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The Laplace operator

∆ϕ(x) =
d∑

i=1

∂2
xi
ϕ(x)

The Ornstein–Uhlenbeck operator

Lϕ(x) = ∆ϕ(x)− 〈x ,∇ϕ(x)〉



Equations:

∂tu = ∆u, ∂tu = Lu, u(x , 0) = f (x).

The heat semigroup

Ptf (x) =

∫
f (x − y)

1
√

4πt
d

exp
(
−|y |

2

4t

)
dy ,

The Ornstein–Uhlenbeck semigroup

Ttf (x) =

∫
Rd

f
(
e−tx −

√
1− e−2t y

)
γ(dy),

where γ is the standard Gaussian measure on Rd

with density

%(x) =
1

(2π)d/2
e−|x |

2/2



Important contributors:
Laplace, Gauss, Chebyshev, Hermite, Mehler,
Bachelier, Smoluchowski, Wiener, Ornstein,
Uhlenbeck, Hille, Doob, Nelson, Gross...

QUESTION: Who did coin the terms
“Ornstein–Uhlenbeck semigroup” and
“Ornstein–Uhlenbeck operator”?



Operator semigroups:

Tt+s = Tt ◦ Ts , T0 = I , s, t ≥ 0.

Strongly continuous semigroups on a Banach
space X :

lim
t≥0

Ttx = x ∀ x ∈ X .

What are suitable X for Pt and Tt?
Tt takes Cb into Cb, L∞ into L∞, but not strongly
continuous:



Take a bounded Lipschitz function f for which
f (n) = 1 and f (e−1/nn) = 0. It exists, since
(1− e−1/n)n → 1. Then

|T1/nf (x)− f (e−1/nx)|

≤
∫ ∣∣f (

e−1/nx −
√

1− e−2/n y
)
− f (e−1/nx)

∣∣ γ(dy)

≤ C
√

1− e−2/n ,

so ‖T1/nf − f ‖∞ cannot tend to zero because

f (e−1/nn)− f (n) = 1.



Lp(γ) with 1 ≤ p <∞ are suitable

Theorem 1. {Tt} is strongly continuous on Lp(γ)
with p <∞ and ‖Ttf ‖Lp(γ) ≤ ‖f ‖Lp(γ).

The semigroup property: exercise in calculus and
change of variable
Strong continuity: the bound follows by Hölder; for
f ∈ C∞

0 the norm continuity is trivial; for any f
follows by approximation.



Remark. Why Lp(γ), not Lp(Rd)?
In some respects Lp(Rd) is also fine:
Since Tt takes L∞ to L∞ and also takes L1(Rd)
to L1(Rd) due to ∫

Rd

|Ttf (x)| dx

≤
∫

Rd

∫
Rd

|f (e−tx +
√

1− e−2t y)| γ(dy) dx

= edt

∫
Rd

|f (u)| du,

the case p > 1 follows by the interpolation theorem.
On Lp(Rd) with p <∞ the semigroup {Tt} is also
continuous.



Something IMPORTANT:
the measure γ is invariant for Tt , i.e.,∫

Ttf dγ =

∫
f dγ ∀ f ∈ L1(γ),

and, with the integral of f denoted by I (f ),

lim
t→∞

‖Ttf − I (f )‖p = 0 ∀ f ∈ Lp(γ), p ∈ [1,∞).

On L2(γ) the operators Tt are self-adjoint and
non-negative in the sense of quadratic forms, and
on Lp(γ) they are non-negative in the sense of
ordered spaces, i.e., take non-negative functions to
non-negative functions.



Some other useful relations for L and Tt : in place of
the usual integration by parts formula∫

f ∆g dx = −
∫
〈∇f ,∇g〉 dx

for smooth functions with compact support one has∫
fLg dγ = −

∫
〈∇f ,∇g〉 dγ

Next,
∇Ttf = e−tTt∇f .

From Jensen’s inequality for a convex function V :

V (Ttf ) ≤ Tt(V (f )).

In particular, for f > 0 we have

Tt ln f ≤ ln Ttf and Tt(f ln f ) ≥ Ttf ln Ttf ,



From the general theory of continuous operator
semigroups on Banach spaces: for every p ∈ [1,∞)
the set

Dp(L) :=

{
f ∈ Lp(γ) : lim

t→0

1

t
(Ttf−f ) exists in Lp(γ)

}
is a dense linear subspace of Lp(γ), and the linear
operator with domain Dp(L) given by

Lf := lim
t→0

1

t
(Ttf − f )

is closed, that is, has a closed graph: if fn ∈ Dp(L),
fn → f , and Lfn → g in Lp(γ), then f ∈ Dp(L) and
Lf = g .



This operator is called the generator of the
semigroup {Tt}. In the case of the
Ornstein–Uhlenbeck semigroup, L is called the
Ornstein–Uhlenbeck operator. It is convenient to
write the operators Tt in the form Tt = exp(tL),
with L on L2(γ) having a non-positive quadratic
form, that is, to indicate that the corresponding
operator exponential exp(tL) coincides with Tt .
HOW TO FIND L EXPLICITLY?
On some functions f , say, from C∞

0 , this is easy:



f
(
e−tx −

√
1− e−2t y

)
− f (x)

=

∫ t

0

f ′
(
e−sx −

√
1− e−2s y

)
×

(
−e−sx − e−2s(1− e−2s)−1/2y

)
ds.

After integration in y with respect to γ we obtain
two terms. The first term multiplied by t−1 tends
in Lp(γ) to −xf ′(x) as t → 0 by the Lebesgue
theorem. The second term is transformed by
integration by parts with respect to y into∫ t

0

∫
f ′′

(
e−sx −

√
1− e−2s y

)
e−2s ds γ(dy),

which with the factor t−1 tends to f ′′(x) in Lp(γ) as
t → 0.



Thus, Lf is the action of the Ornstein–Uhlenbeck
operator.
But what is the exact domain of L on Lp(γ)?
A simple case is p = 2, where Chebyshev–Hermite
polynomials can be used (called Hermite
polynomials for brevity) defined by

H0 = 1, Hk(t) =
(−1)k

√
k!

et2/2 dk

dtk
e−t2/2, k ≥ 1.

The crucial fact is that {Hk} is an orthonormal
basis in L2(γ) and

TtHk = e−ktHk , LHk = −kHk .

In Rd , where k is a multi-index k = (k1, . . . , kd),

TtHk1,...,kd
= e−(k1+···+kd)tHk1,...,kd

.



Theorem 2. The domain of L in L2(γ) for d = 1 is

D2(L) =

{
f =

∞∑
k=0

ckHk :
∞∑

k=0

k2|ck |2 <∞
}
,

and

Lf = −
∞∑

k=0

kckHk .

Similarly in the multidimensional case.



The proof is straightforward:

Ttf − f

t
=

∑
k

e−kt − 1

t
ckHk , f =

∑
k

ckHk .

If
∑∞

k=0 k2|ck |2 <∞, then letting g = −
∑

k kckHk ,
we have

‖(Ttf − f )/t − g‖2 =
∑

k

∣∣∣e−kt − 1

t
+ k

∣∣∣2|ck |2 → 0

as t → 0. Conversely, if there is a limit of
(Ttf − f )/t in L2(γ), its coordinates in {Hk} must
be −kck , so the series of k2|ck |2 must converge.
It is verified directly that LHk is indeed the action of
the Ornstein–Uhlenbeck operator.



How useful is this description? If f ∈ C∞
0 , then

f ∈ D2(L) without this theorem, but is it seen from
the theorem?
The theorem shows that Hk ∈ D2(L), hence all
polynomials are in D2(L), but how can we check
that f is in D2(L) without expansions?
Sobolev classes: W p,k(Rd) consists of f ∈ Lp(Rd)
such that the distributional derivatives of f up to
order k are functions from Lp(Rd), where a locally
integrable g is ∂xi

f in the sense of distributions if∫
∂xi
ϕ f dx = −

∫
ϕg dx

for all ϕ ∈ C∞
0 .



DEFINITION. W p,k
loc (Rd) consists of functions f

such that ζf ∈ W p,k(Rd) for all ζ ∈ C∞
0 .

Theorem 3. W p,k(Rd) coincides with the
completion of C∞

0 with respect to the Sobolev norm

‖f ‖W p,k(Rd) = ‖f ‖Lp(Rd) +
∑
m≤k

‖∂xi1
· · · ∂xim

f ‖Lp(Rd)

Theorem 4. Let p > 1. Then W p,2(Rd) consists of
f ∈ Lp(Rd) such that ∆f in the sense of
distributions is represented by an element of Lp(Rd).

FALSE for p = 1



GAUSSIAN ANALOGS:
DEFINITION. W p,k(γ) is the completion of C∞

0

with respect to the Sobolev norm

‖f ‖W p,k(γ) = ‖f ‖Lp(γ) +
∑
m≤k

‖∂xi1
∂xim

f ‖Lp(γ)

Theorem 5. W p,k(γ) consists of all f ∈ W p,k
loc (Rd)

such that ‖f ‖W p,k(γ) <∞.
Let p > 1. Then W p,2(γ) consists of all
f ∈ W p,2

loc (Rd) such that f ∈ Lp(γ) and
∆f − 〈x ,∇f 〉 ∈ Lp(γ).



Theorem 6. W p,2(γ) = Dp(L)



The r th-order derivative of a function f will be
denoted by D r f . The gradient ∇f will be denoted
also by Df for uniformity (however, sometimes one
writes ∇r f instead of D r f ). We recall that the
Hilbert–Schmidt norm of the derivative D r f (x) is
defined by

‖D r f (x)‖Hr
:=

( ∑
16ij6d

|∂xi1
· · · ∂xir

f (x)|2
)1/2

.



Theorem 7. Let If p ∈ (1,∞) and r ∈ N, then
there are numbers mp,r and Mp,r independent of d
such that

mp,r‖D r f ‖Lp(γ,Hr ) ≤ ‖(I − L)r/2f ‖Lp(γ)

≤ Mp,r

[
‖D r f ‖Lp(γ,Hr ) + ‖f ‖Lp(γ)

]
.

In particular,

mp,2‖D2f ‖Lp(γ,H2) ≤ ‖(I − L)f ‖Lp(γ)

≤ Mp,2

[
‖D2f ‖Lp(γ,H2) + ‖f ‖Lp(γ)

]
.



The operator (I − L)−1 is a self-adjoint contraction
on L2(γ), hence (I − L)−r/2 is also for any r > 0.
One can show that (I − L)−r/2 is a contraction and
injection on each Lp(γ).
Set

Hp,r(γ) := (I − L)−r/2(Lp(γ))

Theorem 8. If p > 1, r ∈ N, then

W p,r(γ) = Hp,r(γ)



INFINITE DIMENSIONAL EXTENSIONS
γd is the product of d copies of γ1

On the space R∞ of all real sequences
x = (x1, x2, . . .) (the countable power of R) we
define γ as the countable power of γ1.
This means that on cylindrical sets

C = {x : (x1, . . . , xd) ∈ B}

the value of γ is γd(B). Then γ extends to the
σ-algebra generated by such cylinders.
A very special measure? No.



A general centered Gaussian measure γ0 on a
separable Banach space X is a Borel probability
measure on X such that every continuous linear
functional on X is a centered Gaussian random
variable on (X , γ).
If γ0 is not concentrated on a finite-dimensional
space, then γ0 is linearly isomorphic to γ in the
following sense: one can find Borel linear subspaces
X0 ⊂ X and E ⊂ R∞ and a Borel linear operator j
that takes E one-to-one onto X0 and the image of γ
is γ0.



Now Tt on Lp(γ) is defined by the same expression
and gives a strongly continuous semigroup.
W p,k(γ) is the completion with respect to the
Sobolev norm of the union of W p,k(γd) over all d .
Again L is defined on Dp(L) as the generator of
{Tt} and (I − L)−r/2 extends from L2(γ) to all
Lp(γ) as an injective contraction.
As above, Hp,r(γ) :=:= (I − L)−r/2(Lp(γ)) and
Hp,r(γ) = W p,r(γ) for natural r .



L on functions in finitely many variables is the same.
BUT: new phenomena for functions of infinitely
many variable.
EXAMPLE: f (x) =

∑
i ci(x

2
i − 1),

∑
i c

2
i <∞,

the series converges in L2(γ) (in all Lp(γ)).
fn(x) =

∑
i≤n ci(x

2
i − 1) converge to f ,

Lfn(x) =
∑
i≤n

(∂2
xi
fn(x)− xi∂xi

fn(x))

=
∑
i≤n

2ci(1− x2
i ) = 2fn(x),

so f is in W 2,2(γ), actually, in all W p,k(γ), but the
series of ∂2

xi
f = 2ci and xi∂xi

f = cix
2
i do not

converge separately if ci = 1/i .



REMARK on p = 1:

The set D1(L) (domain of L on L1(γ) consists of all
f ∈ L1(γ) such that the distribution ∆f − 〈x ,∇f 〉
is given by a function in L1(γ). Moreover, D1(L)
strictly contains W 1,2(γ).



Sobolev embeddings:
f ∈ W 1,1(Rd) ⇒ f ∈ Ld/(d−1)(Rd)
f ∈ W 2,1(Rd) ⇒ f ∈ L2d/(d−2)(Rd), d ≥ 2
f ∈ W p,1(Rd), p > d ⇒ f ∈ L∞(Rd)

ALL IS FALSE for W p,k(γ)
INSTEAD:



Logarithmic Sobolev inequality:

Theorem 9. f ∈ W 2,1(γ) ⇒ f 2 log |f | ∈ L1(γ) and∫
f 2 log |f | dγ ≤

∫
|∇f |2 dγ

+
1

2

(∫
f 2 dγ

)
log

(∫
f 2 dγ

)
.

So if ‖f ‖L2(γ) = 1, then∫
f 2 log |f | dγ ≤

∫
|∇f |2 dγ



In infinite dimension:
H = l2 the Cameron–Martin space of γ is the set of
all h ∈ R∞ such that the shift γh defined by

γh(B) = γ(B − h)

is equivalent to γ

γ(H) = 0

but H is very important for γ



functions f ∈ W 2,1(γ) possess H-valued gradients
∇f ∈ W 2,1(γ,H):
if fn smooth on Rn converge to f in L2(γ) and form
a Cauchy sequence in W 2,1(γ), we have∫

|∇fm −∇fk |2 dγ → 0

as m, k →∞, but L2(γ,H) of H-valued mappings
is also complete.
Any f ∈ W 2,1(γ) has a version such that ∂xi

f exist
γ-almost everywhere. Then

∇f = (∂xi
f )∞i=1, |∇f |2 =

∑
i

|∂xi
f |2



Let f ≥ 0 and f and f log f are γ-integrable where
f (x) ln f (x) := 0 if f (x) = 0
The entropy:

Entγ(f ) :=

∫
f log f dγ −

∫
f dγ log

∫
f dγ.

By Jensen’s inequality for the convex function t ln t
we have Entγ(f ) ≥ 0.
For nice f (say, f ≥ c > 0 of class C∞

b ) one has

Entγ(f ) = −
∫ ∞

0

d

dt

(∫
Ttf log Ttf dγ

)
dt.



Under the integral sign

d

dt

∫
Ttf log Ttf dγ =

∫
LTtf log Ttf dγ+

∫
LTtf dγ

= −
∫
|∇Ttf |2

Ttf
dγ,

where we use∫
Lψ ϕ dγ = −

∫
〈∇ψ,∇ϕ〉 dγ,

the symmetry of L in L2(γ) and the equality L1 = 0.
Hence

Entγ(f ) =

∫ ∞

0

∫
|∇Ttf |2

Ttf
dγ dt.



Use this to prove log-Sobolev:
first, ∇Ttf = e−tTt∇f , next, by the
Cauchy–Bunyakovskii

|Tt∇f |2 ≤ TtfTt

(
|∇f |2

f

)
,

so the previous representation gives

Entγ(f ) ≤
∫ ∞

0

e−2t

(∫
Tt

(
|∇f |2

f

)
dγ

)
dt

=
1

2

∫
|∇f |2

f
dγ.

Now take f 2 in place of f .



For p ≥ 2:∫
|f |p log

(
|f |
‖f ‖p

)
dγ ≤ p

2

∫
|f |p−2|∇f |2 dγ,

where for f ∈ W p,2(γ) such that f ≥ the right-hand
side equals the integral of the

function
p

2(p − 1)
f p−1Lf .



The logarithmic Sobolev inequality is equivalent to
the hypercontractivity property.

Theorem 10. The Ornstein–Uhlenbeck semigroup
{Tt} is hypercontractive: for all p > 1 and q > 1

‖Ttf ‖q ≤ ‖f ‖p

for all t > 0 such that e2t ≥ (q − 1)/(p − 1).



Theorem 11. Let p > 1 and f ∈ Lp(γ). Then
Ttf ∈ W p,n(γ) for all t > 0 and n ≥ 1, the function
h 7→ Ttf (x + h) is infinitely Fréchet differentiable
on H .
Moreover, Ttf ∈ W q,n(γ) for all q < 1 + (p− 1)e2t .
Therefore, for fixed q > 1 and n ≥ 1 the inclusion
Ttf ∈ W q,n(γ) holds for all sufficiently large t.



Embeddings for W 1,1(γ):

Theorem 12. There is a number C such that for
all d and f ∈ W 1,1(γ)∫

|xi f (x)| γd(dx) ≤ C‖f ‖1,1

for all i .

Theorem 13. If f ∈ W 1,1(γ), then
f
√

log |f | ∈ L1(γ).
Moreover,

‖f ‖L
√

log L ≤ C‖f ‖W 1,1(γ)

Orlicz norm:

‖f ‖Φ = inf

{
λ > 0:

∫
Φ(|f |/λ) dγ ≤ 1

}



Theorem 14. If f
√

log |f | ∈ L1(γ), then
Ttf ∈ W 1,1(γ) for all t > 0.
Moreover, for every t > 0, on bounded functions∫

|∇Ttf | dγ ≤ C (t)‖f ‖L
√

log L,

where

C (t) = 2
e−t

(1− e−2t)1/2
.

Hence extends to L
√

log L.



Theorem 15. There is a constant C such that for
all d ≥ 1, r > 1, and t > 0 the inequality

γd(x : Ttf (x) > r) ≤ C max

{
1,

1

t

}
1

r
√

log r

holds for every probability density f with respect to
the measure γd . Hence this also holds in infinite
dimension.



If f ∈ L1(γ), then

Ttf → f in L1(γ) as t → 0.

Is it true that

Ttf (x) → f (x) as t → 0

almost everywhere?
YES in Rd , OPEN in infinite dimension



MAXIMAL FUNCTION:

Mf (x) := sup
t>0

|Ttf (x)|.

Theorem 16. For every d , there is cd such that

γd

(
x : Mf (x) > R

)
≤ cdR

−1

for all R > 1 and f with ‖f ‖L1(γ) = 1.

OPEN: can we take cd independent of d?



Theorem 17. If f ∈ Lp(γ) with p > 1, then
Mf ∈ Lp(γ) and

‖Mf ‖Lp(γ) ≤ C (p)‖f ‖Lp(γ).

Moreover, there is a version of Ttf such that
Ttf (x) → f (x) as t → 0 for almost every x .

REMARK. One has to be careful with versions in
infinite dimension: given a Borel set B ⊂ R∞, the
usual version

Tt IB(0) = γ((1− e−2t)−1/2B)

is not always continuous.



A competing maximal function

Md f (x) := sup
r>0

1

γd(B(x , r))

∫
B(x ,r)

|f (y)| γd(dy),

where B(x , r) is the ball of radius r centered at x .
Then

γ
(
x : Md f (x) > R

)
≤ CdR

−1

with the minimal possible Cd for all f with
‖f ‖L1(γ) = 1. Then Cd →∞ as d →∞.



Wang’s Harnack inequality:

Theorem 18. f ∈ Lp(γd). If p > 1, then

|Ttf (y)|p ≤ Tt |f |p(x) exp

(
1

2

p

p − 1

|x − y |2

e2t − 1

)
.

If 0 < p < 1 and f ≥ 0, then

(Ttf (y))p ≥ Ttf
p(x) exp

(
1

2

p

p − 1

|x − y |2

e2t − 1

)
.



PERTURBATIONS OF THE O-U
OPERATOR/SEMIGROUP:

Lv f (x) = Lf (x) + 〈∇f (x), v(x)〉
v : Rd → Rd or v : R∞ → H = l2.
Problems: associated semigroups, Kolmogorov
equations, etc.
EXAMPLE.

L∗γ = 0

in the following sense:∫
Lf dγ = 0

for all f ∈ C∞
0 on Rd and similarly on R∞.

Theorem 19. There are no other probability
measures satisfying this equation.



The equation
L∗vµ = 0

is understood similarly:∫
Lv f dµ = 0

for all smooth f in finitely many variables, where it
is also required that v = (vi) with vi ∈ L1(µ).

Theorem 20. If |v | ∈ L1(µ), then µ is absolutely
continuous with respect to γ.

OPEN: Is it true that for f = dµ/dγ one has
f
√

log f ∈ L1(γ)?


