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The Laplace operator

Ap(x) = Y ()

The Ornstein—Uhlenbeck operator
Lo(x) = Ap(x) — (x, Vi(x))



Equations:
Oiu = Au, Oru = Lu, u(x,0) = f(x).

The heat semigroup

Pif(x) = / )

The Ornstein—Uhlenbeck semigroup

T.f(x) = /Rd fe7'x — V1 —e2ty)y(dy),

|y|2)
e ——\d
d Xp< 4r )

where v is the standard Gaussian measure on R?
with density

o L e
) = e



Important contributors:

Laplace, Gauss, Chebyshev, Hermite, Mehler,
Bachelier, Smoluchowski, Wiener, Ornstein,
Uhlenbeck, Hille, Doob, Nelson, Gross...
QUESTION: Who did coin the terms

“Ornstein—Uhlenbeck semigroup” and
“Ornstein—Uhlenbeck operator”?



Operator semigroups:
Tt+5:TtOT5, 7_0:l7 S,tZO.

Strongly continuous semigroups on a Banach
space X:

limT:x =xVx e X.
t>0

What are suitable X for P; and T,?
T; takes Cp into Cp, L™ into L™, but not strongly
continuous:



Take a bounded Lipschitz function f for which
f(n) =1 and f(e7Y/"n) = 0. It exists, since
(1—eY"n — 1. Then

[ Ta/nf (x )—f(e Yx)|

/|f —V1- e—z/”y) — f(e_l/”x)‘ v(dy)

< Cy1—e2/n,

so || Ty/nf — f||o cannot tend to zero because

f(e=¥"n) — f(n) = 1.



LP(v) with 1 < p < oo are suitable

Theorem 1. {T.,} is strongly continuous on LP(7)
with p < 0o and || T¢f || e(y) < || Fll1r(4)-

The semigroup property: exercise in calculus and

change of variable

Strong continuity: the bound follows by Holder; for
f € C5° the norm continuity is trivial; for any f
follows by approximation.



Remark. Why LP(v), not LP(RY)?
In some respects LP(IR9) is also fine:
Since T, takes L™ to L* and also takes L}(RY)

to L1(RY) due to

| T (x)] dx
Rd

< / Fle x4+ /1= e 2 y)| 7(dy) dx
Rd JRd

= ¢’ If( )| du,

the case p > 1 follows by the interpolation theorem.
On LP(RY) with p < oo the semigroup { T} is also
continuous.



Something IMPORTANT:
the measure 7 is invariant for T, i.e.,

/thdyz/fdy Vfell(y),
and, with the integral of f denoted by /(f),

lim | Tef = I(f)]|[, =0 ¥FeLlP(y), pélt,o00).

On L?(v) the operators T, are self-adjoint and
non-negative in the sense of quadratic forms, and
on LP(~) they are non-negative in the sense of
ordered spaces, i.e., take non-negative functions to
non-negative functions.



Some other useful relations for L and T;: in place of
the usual integration by parts formula

/ngdX: —/(Vf,Vg) dx

for smooth functions with compact support one has

/ngdfy: —/(Vf,Vg} d~y
Next,
VT.f=e 'T,VF.
From Jensen's inequality for a convex function V:
V(T f) < T(V(f)).
In particular, for f > 0 we have
Tiinf <InT;f and T(fInf)> T.fInT,f,



From the general theory of continuous operator
semigroups on Banach spaces: for every p € [1, o0)
the set

t—0

D(L) = {f € 1P(7): lim 2(T.f—f) exists in Lp(v)}

is a dense linear subspace of LP(~), and the linear
operator with domain D,(L) given by

1
Lf = ll_f)T(I) ;(th —f)
is closed, that is, has a closed graph: if f, € D,(L),
f, — f, and Lf, — g in LP(), then f € D,(L) and
Lf =g.



This operator is called the generator of the
semigroup {T;}. In the case of the
Ornstein—Uhlenbeck semigroup, L is called the
Ornstein—Uhlenbeck operator. It is convenient to
write the operators T; in the form T, = exp(tL),
with L on L2(7y) having a non-positive quadratic
form, that is, to indicate that the corresponding

operator exponential exp(tL) coincides with T.

HOW TO FIND L EXPLICITLY?
On some functions f, say, from (;°, this is easy:



fle'x —V1—e2ty) —f(x)

t
- [Ty
0
x (—e*x — e *(1— e—25)—1/2y) ds.

After integration in y with respect to v we obtain
two terms. The first term multiplied by t~! tends
in LP() to —xf'(x) as t — 0 by the Lebesgue
theorem. The second term is transformed by
integration by parts with respect to y into

t
/ /f'/(e_sx —V1- efzsy) e dsy(dy),
0

which with the factor t~! tends to f”(x) in LP(7) as
t—0



Thus, Lf is the action of the Ornstein—Uhlenbeck
operator.

But what is the exact domain of L on LP(y)?

A simple case is p = 2, where Chebyshev—Hermite
polynomials can be used (called Hermite
polynomials for brevity) defined by

< L, dd
Hy = 1, Hi(t) = (\/k_)lefﬁdtkef/?, k>1.

The crucial fact is that {Hk} is an orthonormal
basis in L2(y) and

T.He = e “Hy, LHc = —kH,.

In RY, where k is a multi-index k = (ki, ..., kq),
_ etttk



Theorem 2. The domain of L in L?(y) for d =1 is

DQ(L): {f: Cka: Zkz\ck|2<oo},
k=0

and N
Lf = — Z ke Hy.
k=0

Similarly in the multidimensional case.



The proof is straightforward:

T.f —f ekt _1
: ; = zk: ; Cka, f:;Cka.

If Y%7 o k?|ck|> < oo, then letting g = — >, kckHx,
we have

I(Tef = )/t —glP =

ekt 1

2
+ k] 2 = 0

as t — 0. Conversely, if there is a limit of
(T:f — )/t in L?(y), its coordinates in {H,} must

be —kcy, so the series of k?|c|? must converge.
It is verified directly that LH is indeed the action of
the Ornstein—Uhlenbeck operator.



How useful is this description? If f € (5°, then

f € Dy(L) without this theorem, but is it seen from
the theorem?

The theorem shows that Hy € D,(L), hence all
polynomials are in D,(L), but how can we check
that 7 is in D,(L) without expansions?

Sobolev classes: WP*(R9) consists of f € LP(RY)
such that the distributional derivatives of f up to
order k are functions from LP(R?), where a locally
integrable g is 0,.f in the sense of distributions if

/(9)(,90 fdx:—/gpgdx

for all p € Cg°.



DEFINITION. W”¥(R9) consists of functions f

loc

such that (f € WPK(RY) for all ¢ € C5°.

Theorem 3. WP*(RY) coincides with the
completion of C;° with respect to the Sobolev norm

1Flwesray = 1 Fllomey + D 15, -+ - O Fllo(rery

m<k

Theorem 4. Let p > 1. Then WP2(RY) consists of
f € LP(RY) such that Af in the sense of
distributions is represented by an element of LP(R9).

FALSE for p=1



GAUSSIAN ANALOGS:
DEFINITION. WPk(~) is the completion of C5®
with respect to the Sobolev norm

1Fllwesiry = 1Flloy + D 105,05, Fll oy

m<k

Theorem 5. WP*(~) consists of all f € W,’O’;:k(Rd)
such that || || yek) < oo.

Let p > 1. Then WP2(v) consists of all

f € WP?(RY) such that f € LP(~) and

loc

Af — (x,Vf) € LP(v).



Theorem 6. WP2(y) = D,(L)



The rth-order derivative of a function f will be
denoted by D"f. The gradient Vf will be denoted
also by Df for uniformity (however, sometimes one
writes V'f instead of D"f). We recall that the
Hilbert—-Schmidt norm of the derivative D"f(x) is
defined by

1070, = (X 104, -+ ) )/

1<ii<d



Theorem 7. Let If p € (1,00) and r € N, then
there are numbers m,, and M, , independent of d
such that

M, | D" Fl| o 20,y < (1 — L) F| oo

< Mo (1D F o0y + I llo)] -

In particular,
Mp 2| D*F || iry 20) < 101 = L)F 1)

< My [ID*Flisr30) + 1l o]



The operator (/ — L)~1 is a self-adjoint contraction
on L%(v), hence (I — L)~"/? is also for any r > 0.
One can show that (/ — L)™/? is a contraction and
injection on each LP(7).

Set

HP" () = (1 = 1) (L7(3)
Theorem 8. If p > 1, r € N, then
WP (v) = H*" ()



INFINITE DIMENSIONAL EXTENSIONS

g 1s the product of d copies of ¥4

On the space R™ of all real sequences

x = (x1, X2, . ..) (the countable power of R) we
define v as the countable power of ;.

This means that on cylindrical sets

C={x:(x,...,xq) € B}

the value of v is v4(B). Then v extends to the

o-algebra generated by such cylinders.
A very special measure? No.



A general centered Gaussian measure g on a
separable Banach space X is a Borel probability
measure on X such that every continuous linear
functional on X is a centered Gaussian random
variable on (X, 7).

If 7o is not concentrated on a finite-dimensional
space, then ~g is linearly isomorphic to « in the
following sense: one can find Borel linear subspaces

Xo C X and E C R*™ and a Borel linear operator j
that takes E one-to-one onto Xj and the image of

is Y0-



Now T; on LP(7y) is defined by the same expression
and gives a strongly continuous semigroup.
WPk(7) is the completion with respect to the
Sobolev norm of the union of WP*(v4) over all d.
Again L is defined on D,(L) as the generator of
{T,} and (I — L)~/? extends from L?(¥) to all
LP(~y) as an injective contraction.

As above, HP'(v) :=:= (I — L)""?(LP(%)) and
HP"(~) = WP’ (~) for natural r.



L on functions in finitely many variables is the same.
BUT: new phenomena for functions of infinitely
many variable.

EXAMPLE: f(x) =Y. ci(x? — 1), .. ¢? < oo,

the series converges in L2(7y) (in all LP(¥)).

fa(x) = >, ci(x? — 1) converge to f,

Ly(x) =) (92 fa(x) — xi0x F2())

i<n

— Z2C,(1 — X,2) - 2fn(x)7

i<n
so f is in W?22(y), actually, in all WP*(y), but the
series of 9 f = 2¢; and x;0,f = ¢;x? do not
converge separately if ¢; = 1/i.



REMARK on p = 1:

The set D;(L) (domain of L on L(+) consists of all
f € L'(7y) such that the distribution Af — (x, Vf)
is given by a function in L!(y). Moreover, D;(L)
strictly contains W12(«).



Sobolev embeddings:

f e WH(RY) = f € L9/(@-D(RY)

f e W2I(RY) = f € [2/(T2(RY), d > 2
fe WPLRY), p>d= feL®RY

ALL IS FALSE for WP#(y)
INSTEAD:



Logarithmic Sobolev inequality:

Theorem 9. f € W?!(y) = f? log|f| € L}(v) and

/f2 Iog!fldvﬁ/lw\zdv

+%</ f2 d7> Iog</ f2d7>.

So if ||f]|12(y) = 1, then

[ Frogiflar < [ veRay



In infinite dimension:
H = I?> the Cameron—Martin space of ~ is the set of
all h € R*™ such that the shift v, defined by

7h(B) = ~(B — h)
is equivalent to vy

7(H) =0
but H is very important for



functions f € W?1(y) possess H-valued gradients
VF € W2i(~, H):

if f, smooth on R” converge to f in L?(7) and form
a Cauchy sequence in W?1(y), we have

/\wm — VHi|?dy —0

as m, k — oo, but L?(v, H) of H-valued mappings
is also complete.

Any f € W?1(v) has a version such that 0,.f exist
~v-almost everywhere. Then

i (axif)?ib ‘Vf|2 - Z ‘axif|2

i



Let f > 0 and f and f log f are y-integrable where
f(x)Inf(x) :=0if f(x)=0
The entropy:

Ent, (f) ::/flogfdy—/fdy Iog/fdy.

By Jensen's inequality for the convex function tiInt
we have Ent.(f) > 0.
For nice f (say, f > ¢ > 0 of class C.°) one has

< o
Ent.(f) = —/ —</ T.f log thdfy> dt.
o dt



Under the integral sign

d

|V T.f|?
- — d
T:f b

where we use
/L@wdv . /<w,w> .

the symmetry of L in L2(y) and the equality L1 = 0.

Hence
o \VTJ\Q
Ent-(f :/ d~ dt.
'Y( ) 0 th 7




Use this to prove log-Sobolev:
first, VT.f = e 'T,Vf, next, by the
Cauchy—Bunyakovskii

2
| TV < Tfﬂ(’Vﬂ >,

f

so the previous representation gives

Ent, (f) < /OOO e—2f</ Tt(\vfﬂ?) aw) dt

1 [|VFf]?
— - d-.
2/ g9

Now take 2 in place of f.




For p > 2:

f'
/ |f|P|og( £] )dvé 2 [1er-2vepan,
171, 2

where for f € WP2(y) such that f > the right-hand
side equals the integral of the

. p ]
function ———fPLf.
2(p—1)




The logarithmic Sobolev inequality is equivalent to
the hypercontractivity property.

Theorem 10. The Ornstein—Uhlenbeck semigroup
{T:} is hypercontractive: for all p>1and g >1

ITefllg < [IF]l

for all t > 0 such that ?* > (¢ —1)/(p — 1).



Theorem 11. Let p > 1 and f € LP(7y). Then

T:f € WP () for all t > 0 and n > 1, the function
h— T.f(x + h) is infinitely Fréchet differentiable
on H.

Moreover, T.f € W3%"(v) for all g < 1+ (p—1)e*..
Therefore, for fixed g > 1 and n > 1 the inclusion
T:f € W%"(~) holds for all sufficiently large t.



Embeddings for W11(~):

Theorem 12. There is a number C such that for
all d and f € Wli(y)

/ x:F ()] Yaldb) < CllF oy

for all 1.
Theorem 13. If f € WY1(y), then
f\/log |f| € L}(¥).
Moreover,

1Nl cyrogr < Cllfllwray
Orlicz norm:

IFlle = inf{A >0 [ o/ < 1}



Theorem 14. If f\/log|f| € L'(v), then
T.f € WhL(y) for all ¢ > 0.

Moreover, for every t > 0, on bounded functions

/ VT dv < C(0)IFlLumer,

where
eft

(1 _ e—2t)1/2'
Hence extends to L+/log L.

C(t)=2




Theorem 15. There is a constant C such that for
alld > 1, r > 1, and t > 0 the inequality

1 1
Ya(x: Tef(x) > r) < Cmax{l,?}r\/@

holds for every probability density f with respect to
the measure v4. Hence this also holds in infinite
dimension.



If f € L(v), then
Tif —f inl'(y) ast—0.
Is it true that
Tif(x) = f(x) ast—0

almost everywhere?
YES in R?, OPEN in infinite dimension



MAXIMAL FUNCTION:
Mf(x) :=sup | T:f(x)|.
t>0
Theorem 16. For every d, there is ¢, such that
fyd(x: Mf(x) > R> < cyR7!

forall R > 1 and f with HfHLl(’y) = 1.
OPEN: can we take ¢y independent of d?



Theorem 17. If f € LP(y) with p > 1, then
Mf € LP(y) and

IME (o) < C(PIIIF]leor)-

Moreover, there is a version of T;f such that
T:f(x) — f(x) as t — 0 for almost every x.

REMARK. One has to be careful with versions in
infinite dimension: given a Borel set B C R*, the
usual version

Tilg(0) = A((1 — e ) B)

is not always continuous.



A competing maximal function

= Ssu —1
Mdf(X) o r>g ’Yd(B(X I’)) / B(x,r) ‘ (y)l Vd(dy%

where B(x, r) is the ball of radius r centered at x.
Then

v(x: Myf(x) > R) < GyR™!

with the minimal possible Cy for all f with
|f]l2¢y = 1. Then Cy — o0 as d — oo.



Wang's Harnack inequality:
Theorem 18. f € LP(vy). If p > 1, then

1 p |x—yP
TP < TP e (5 -2 ),

IfO<p<1landf >0, then

1 p |x—yP
(TP = Tl oo 5 -2 22



PERTURBATIONS OF THE O-U
OPERATOR/SEMIGROUP:

L,f(x) = Lf(x) + (Vf(x), v(x))
vi:R - Rorv: R® —» H =/
Problems: associated semigroups, Kolmogorov
equations, etc.
EXAMPLE.
L'v=0

in the following sense:

/Lfdyzo

for all f € C5° on R? and similarly on R*.

Theorem 19. There are no other probability
measures satisfying this equation.



The equation
Ly =0

is understood similarly:

/vadu:O

for all smooth f in finitely many variables, where it
is also required that v = (v;) with v; € L1(p).

Theorem 20. If |v| € [1(u), then y is absolutely
continuous with respect to .

OPEN: Is it true that for f = dj/d~ one has
fy/logf € L(v)?



