Ω is a minimal (weak) random point attractor of (4.3.1), see Proposition 3.2.8.

The fact that {A(ω)}ω∈Ω is a singleton almost surely if λ1 < 0, follows from a slightly

modified reasoning alongside Theorem 3.2.9 and its proof. In the case of λ1 > 0, we deduce that

µω is atomless almost surely as in the proof of Theorem 3.3.1. Hence, Theorem 4.3.1 implies the

bifurcation from an attractive random equilibrium to an atomless random point attractor (also

called random strange attractor).

In Figure 4.1(a), we show the top Lyapunov exponent as a function of σ for fixed b and α

according to formula (4.3.7), illustrating the bifurcation of the sign of λ1. Figure 4.1(b) displays

the (σ, α)-parameter space being separated by the curve {(σ0(α, b), α)} for fixed b.
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(a) (b)

Figure 4.1: In Figure 1(a) the top Lyapunov exponent λ1, calculated according to (4.3.7) using numerical
integration, is shown as a function of σ for fixed b and α. Figure 1(b) shows the areas of positive and
negative λ1 in the (σ, α)-parameter space being separated by the curve {(σ0(α, 3), α)} as a function of α
for fixed b = 3, using the formula for σ0 in Theorem 4.3.1.
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