Ornstein–Uhlenbeck operators and semigroups Vladimir Bogachev (Moscow State University and Higher School of Economics, Moscow)

Bogachev, Russian Math. Surveys, 2018 (doi 10.1070/RM9812), Gaussian measures, AMS, 1997, Differentiable measures and the Malliavin calculus, AMS, 2010

The Laplace operator

$$\Delta arphi(x) = \sum_{i=1}^d \partial_{x_i}^2 arphi(x)$$

The Ornstein–Uhlenbeck operator

$$Larphi(x) = \Delta arphi(x) - \langle x,
abla arphi(x)
angle$$
 , where $\lambda \in \mathcal{V}_{\mathcal{A}}$

Equations:

$$\partial_t u = \Delta u, \ \partial_t u = Lu, \ u(x,0) = f(x).$$

The heat semigroup

$$P_t f(x) = \int f(x-y) \frac{1}{\sqrt{4\pi t^d}} \exp\left(-\frac{|y|^2}{4t}\right) dy,$$

The Ornstein–Uhlenbeck semigroup

$$T_t f(x) = \int_{\mathbb{R}^d} f\left(e^{-t}x - \sqrt{1 - e^{-2t}}y\right) \gamma(dy),$$

where γ is the standard Gaussian measure on \mathbb{R}^d with density

$$\varrho(x) = \frac{1}{(2\pi)^{d/2}} e^{-|x|^2/2}$$

Important contributors:

Laplace, Gauss, Chebyshev, Hermite, Mehler, Bachelier, Smoluchowski, Wiener, Ornstein, Uhlenbeck, Hille, Doob, Nelson, Gross...

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

QUESTION: Who did coin the terms "Ornstein–Uhlenbeck semigroup" and "Ornstein–Uhlenbeck operator"? Operator semigroups:

$$T_{t+s}=T_t\circ T_s,\quad T_0=I,\ s,t\geq 0.$$

Strongly continuous semigroups on a Banach space X:

$$\lim_{t\geq 0} T_t x = x \ \forall x \in X.$$

What are suitable X for P_t and T_t ? T_t takes C_b into C_b , L^{∞} into L^{∞} , but not strongly continuous:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Take a bounded Lipschitz function
$$f$$
 for which $f(n) = 1$ and $f(e^{-1/n}n) = 0$. It exists, since $(1 - e^{-1/n})n \rightarrow 1$. Then

$$egin{aligned} &T_{1/n}f(x)-f(e^{-1/n}x)|\ &\leq \int \left|f\left(e^{-1/n}x-\sqrt{1-e^{-2/n}}\,y
ight)-f(e^{-1/n}x)
ight|\gamma(dy)\ &\leq C\sqrt{1-e^{-2/n}}\,, \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

so $||T_{1/n}f - f||_{\infty}$ cannot tend to zero because $f(e^{-1/n}n) - f(n) = 1$.

 $L^p(\gamma)$ with $1 \leq p < \infty$ are suitable

Theorem 1. $\{T_t\}$ is strongly continuous on $L^p(\gamma)$ with $p < \infty$ and $\|T_t f\|_{L^p(\gamma)} \le \|f\|_{L^p(\gamma)}$.

The semigroup property: exercise in calculus and change of variable

Strong continuity: the bound follows by Hölder; for $f \in C_0^{\infty}$ the norm continuity is trivial; for any f follows by approximation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark. Why $L^{p}(\gamma)$, not $L^{p}(\mathbb{R}^{d})$? In some respects $L^{p}(\mathbb{R}^{d})$ is also fine: Since T_{t} takes L^{∞} to L^{∞} and also takes $L^{1}(\mathbb{R}^{d})$ to $L^{1}(\mathbb{R}^{d})$ due to

$$\int_{\mathbb{R}^d} |T_t f(x)| \, dx$$

$$\leq \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \left| f(e^{-t}x + \sqrt{1 - e^{-2t}} y) \right| \gamma(dy) \, dx \ = e^{dt} \int_{\mathbb{R}^d} \left| f(u) \right| \, du,$$

the case p > 1 follows by the interpolation theorem. On $L^{p}(\mathbb{R}^{d})$ with $p < \infty$ the semigroup $\{T_{t}\}$ is also continuous. Something IMPORTANT: the measure γ is invariant for T_t , i.e.,

$$\int T_t f \, d\gamma = \int f \, d\gamma \quad \forall f \in L^1(\gamma),$$

and, with the integral of f denoted by I(f),

$$\lim_{t\to\infty} \|T_tf - I(f)\|_p = 0 \quad \forall f \in L^p(\gamma), \quad p \in [1,\infty).$$

On $L^2(\gamma)$ the operators T_t are self-adjoint and non-negative in the sense of quadratic forms, and on $L^p(\gamma)$ they are non-negative in the sense of ordered spaces, i.e., take non-negative functions to non-negative functions. Some other useful relations for L and T_t : in place of the usual integration by parts formula

$$\int f \Delta g \ dx = -\int \langle
abla f,
abla g
angle dx$$

for smooth functions with compact support one has

$$\int f Lg \, d\gamma = -\int \langle
abla f,
abla g
angle \, d\gamma$$

Next,

$$\nabla T_t f = e^{-t} T_t \nabla f.$$

From Jensen's inequality for a convex function V:

$$V(T_t f) \leq T_t(V(f)).$$

In particular, for f > 0 we have

 $T_t \ln f \leq \ln T_t f$ and $T_t(f \ln f) \geq T_t f \ln T_t f$,

From the general theory of continuous operator semigroups on Banach spaces: for every $p \in [1, \infty)$ the set

$$D_p(L) := \left\{ f \in L^p(\gamma) \colon \lim_{t \to 0} \frac{1}{t} (T_t f - f) \text{ exists in } L^p(\gamma)
ight\}$$

is a dense linear subspace of $L^{p}(\gamma)$, and the linear operator with domain $D_{p}(L)$ given by

$$Lf := \lim_{t\to 0} \frac{1}{t} (T_t f - f)$$

is closed, that is, has a closed graph: if $f_n \in D_p(L)$, $f_n \to f$, and $Lf_n \to g$ in $L^p(\gamma)$, then $f \in D_p(L)$ and Lf = g.

This operator is called the generator of the semigroup $\{T_t\}$. In the case of the Ornstein–Uhlenbeck semigroup, L is called the Ornstein–Uhlenbeck operator. It is convenient to write the operators T_t in the form $T_t = \exp(tL)$, with L on $L^2(\gamma)$ having a non-positive quadratic form, that is, to indicate that the corresponding operator exponential $\exp(tL)$ coincides with T_t . HOW TO FIND / FXPLICITLY? On some functions f, say, from C_0^{∞} , this is easy:

$$f(e^{-t}x - \sqrt{1 - e^{-2t}}y) - f(x)$$

= $\int_0^t f'(e^{-s}x - \sqrt{1 - e^{-2s}}y)$
 $\times (-e^{-s}x - e^{-2s}(1 - e^{-2s})^{-1/2}y) ds.$

After integration in y with respect to γ we obtain two terms. The first term multiplied by t^{-1} tends in $L^p(\gamma)$ to -xf'(x) as $t \to 0$ by the Lebesgue theorem. The second term is transformed by integration by parts with respect to y into

$$\int_0^t \int f'' (e^{-s}x - \sqrt{1 - e^{-2s}}y) e^{-2s} \, ds \, \gamma(dy),$$

which with the factor t^{-1} tends to f''(x) in $L^p(\gamma)$ as $t \to 0$.

Thus, *Lf* is the action of the Ornstein–Uhlenbeck operator.

But what is the exact domain of L on $L^{p}(\gamma)$? A simple case is p = 2, where Chebyshev–Hermite polynomials can be used (called Hermite polynomials for brevity) defined by

$$H_0 = 1, \qquad H_k(t) = rac{(-1)^k}{\sqrt{k!}} e^{t^2/2} rac{d^k}{dt^k} e^{-t^2/2}, \quad k \ge 1.$$

The crucial fact is that $\{H_k\}$ is an orthonormal basis in $L^2(\gamma)$ and

$$T_t H_k = e^{-kt} H_k, \quad L H_k = -k H_k.$$

In \mathbb{R}^d , where k is a multi-index $k = (k_1, \ldots, k_d)$,

$$T_t H_{k_1,...,k_d} = e^{-(k_1 + \dots + k_d)t} H_{k_1,...,k_d}$$

きょくきょうき めんぐ

Theorem 2. The domain of L in $L^2(\gamma)$ for d = 1 is

$$D_2(L) = \bigg\{ f = \sum_{k=0}^{\infty} c_k H_k \colon \sum_{k=0}^{\infty} k^2 |c_k|^2 < \infty \bigg\},$$

and

$$Lf=-\sum_{k=0}^{\infty}kc_kH_k.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Similarly in the multidimensional case.

The proof is straightforward:

$$\frac{T_tf-f}{t} = \sum_k \frac{e^{-kt}-1}{t}c_kH_k, \ f = \sum_k c_kH_k.$$

If $\sum_{k=0}^{\infty} k^2 |c_k|^2 < \infty$, then letting $g = -\sum_k k c_k H_k$, we have

$$\|(T_t f - f)/t - g\|^2 = \sum_k \left|\frac{e^{-kt} - 1}{t} + k\right|^2 |c_k|^2 \to 0$$

as $t \to 0$. Conversely, if there is a limit of $(T_t f - f)/t$ in $L^2(\gamma)$, its coordinates in $\{H_k\}$ must be $-kc_k$, so the series of $k^2|c_k|^2$ must converge. It is verified directly that LH_k is indeed the action of the Ornstein–Uhlenbeck operator.

How useful is this description? If $f \in C_0^{\infty}$, then $f \in D_2(L)$ without this theorem, but is it seen from the theorem?

The theorem shows that $H_k \in D_2(L)$, hence all polynomials are in $D_2(L)$, but how can we check that f is in $D_2(L)$ without expansions? Sobolev classes: $W^{p,k}(\mathbb{R}^d)$ consists of $f \in L^p(\mathbb{R}^d)$ such that the distributional derivatives of f up to order k are functions from $L^p(\mathbb{R}^d)$, where a locally integrable g is $\partial_{x_i} f$ in the sense of distributions if

$$\int \partial_{x_i} \varphi \, f \, dx = -\int \varphi g \, dx$$

くしゃ (雪) (雪) (雪) (雪) (雪)

for all $\varphi \in C_0^\infty$.

DEFINITION. $W_{loc}^{p,k}(\mathbb{R}^d)$ consists of functions f such that $\zeta f \in W^{p,k}(\mathbb{R}^d)$ for all $\zeta \in C_0^{\infty}$.

Theorem 3. $W^{p,k}(\mathbb{R}^d)$ coincides with the completion of C_0^{∞} with respect to the Sobolev norm

$$\|f\|_{W^{p,k}(\mathbb{R}^d)} = \|f\|_{L^p(\mathbb{R}^d)} + \sum_{m \leq k} \|\partial_{x_{i_1}} \cdots \partial_{x_{i_m}} f\|_{L^p(\mathbb{R}^d)}$$

Theorem 4. Let p > 1. Then $W^{p,2}(\mathbb{R}^d)$ consists of $f \in L^p(\mathbb{R}^d)$ such that Δf in the sense of distributions is represented by an element of $L^p(\mathbb{R}^d)$. FALSE for p = 1 GAUSSIAN ANALOGS: DEFINITION. $W^{p,k}(\gamma)$ is the completion of C_0^{∞} with respect to the Sobolev norm

$$\|f\|_{W^{p,k}(\gamma)} = \|f\|_{L^{p}(\gamma)} + \sum_{m \leq k} \|\partial_{x_{i_1}}\partial_{x_{i_m}}f\|_{L^{p}(\gamma)}$$

Theorem 5. $W^{p,k}(\gamma)$ consists of all $f \in W^{p,k}_{loc}(\mathbb{R}^d)$ such that $||f||_{W^{p,k}(\gamma)} < \infty$. Let p > 1. Then $W^{p,2}(\gamma)$ consists of all $f \in W^{p,2}_{loc}(\mathbb{R}^d)$ such that $f \in L^p(\gamma)$ and $\Delta f - \langle x, \nabla f \rangle \in L^p(\gamma)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem 6. $W^{p,2}(\gamma) = D_p(L)$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The *r*th-order derivative of a function f will be denoted by $D^r f$. The gradient ∇f will be denoted also by Df for uniformity (however, sometimes one writes $\nabla^r f$ instead of $D^r f$). We recall that the Hilbert–Schmidt norm of the derivative $D^r f(x)$ is defined by

$$\|D^r f(x)\|_{\mathcal{H}_r} := \left(\sum_{1\leqslant i_j\leqslant d} |\partial_{x_{i_1}}\cdots \partial_{x_{i_r}}f(x)|^2\right)^{1/2}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem 7. Let If $p \in (1, \infty)$ and $r \in \mathbb{N}$, then there are numbers $m_{p,r}$ and $M_{p,r}$ independent of dsuch that

$$\begin{split} m_{p,r} \| D^r f \|_{L^p(\gamma,\mathcal{H}_r)} &\leq \| (I-L)^{r/2} f \|_{L^p(\gamma)} \\ &\leq M_{p,r} \big[\| D^r f \|_{L^p(\gamma,\mathcal{H}_r)} + \| f \|_{L^p(\gamma)} \big]. \end{split}$$

In particular,

$$\begin{split} m_{p,2} \|D^2 f\|_{L^p(\gamma,\mathcal{H}_2)} &\leq \|(I-L)f\|_{L^p(\gamma)} \\ &\leq M_{p,2} \big[\|D^2 f\|_{L^p(\gamma,\mathcal{H}_2)} + \|f\|_{L^p(\gamma)} \big]. \end{split}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The operator $(I - L)^{-1}$ is a self-adjoint contraction on $L^2(\gamma)$, hence $(I - L)^{-r/2}$ is also for any r > 0. One can show that $(I - L)^{-r/2}$ is a contraction and injection on each $L^p(\gamma)$. Set

$$H^{p,r}(\gamma) := (I-L)^{-r/2}(L^p(\gamma))$$

Theorem 8. If p > 1, $r \in \mathbb{N}$, then

$$W^{p,r}(\gamma) = H^{p,r}(\gamma)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

INFINITE DIMENSIONAL EXTENSIONS γ_d is the product of d copies of γ_1 On the space \mathbb{R}^{∞} of all real sequences $x = (x_1, x_2, \ldots)$ (the countable power of \mathbb{R}) we define γ as the countable power of γ_1 . This means that on cylindrical sets

$$C = \{x \colon (x_1, \ldots, x_d) \in B\}$$

the value of γ is $\gamma_d(B)$. Then γ extends to the σ -algebra generated by such cylinders. A very special measure? No. A general centered Gaussian measure γ_0 on a separable Banach space X is a Borel probability measure on X such that every continuous linear functional on X is a centered Gaussian random variable on (X, γ) .

If γ_0 is not concentrated on a finite-dimensional space, then γ_0 is linearly isomorphic to γ in the following sense: one can find Borel linear subspaces $X_0 \subset X$ and $E \subset \mathbb{R}^{\infty}$ and a Borel linear operator j that takes E one-to-one onto X_0 and the image of γ is γ_0 .

Now T_t on $L^p(\gamma)$ is defined by the same expression and gives a strongly continuous semigroup. $W^{p,k}(\gamma)$ is the completion with respect to the Sobolev norm of the union of $W^{p,k}(\gamma_d)$ over all d. Again L is defined on $D_p(L)$ as the generator of $\{T_t\}$ and $(I - L)^{-r/2}$ extends from $L^2(\gamma)$ to all $L^{p}(\gamma)$ as an injective contraction. As above, $H^{p,r}(\gamma) :=:= (I-L)^{-r/2}(L^p(\gamma))$ and $H^{p,r}(\gamma) = W^{p,r}(\gamma)$ for natural r.

(日) (同) (三) (三) (三) (○) (○)

L on functions in finitely many variables is the same. BUT: new phenomena for functions of infinitely many variable.

EXAMPLE:
$$f(x) = \sum_{i} c_i(x_i^2 - 1)$$
, $\sum_{i} c_i^2 < \infty$,
the series converges in $L^2(\gamma)$ (in all $L^p(\gamma)$).
 $f_n(x) = \sum_{i \le n} c_i(x_i^2 - 1)$ converge to f ,

$$Lf_n(x) = \sum_{i \leq n} (\partial_{x_i}^2 f_n(x) - x_i \partial_{x_i} f_n(x))$$

$$= \sum_{i \leq n} 2c_i(1-x_i^2) = 2f_n(x),$$

so f is in $W^{2,2}(\gamma)$, actually, in all $W^{p,k}(\gamma)$, but the series of $\partial_{x_i}^2 f = 2c_i$ and $x_i \partial_{x_i} f = c_i x_i^2$ do not converge separately if $c_i = 1/i$.

REMARK on p = 1:

The set $D_1(L)$ (domain of L on $L^1(\gamma)$ consists of all $f \in L^1(\gamma)$ such that the distribution $\Delta f - \langle x, \nabla f \rangle$ is given by a function in $L^1(\gamma)$. Moreover, $D_1(L)$ strictly contains $W^{1,2}(\gamma)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sobolev embeddings: $f \in W^{1,1}(\mathbb{R}^d) \Rightarrow f \in L^{d/(d-1)}(\mathbb{R}^d)$ $f \in W^{2,1}(\mathbb{R}^d) \Rightarrow f \in L^{2d/(d-2)}(\mathbb{R}^d), d \ge 2$ $f \in W^{p,1}(\mathbb{R}^d), p > d \Rightarrow f \in L^{\infty}(\mathbb{R}^d)$ ALL IS FALSE for $W^{p,k}(\gamma)$ INSTEAD:

Logarithmic Sobolev inequality:

Theorem 9. $f \in W^{2,1}(\gamma) \Rightarrow f^2 \log |f| \in L^1(\gamma)$ and

$$\begin{split} \int f^2 \log |f| \, d\gamma &\leq \int |\nabla f|^2 \, d\gamma \\ &+ \frac{1}{2} \bigg(\int f^2 \, d\gamma \bigg) \log \bigg(\int f^2 \, d\gamma \bigg). \end{split}$$
 So if $\|f\|_{L^2(\gamma)} = 1$, then

$$\int f^2 \, \log |f| \, d\gamma \leq \int |
abla f|^2 \, d\gamma$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

In infinite dimension:

 $H = I^2$ the Cameron–Martin space of γ is the set of all $h \in \mathbb{R}^{\infty}$ such that the shift γ_h defined by

$$\gamma_h(B) = \gamma(B-h)$$

is equivalent to γ

$$\gamma(H) = 0$$

but H is very important for γ

functions $f \in W^{2,1}(\gamma)$ possess *H*-valued gradients $\nabla f \in W^{2,1}(\gamma, H)$:

if f_n smooth on \mathbb{R}^n converge to f in $L^2(\gamma)$ and form a Cauchy sequence in $W^{2,1}(\gamma)$, we have

$$\int |\nabla f_m - \nabla f_k|^2 \, d\gamma \to 0$$

as $m, k \to \infty$, but $L^2(\gamma, H)$ of *H*-valued mappings is also complete.

Any $f \in W^{2,1}(\gamma)$ has a version such that $\partial_{x_i} f$ exist γ -almost everywhere. Then

$$abla f = (\partial_{x_i} f)_{i=1}^\infty, \ |
abla f|^2 = \sum_i |\partial_{x_i} f|^2$$

Let $f \ge 0$ and f and $f \log f$ are γ -integrable where $f(x) \ln f(x) := 0$ if f(x) = 0The entropy:

$$\operatorname{Ent}_{\gamma}(f) := \int f \log f \, d\gamma - \int f \, d\gamma \, \log \int f \, d\gamma.$$

By Jensen's inequality for the convex function $t \ln t$ we have $\operatorname{Ent}_{\gamma}(f) \ge 0$. For nice f (say, $f \ge c > 0$ of class C_{b}^{∞}) one has

$$\operatorname{Ent}_{\gamma}(f) = -\int_0^\infty \frac{d}{dt} \left(\int T_t f \log T_t f \, d\gamma\right) dt.$$

Under the integral sign

$$\begin{aligned} \frac{d}{dt} \int T_t f \log T_t f \, d\gamma &= \int L T_t f \log T_t f \, d\gamma + \int L T_t f \, d\gamma \\ &= -\int \frac{|\nabla T_t f|^2}{T_t f} \, d\gamma, \end{aligned}$$

where we use

$$\int L\psi\,\varphi\,d\gamma = -\int \langle \nabla\psi, \nabla\varphi\rangle\,d\gamma,$$

the symmetry of L in $L^2(\gamma)$ and the equality L1 = 0. Hence

$$\operatorname{Ent}_{\gamma}(f) = \int_0^{\infty} \int \frac{|\nabla T_t f|^2}{T_t f} d\gamma \, dt.$$

Use this to prove log-Sobolev: first, $\nabla T_t f = e^{-t} T_t \nabla f$, next, by the Cauchy–Bunyakovskii

$$|T_t \nabla f|^2 \leq T_t f T_t \left(\frac{|\nabla f|^2}{f} \right),$$

so the previous representation gives

$$\operatorname{Ent}_{\gamma}(f) \leq \int_{0}^{\infty} e^{-2t} \left(\int T_{t}\left(\frac{|\nabla f|^{2}}{f}\right) d\gamma \right) dt$$

$$= \frac{1}{2} \int \frac{|\nabla f|^{2}}{f} d\gamma.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Now take f^2 in place of f.

For
$$p \ge 2$$
:
$$\int |f|^p \log\left(\frac{|f|}{\|f\|_p}\right) d\gamma \le \frac{p}{2} \int |f|^{p-2} |\nabla f|^2 d\gamma,$$

where for $f \in W^{p,2}(\gamma)$ such that $f \ge$ the right-hand side equals the integral of the function $\frac{p}{2(p-1)}f^{p-1}Lf$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The logarithmic Sobolev inequality is equivalent to the hypercontractivity property.

Theorem 10. The Ornstein–Uhlenbeck semigroup $\{T_t\}$ is hypercontractive: for all p > 1 and q > 1

$$\|T_t f\|_q \le \|f\|_p$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for all t>0 such that $e^{2t}\geq (q-1)/(p-1).$

Theorem 11. Let p > 1 and $f \in L^{p}(\gamma)$. Then $T_{t}f \in W^{p,n}(\gamma)$ for all t > 0 and $n \ge 1$, the function $h \mapsto T_{t}f(x+h)$ is infinitely Fréchet differentiable on H.

Moreover, $T_t f \in W^{q,n}(\gamma)$ for all $q < 1 + (p-1)e^{2t}$. Therefore, for fixed q > 1 and $n \ge 1$ the inclusion $T_t f \in W^{q,n}(\gamma)$ holds for all sufficiently large t.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Embeddings for $W^{1,1}(\gamma)$:

Theorem 12. There is a number C such that for all d and $f \in W^{1,1}(\gamma)$

$$\int |x_i f(x)| \gamma_d(dx) \leq C \|f\|_{1,1}$$

for all *i*.

Theorem 13. If $f \in W^{1,1}(\gamma)$, then $f\sqrt{\log |f|} \in L^1(\gamma)$. Moreover,

$$\|f\|_{L\sqrt{\log L}} \le C \|f\|_{W^{1,1}(\gamma)}$$

Orlicz norm:

$$\|f\|_{\Phi} = \inf \left\{ \lambda > 0: \int \Phi(|f|/\lambda) \, d\gamma \leq 1 \right\}$$

Theorem 14. If $f\sqrt{\log |f|} \in L^1(\gamma)$, then $T_t f \in W^{1,1}(\gamma)$ for all t > 0. Moreover, for every t > 0, on bounded functions

$$\int |\nabla T_t f| \, d\gamma \leq C(t) \|f\|_{L\sqrt{\log L}},$$

where

$$C(t)=2rac{e^{-t}}{(1-e^{-2t})^{1/2}}.$$

Hence extends to $L\sqrt{\log L}$.

Theorem 15. There is a constant *C* such that for all $d \ge 1$, r > 1, and t > 0 the inequality

$$\gamma_d(x: T_t f(x) > r) \leq C \max\left\{1, \frac{1}{t}\right\} \frac{1}{r\sqrt{\log r}}$$

holds for every probability density f with respect to the measure γ_d . Hence this also holds in infinite dimension.

If
$$f \in L^1(\gamma)$$
, then
 ${\mathcal T}_t f o f$ in $L^1(\gamma)$ as $t o 0$.

Is it true that

$$T_t f(x) o f(x)$$
 as $t o 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

almost everywhere? YES in \mathbb{R}^d , OPEN in infinite dimension

MAXIMAL FUNCTION:

$$Mf(x) := \sup_{t>0} |T_t f(x)|.$$

Theorem 16. For every d, there is c_d such that

$$\gamma_d\Big(x\colon Mf(x)>R\Big)\leq c_dR^{-1}$$

for all R > 1 and f with $||f||_{L^1(\gamma)} = 1$. **OPEN:** can we take c_d independent of d? **Theorem 17.** If $f \in L^p(\gamma)$ with p > 1, then $Mf \in L^p(\gamma)$ and

$$\|Mf\|_{L^p(\gamma)} \leq C(p)\|f\|_{L^p(\gamma)}.$$

Moreover, there is a version of $T_t f$ such that $T_t f(x) \rightarrow f(x)$ as $t \rightarrow 0$ for almost every x.

REMARK. One has to be careful with versions in infinite dimension: given a Borel set $B \subset \mathbb{R}^{\infty}$, the usual version

$$T_t I_B(0) = \gamma((1 - e^{-2t})^{-1/2}B)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is not always continuous.

A competing maximal function

$$M_d f(x) := \sup_{r>0} \frac{1}{\gamma_d(B(x,r))} \int_{B(x,r)} |f(y)| \gamma_d(dy),$$

where B(x, r) is the ball of radius r centered at x. Then

$$\gamma(\mathbf{x}\colon M_d f(\mathbf{x}) > R) \le C_d R^{-1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with the minimal possible C_d for all f with $||f||_{L^1(\gamma)} = 1$. Then $C_d \to \infty$ as $d \to \infty$.

Wang's Harnack inequality:

Theorem 18. $f \in L^p(\gamma_d)$. If p > 1, then

$$|T_t f(y)|^p \leq T_t |f|^p(x) \exp\left(\frac{1}{2} \frac{p}{p-1} \frac{|x-y|^2}{e^{2t}-1}\right).$$

If $0 and <math>f \ge 0$, then

$$(T_t f(y))^p \ge T_t f^p(x) \exp\left(\frac{1}{2} \frac{p}{p-1} \frac{|x-y|^2}{e^{2t}-1}\right).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

PERTURBATIONS OF THE O-U OPERATOR/SEMIGROUP:

$$L_v f(x) = Lf(x) + \langle \nabla f(x), v(x) \rangle$$

 $v \colon \mathbb{R}^d \to \mathbb{R}^d \text{ or } v \colon \mathbb{R}^\infty \to H = I^2.$

Problems: associated semigroups, Kolmogorov equations, etc. FXAMPLF.

$$L^*\gamma = 0$$

in the following sense:

$$\int Lf \, d\gamma = 0$$

for all $f \in C_0^\infty$ on \mathbb{R}^d and similarly on \mathbb{R}^∞ .

Theorem 19. There are no other probability measures satisfying this equation.

The equation

$$L_v^*\mu = 0$$

is understood similarly:

$$\int L_v f \, d\mu = 0$$

for all smooth f in finitely many variables, where it is also required that $v = (v_i)$ with $v_i \in L^1(\mu)$.

Theorem 20. If $|v| \in L^1(\mu)$, then μ is absolutely continuous with respect to γ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

OPEN: Is it true that for $f = d\mu/d\gamma$ one has $f\sqrt{\log f} \in L^1(\gamma)$?