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Abstract: 

Partial differential equations (PDEs) are among the most universal tools 

used in modelling problems in nature and man-made complex systems. For 

example, stochastic PDEs are a fundamental ingredient in models for 

nonlinear filtering problems in chemical engineering and weather 

forecasting, deterministic Schroedinger PDEs describe the wave function in 

a quantum physical system, deterministic Hamiltonian-Jacobi-Bellman PDEs 

are employed in operations research to describe optimal control problems 

where companys aim to minimise their costs, and deterministic Black-

Scholes-type PDEs are highly employed in portfolio optimization models as 

well as in state-of-the-art pricing and hedging models for financial 

derivatives. The PDEs appearing in such models are often high-dimensional 

as the number of dimensions, roughly speaking, corresponds to the number of 

all involved interacting substances, particles, resources, agents, or 

assets in the model. For instance, in the case of the above mentioned 

financial engineering models the dimensionality of the PDE often 

corresponds to the number of financial assets in the involved hedging 

portfolio. Such PDEs can typically not be solved explicitly and it is one 

of the most challenging tasks in applied mathematics to develop 

approximation algorithms which are able to approximatively compute 

solutions of high-dimensional PDEs. Nearly all approximation algorithms for 

PDEs in the literature suffer from the so-called "curse of dimensionality" 

in the sense that the number of required computational operations of the 

approximation algorithm to achieve a given approximation accuracy grows 

exponentially in the dimension of the considered PDE. With such algorithms 

it is impossible to approximatively compute solutions of high-dimensional 

PDEs even when the fastest currently available computers are used. In the 

case of linear parabolic PDEs and approximations at a fixed space-time 

point, the curse of dimensionality can be overcome by means of Monte Carlo 

approximation algorithms and the Feynman-Kac formula. In this talk we 

introduce new nonlinear Monte Carlo algorithms for high-dimensional 

nonlinear PDEs. We prove that such algorithms do indeed overcome the curse 

of dimensionality in the case of a general class of semilinear parabolic 

PDEs and we thereby prove, for the first time, that a general semilinear 

parabolic PDE with a nonlinearity depending on the PDE solution can be 

solved approximatively without the curse of dimensionality. 

 


