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Overview

Structure of the course

Lecture 1 Basic definitions and generation of RDS by product of random mappings (Sections

1.1, 1.2)

Lecture 2 RDS from differential equations: perfection of cocycle from SDEs (Sections 1.3, 1.4)

Lecture 3 Invariant measures and the correspondence theorem (Section 1.5)

Lecture 4 Lyapunov exponents and Subadditive Ergodic Theorem (Section 2.1)

Lecture 5 Furstenberg-Kesten Theorem and MET I (Section 2.1)

Lecture 6 MET II and FK-formula (Sections 2.1, 2.2)

Lecture 7 (Local) stable/unstable manifold theorems (Section 2.3)

Lecture 8 Random attractors: basic definition and proof of existence via absorbing sets (Section

3.1)

Lecture 9 Entropy for random dynamical systems (Section 3.2)

Lecture 10 Pesin’s formula and SRB measures (Section 3.2)

Lecture 11 Topological conjugacies and bifurcations (Chapter 4)

Lecture 12 Random bifurcations in SDEs, change of random attractors and signs of Lyapunov

exponents (Chapter 4)

Lecture 13 Local RDS and quasi-stationary/quasi-ergodic dynamics (Sections 5.1-5.4)

Lecture 14 Open for questions/discussons

Main references

The main references for this lecture are [2, 59, 61], but there will be a list of several other

references that are updated throughout the course.

3



Chapter 0

Some elements of measure theory

and dynamical systems

0.1 Measures and measure spaces

0.1.1 Basic definitions and properties

We collect the most basic definitions in measure theory, followed by some results which will be

useful in the lectures.

Definition 0.1.1 (Algebra and σ-algebra ). Consider a collection A of subsets of a set X with

∅ ∈ A, and the following properties:

(a) When A ∈ A then Ac := X \A ∈ A.

(b) When A,B ∈ A then A ∪B ∈ A.

(b’) Given a finite or infinite sequence {Ak} of subsets of X, Ak ∈ A, then also
⋃
k Ak ∈ A.

If A satisfies (a) and (b), it is called an algebra of subsets of X; if it satisfies (a) and (b’), it is

called a σ-algebra .

It follows from the definition that a σ-algebra is an algebra, and for an algebra A holds

� ∅, X ∈ A;

� A,B ∈ A ⇒ A ∩B ∈ A;

� A,B ∈ A ⇒ A \B ∈ A;

� if A is a σ-algebra , then {Ak} ⊂ A ⇒
⋂
k Ak ∈ A.

Definition 0.1.2 (Measure). A function µ : A → [0,∞] on a σ-algebra A is a measure if

(a) µ(∅) = 0;

(b) µ(A) ≥ 0 for all A ∈ A; and
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(c) µ (
⋃
k Ak) =

∑
k µ(Ak) if {Ak} is a finite or infinite sequence of pairwise disjoint sets from

A, that is, Ai ∩ Aj = ∅ for i 6= j. This property of µ is called σ-additivity (or countable

additivity).

If, in addition, µ(X) = 1, then µ is called a probability measure.

Definition 0.1.3.

(a) If A is a σ-algebra of subsets of X and µ is a measure on A, then the triple (X,A, µ) is

called a measure space. The subsets of X contained in A are called measurable.

(b) If µ(X) <∞ (resp. µ(X) = 1) then the measure space is called finite (resp. probabilistic or

normalized).

(c) If there is a sequence {Ak} ⊂ A satisfying X =
⋃
k Ak and µ(Ak) < ∞ for all k, then the

measure space (X,A, µ) is called σ-finite.

A set N ∈ A with µ(N) = 0 is called a null set. If a certain property involving the points of

a measure space holds true except for a null set, we say the property holds almost everywhere

(we write a.e., which, depending on the context, sometimes means “almost every”). We also use

the word essential to indicate that a property holds a.e. (e.g., “essential bijection”).

Definition 0.1.4. The σ-algebra generated by a collection A0 of subsets of X, also denoted by

σ(A0), is the smallest σ-algebra containing A0, i.e.

σ(A0) =
⋂

A is a σ-algebra with A0⊆A
A.

Given two measurable spaces (X1,A1) and (X2,A2), the σ-algebra generated by the products

of subsets of X1 and X2, i.e.,

A1 ⊗A2 := σ({A1 ×A2 : A1 ∈ A1, A2 ∈ A2})

is called the product σ-algebra .

Analogously we can define the algebra of subsets of X generated by some collection of subsets

of X.

Theorem 0.1.5 (Hahn–Kolmogorov extension theorem). Let X be a set, A0 an algebra of

subsets of X, and µ0 : A0 → [0,∞] a σ-additive function. If A is the σ-algebra generated by

A0, there exists a measure µ : A → [0,∞] such that µ
∣∣
A0

= µ0. If µ0 is σ-finite, the extension

is unique.

This result becomes especially useful if we would like to define measures on sets of sequences.

Definition 0.1.6 (Cylinder). Let Ak be a σ-algebra for k ∈ N. Let k1 < k2 < . . . < kr be

integers and Aki ∈ Aki , i = 1, . . . , r. A cylinder set (also called rectangle) is a set of the form

[Ak1 , . . . , Akr ] = {{xj}j∈N : xki ∈ Aki , 1 ≤ i ≤ r} .



CHAPTER 0. SOME ELEMENTS OF MEASURE THEORY AND DYNAMICAL
SYSTEMS 6

Definition 0.1.7. Let (Xi,Ai, µi), i ∈ N, be normalized measure spaces. The product measure

space (X,A, µ) =
∏
i∈N(Xi,Ai, µi) is defined by

X =
∏
i∈N

Xi and µ ([Ak1 , . . . , Akr ]) =

r∏
j=1

µkj (Akj ).

An analogous definition holds if we replace N by Z, i.e., if X consists of bi-infinite sequences.

One can see that finite unions of cylinders form an algebra of subsets of X. By Theorem 0.1.5

it can be uniquely extended to a measure on A, the smallest σ-algebra containing all cylinders.

It is often necessary to approximate measurable sets by sets of some sub-class (e.g., an

algebra) of the given σ-algebra :

Theorem 0.1.8. Let (X,A, µ) be a probability space, and let A0 be an algebra of subsets of

X generating A. Then, for each ε > 0 and each A ∈ A there is some A0 ∈ A0 such that

µ(A4A0) < ε. Here, E4F := (E \F )∪ (F \E) denotes the symmetric difference of E and F .

0.1.2 The monotone class theorem

Definition 0.1.9. As sequence of sets {Ak} is called increasing (resp. decreasing) if Ak ⊆ Ak+1

(resp. Ak ⊇ Ak+1) for all k.

The notation Ak ↑ A (resp. Ak ↓ A) means that {Ak} is an increasing (resp. decreasing) sequence

of sets with
⋃
k Ak = A (resp.

⋂
k Ak = A).

Definition 0.1.10 (Monotone class). Let X be a set. A collection M of subsets of X is a

monotone class if whenever Ak ∈M and Ak ↑ A, then A ∈M.

Theorem 0.1.11 (Monotone Class Theorem). A monotone class which contains an algebra,

also contains the σ-algebra generated by this algebra.

Thus, if we show that sets with a certain property form a monotone class, and this class

contains an algebra A of sets, then it contains σ(A). For instance, if we can show that two

measures µ, ν coincide on an algebra, they coincide on the whole σ-algebra generated by it.

This holds true because {µ = ν} is a monotone class.



Chapter 1

Random dynamical systems and

their generators

1.1 Basic definitions

Firstly, we define what we mean by a random dynamical system throughout this lecture. We will

consider systems in discrete and continuous time, one-and two-sided. Hence, in the following we

will always assume that the index set T satisfies

T ∈
{
R,R+

0 ,Z,Z
+
0

}
.

A random dynamical system on a measurable space (X,B) consists of

(i) a model of the noise on a probability space (Ω,F ,P), formalised as a measurable flow

(θt)t∈T of P-preserving transformations θt : Ω→ Ω,

(ii) a model of the dynamics on X perturbed by noise formalised as a cocycle ϕ over θ.

In technical detail, the definition of a random dynamical system is given as follows:

Definition 1.1.1 (Random dynamical system). Let (Ω,F ,P) be a probability space and (X,B)

be a measurable space.

1. A random dynamical system (RDS) is a pair of mappings (θ, ϕ) such that the following

holds:

• The (B(T) ⊗ F , F)-measurable mapping θ : T × Ω → Ω, (t, ω) 7→ θtω, is a metric

dynamical system, i.e.

(i) θ0 = id and θt+s = θt ◦ θs for t, s ∈ T,

(ii) P(A) = P(θ−1
t A) for all A ∈ F and t ∈ T.

• The (B(T)⊗F⊗B, B)-measurable mapping ϕ : T×Ω×X → X, (t, ω, x) 7→ ϕ(t, ω, x),

is a cocycle over θ, i.e., ϕ(0, ω, ·) = id and

ϕ(t+ s, ω, ·) = ϕ(t, θsω, ϕ(s, ω, ·)) for all ω ∈ Ω and t, s ∈ T . (1.1.1)

7
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2. If X is a topological space with B = B(X) its Borel σ-algebra, and

(t, x) 7→ ϕ(t, ω, x)

is continuous for every ω ∈ Ω, the random dynamical system (θ, ϕ) is called continuous.

3. If X is additionally a smooth, i.e. C∞, d-dimensional manifold (e.g. Rd), and for each

(t, ω) ∈ T× Ω the mapping

ϕ(t, ω) := ϕ(t, ω, ·) : X → X, x 7→ ϕ(t, ω, x)

is Ck, i.e. k-times differentiable in x and the derivatives are continuous in (t, x), the random

dynamical system (θ, ϕ) is called Ck.

We still speak of a random dynamical system, if its cocycle is only defined in forward time, i.e.,

if the mapping ϕ is only defined on R+
0 × Ω ×X or Z+

0 × Ω ×X, while the underlying metric

dynamical system is defined in forward and backward time, i.e., the mappings θt are defined for

all t ∈ R or t ∈ Z respectively. We will make it noticeable whenever this is the case.

Remark 1.1.2. In the following, the metric dynamical system (θt)t∈T is often even ergodic,

i.e. any A ∈ F with θ−1
t A = A for all t ∈ T satisfies P(A) ∈ {0, 1}.

Remark 1.1.3. Further, note that the trajectories of the RDS might explode in finite time.

In this case one can consider it as a local random dynamical system (as opposed to the global

random dynamical system from Definition 1.1.1) being defined only for times bounded by some

random explosion times τ−(ω, x) and τ+(ω, x). We will consider local RDS in more detail in

the context of Chapter 5.

We state our first theorem on two-sided random dynamical systems.

Theorem 1.1.4. Consider an RDS (θ, ϕ) on a measurable space (X,B) and two-sided time set

T, i.e., T = R or T = Z.

(a) For all (t, ω) ∈ T× Ω, the cocycle ϕ(t, ω) is a bimeasurable bijection of (X,B) and,

ϕ(t, ω)−1 = ϕ(−t, θtω) for all (t, ω) ∈ T× Ω,

or, equivalently,

ϕ(−t, ω) = ϕ(t, θ−tω)−1 for all (t, ω) ∈ T× Ω,

Furthermore, the mapping

(t, ω, x) 7→ ϕ(t, ω)−1x

is measurable.

1. If X is a topological space and the RDS is continuous, then for all (t, ω) ∈ T×Ω we have

that ϕ(t, ω) : X → X is a homeomorphism. If
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(a) T = Z, or

(b) T = R, and X is a compact Hausdorff space,

then additionally (t, x) 7→ ϕ(t, ω)−1x is continuous for all ω ∈ Ω.

2. If X is a smooth manifold and the RDS is Ck, then for all (t, ω) ∈ T × Ω we have that

ϕ(t, ω) : X → X is a diffeomorphism. Moreover, (t, x) 7→ ϕ(t, ω)−1x is Ck with respect to

x for all ω ∈ Ω.

Proof. See Exercise sheet 1.

Before we address the question of how such random dynamical systems are generated, we

introduce a distinction that will be highly relevant when we discuss random dynamical systems

in the context of stochastic differential equations. Recall the cocycle property (1.1.1), which in

this form is called the perfect cocycle property. If equation (1.1.1) holds for fixed s ∈ T and all

t ∈ T, P-a.s., where the expectional set Ns with P(Ns) = 0 may depend on s, we call ϕ a crude

cocycle. If equation (1.1.1) holds for fixed s, t ∈ T, P-a.s., where the expectional set Ns,t with

P(Ns,t) = 0 may depend on s, t, we call ϕ a very crude cocycle. The perfection of a very crude

cocycle is easy to observe in discrete time but will require some work in continuous time:

Theorem 1.1.5 (Perfection for discrete time). Let ϕ be a very crude cocycle over θ with discrete

time T. Then there exists a cocycle ψ over θ which is perfect and indistinguishable from ϕ, i.e.,

there exists a set N ∈ F with P(N) = 0 and

{ω : ψ(t, ω) 6= ϕ(t, ω) for some t ∈ T} ⊂ N.

Proof. See Exercise sheet 1.

1.2 Random dynamical systems from products of random map-

pings

In this section, we focus on random dynamical systems in discrete time T ∈ {Z,Z+
0 }. Since,

typically, the family of measure-preserving transformations (θn)n∈T consists of iterations of a

map θ : Ω→ Ω, we adopt the notation (θn)n∈T for this section.

Firstly, we make the following observation:

Proposition 1.2.1. Let (θ, ϕ) be an RDS on X with time T ∈ {Z+
0 ,Z}.

1. If T = Z+
0 , we introduce the time-one mapping

ψ(ω) := ϕ(1, ω) : X → X, (1.2.1)

and obtain

ϕ(n, ω) =

ψ(θn−1ω) ◦ · · · ◦ ψ(ω), n ≥ 1,

id, n = 0.
(1.2.2)
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The RDS is measurable if and only if (ω, x) 7→ ψ(ω)x is measurable. It is continuous/Ck

if and only if x 7→ ψ(ω)x is continuous/Ck. Conversely, given a family of mappings

ψ(ω) : X → X such that (ω, x) 7→ ψ(ω)x is measurable/continuous/Ck, then ϕ defined

by (1.2.2) is the cocycle of a measurable/continuous/Ck RDS. We say that ϕ is generated

by ψ.

2. If T = Z, we additionally have the time-minus-one mapping

ϕ(−1, ω) = ϕ(1, θ−1ω)−1 = ψ(θ−1ω)−1 (1.2.3)

such that ψ(ω) : X → X is invertible and we obtain

ϕ(n, ω) =


ψ(θn−1ω) ◦ · · · ◦ ψ(ω), n ≥ 1,

id, n = 0,

ψ(θnω)−1 ◦ · · · ◦ ψ(θ−1ω)−1, n ≤ −1,

(1.2.4)

The RDS is measurable if and only if

(ω, x) 7→ ψ(ω)x and (ω, x) 7→ ψ(ω)−1x (1.2.5)

are measurable. It is continuous/Ck if and only if x 7→ ψ(ω)x is a homeomorphism/diffeo-

morphism of order k. Conversely, given a family of invertible mappings ψ(ω) : X → X

such that the mappings (1.2.5) are measurable/continuous/Ck, then ϕ defined by (1.2.4)

is the cocycle of a measurable/continuous/Ck RDS.

Proof. Straight-forward application of the cocycle property (1.1.1).

We can put on record: every one-sided (two-sided) discrete time RDS has the form (1.2.2)

((1.2.4)), also called product of random mappings or iterated function system. Note that we

can write the discrete time cocycle ϕ(n, ω, x) as the solutions of an initial value problem for a

random difference equation

xn+1 = ψ(θnω)xn, n ∈ T, x0 = x ∈ X. (1.2.6)

Consider the following examples:

Example 1.2.2. 1. Linear random dynamical system as product of random matrices: If

X = Rd and the RDS is linear, we can write for n ≥ 1

ϕ(n, ω) = An−1(ω) · · ·A0(ω), Ak(ω) = A(θkω),

where A : Ω → Rd×d is measurable. Two-sided linear RDS correspond with invertible

measurable families of matrices, giving in addition for n ≤ −1

ϕ(n, ω) = An(ω)−1 · · ·A−1(ω)−1, Ak(ω) = A(θkω).
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2. Barnsley’s chaos game: Note that one can approximate a Cantor set by randomly switching

between the maps

T0(x) =
x

2
, T1(x) =

1 + x

2

on X = [0, 1]. Such a switching between random maps can be formalized as an RDS by

considering the finite set ∆ = {0, 1} and the (topological) space of sequences

Ω ≡ ∆N := {ω = (ωn)∞n=0 | ωn ∈ ∆} .

Recall that a cylinder set is of the form

Ci0,i1,...,in = {ω ∈ Ω | ωk = ik, k = 0, 1, . . . , n},

for some n ∈ N. Having the two probabilities 1 > p1 = 1 − p0 > 0, we endow the

measurable space (Ω,B(Ω)) with the infinite product measure P, defined uniquely by its

action on cylinder sets as

P(Ci0,i1,...,in) = pi0 · · · pin .

The metric dynamical system is given by iterations of the shift map θ : Ω→ Ω defined as

θ(ωn)∞n=0 = (ωn+1)∞n=0.

The evolution of the system through time is given by applying the map T0 or T1 with

probabilities p0 or p1, respectively, and this is expressed by the cocycle ϕ : Z+
0 ×X×Ω→ X

as

ϕ(0, ω, x) = x, ϕ(n, ω, x) = Tin−1 ◦ · · ·Ti0(x),

where ω = (ik)
∞
k=0. (See also Exercise sheet 1.)

For discrete-time random dynamical systems with independent increments, we can prove the

following relation to Markov chains:

Theorem 1.2.3. Let ϕ be a measurable cocycle over θ with time T = Z+
0 , generated by ψ(ω) such

that the sequence ψ(θn·) is identically and independently distributed. Then, given any random

variable x0, the orbit (xxn) given by

xn+1 = ψ(θnω)xn, x0 = x ∈ X,

is a time-homogeneous Markov chain on X with transition probability

P (x,B) = P{ω : ψ(ω)x ∈ B} for all B ∈ B. (1.2.7)

Proof. Firstly, note that P (x,B) as defined in (1.2.7) is, indeed, a Markov kernel: P(x, ·) is

a probability measure on (X,B) by definition. Furthermore, we observe that P(·, B) is a

measurable map for any B ∈ B, as follows: Introducing Ψ : (ω, x) 7→ ψ(ω)x and writing
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Ax = {ω ∈ Ω : (ω, x) ∈ A} for A ∈ F ⊗ B, we have

P (x,B) = P(Ax), A = Ψ−1B ∈ F ⊗ B.

We observe by the monotone class theorem that

A = {A ∈ F ⊗ B : P(Ax) is measurable in x}

is a σ-algebra and, hence, A = F ⊗ B.

Let us denote Fn = σ(xx0 , . . . , x
x
n;x ∈ X). Since 1B(ψ(θn·)x) is independent from Fn for

each x ∈ X and B ∈ B, we can deduce by the well-know properties of conditional expectations

that

P(xxn+1 ∈ B|Fn) = E[1B(ψ(θnω)xxn)|Fn] = E[1B(ψ(θnω)xxn)|xxn] = P(xxn+1 ∈ B|xxn).

This shows the Markov property. Moreover, we obtain the time-homogeneity

P(xxn+1 ∈ B|xxn = y) = P(ω : ψ(θnω)y ∈ B) = P(ω : ψ(ω)y ∈ B) = P (y,B),

having used the θn-invariance of P for all n ≥ 1.

Remark 1.2.4. The reverse direction, i.e., the consruction of a discrete-time random dynamical

system as a composition of independent random maps from a Markov chain with given transition

probabilities, is also possible (see [59, Theorem 1.1]), but, in general, uniqueness cannot be

guaranteed. This has to do with the RDS perspective of providing a description of the n-point

motion, i.e., tracking trajectories with different initial conditions but driven by the same noise,

whereas the Markov chain only describes the 1-point motion. We will discuss this distinction in

more detail later on.

[End of Lecture I, 13.04.]

1.3 Random dynamical systems from random differential equa-

tions

1.4 Random dynamical systems from stochastic differential equa-

tions

Throughout this thesis, we will investigate random dynamical systems induced by stochastic

differential equations. Hence, we are interested in random dynamical systems adapted to a

suitable filtration and of white noise type. Following [47], we make the following definition:

Definition 1.4.1 (White noise RDS). Let (θ, ϕ) be a random dynamical system over a prob-

ability space (Ω,F ,P) on a topological space X where ϕ is defined in forward time. Let
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(F ts)−∞≤s≤t≤∞ be a family of sub-σ-algebras of F such that

(i) Fut ⊂ Fvs for all s ≤ t ≤ u ≤ v,

(ii) F ts is independent from Fvu for all s ≤ t ≤ u ≤ v,

(iii) θ−1
r (F ts) = F t+rs+r for all s ≤ t, r ∈ R,

(iv) ϕ(t, ·, x) is F t0-measurable for all t ≥ 0 and x ∈ X.

Furthermore we denote by F t−∞ the smallest sigma-algebra containing all F ts, s ≤ t, and by

F∞t the smallest sigma-algebra containing all Fut , t ≤ u. Then (θ, ϕ) is called a white noise

(filtered) random dynamical system.

Consider a stochastic differential equation (SDE)

dXt = f(Xt)dt+ g(Xt)dWt, X0 ∈ Rd , (1.4.1)

where (Wt) denotes some r-dimensional standard Brownian motion, the drift f : Rd → Rd is a

locally Lipschitz continuous vector field and the diffusion coefficient g : Rd → Rd×r a Lipschitz

continuous matrix-valued map. If in addition f satisfies a bounded growth condition, as for

example a one-sided Lipschitz condition, then by [37] there is a white noise random dynamical

system (θ, ϕ) associated to the diffusion process solving (1.4.1). The probabilistic setting is as

follows: We set Ω = C0(R,Rr), i.e. the space of all continuous functions ω : R → Rr satisfying

that ω(0) = 0 ∈ Rr. If we endow Ω with the compact open topology given by the complete

metric

κ(ω, ω̂) :=

∞∑
n=1

1

2n
‖ω − ω̂‖n

1 + ‖ω − ω̂‖n
, ‖ω − ω̂‖n := sup

|t|≤n
‖ω(t)− ω̂(t)‖ ,

we can set F = B(Ω), the Borel-sigma algebra on (Ω, κ). There exists a probability mea-

sure P on (Ω,F) called Wiener measure such that the r processes (W 1
t ), . . . , (W r

t ) defined by

(W 1
t (ω), . . . ,W r

t (ω))T := ω(t) for ω ∈ Ω are independent one-dimensional Brownian motions.

Furthermore, we define the sub-σ-algebra F ts as the σ-algebra generated by ω(u) − ω(v) for

s ≤ v ≤ u ≤ t. The ergodic metric dynamical system (θt)t∈R on (Ω,F ,P) is given by the shift

maps

θt : Ω→ Ω, (θtω)(s) = ω(s+ t)− ω(t) .

Indeed, these maps form an ergodic flow preserving the probability P, see e.g. [2].

In chapter ??, we are not able to work with a one-sided Lipschitz condition. Instead, we will

use a transformation into a random differential equation to show that the respective stochastic

differential equation induces a random dynamical system.

Multidimensional conversion formula from Stratonovich to Itô integral

Consider the Stratonovich SDE

dXt = F (t,Xt)dt+G(t,Xt) ◦ dWt ,
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where F : Rd → Rd is called the drift of the SDE, G : Rd → Rd×m the diffusion of the SDE and

Wt is an m-dimensional Wiener process. In accordance with [45], the equation has the same

solutions as the Itô SDE

dXt = F (t,Xt)dt+G(t,Xt)dWt ,

where

F i(t,Xt) = Fi(t,Xt)−
1

2

d∑
j=1

m∑
k=1

Gjk(t,Xt)
∂Gik
∂Xj

(t,Xt) , i = 1, . . . , d .

The Fokker–Planck equation

Consider the Itô SDE

dXt = F (t,Xt)dt+G(t,Xt)dWt ,

where F : Rd → Rd is called the drift of the SDE and G : Rd → Rd×m the diffusion of the SDE

and Wt is an m-dimensional Wiener process. The so called Fokker–Planck equation describes the

evolution of the density of the process (Xt)t≥0 under sufficient (classical or Sobolev) regularity

of the coefficients:

∂p(t, x)

∂t
= −

d∑
i=1

∂

∂xi
[Fi(t, x)p(x, t)] +

1

2

d∑
i,j=1

∂2

∂xi∂xj
[Dij(x, t)p(x, t)] ,

with diffusion tensor

Dij(x, t) =
m∑
k=1

Gik(x, t)Gjk(x, t) .

1.5 Invariant measures

Let (θ, ϕ) be a random dynamical system with the cocycle ϕ being defined on one-or two-sided

time T ∈ {R+
0 ,R}. Then the system generates a skew product flow, i.e. a family of maps (Θt)t∈T

from Ω×X to itself such that for all t ∈ T and ω ∈ Ω, x ∈ X

Θt(ω, x) = (θtω, ϕ(t, ω, x)) .

The notion of an invariant measure for the random dynamical system is given via the invariance

with respect to the skew product flow, see e.g. [2, Definition 1.4.1]. We denote by Tµ the push

forward of a measure µ by a map T , i.e. Tµ(·) = µ(T−1(·)).

Definition 1.5.1 (Invariant measure). A probability measure µ on Ω ×X is invariant for the

random dynamical system (θ, ϕ) if

(i) Θtµ = µ for all t ∈ T ,

(ii) the marginal of µ on Ω is P, i.e. µ can be factorised uniquely into µ(dω,dx) = µω(dx)P(dω)

where ω 7→ µω is a random measure (or disintegration or sample measure) on X, i.e. µω
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is a probability measure on X for P-a.a. ω ∈ Ω and ω 7→ µω(B) is measurable for all

B ∈ B(X).

The marginal of µ on the probability space is demanded to be P since we assume the model

of the noise to be fixed. Note that the invariance of µ is equivalent to the invariance of the

random measure ω 7→ µω on the state space X in the sense that

ϕ(t, ω, ·)µω = µθtω P-a.s. for all t ∈ T . (1.5.1)

For white noise random dynamical systems (θ, ϕ), in particular random dynamical systems

induced by a stochastic differential equation, there is a one-to-one correspondence between

certain invariant random measures and stationary measures of the associated stochastic process,

first observed in [30]. In more detail, we can define a Markov semigroup (Pt)t≥0 by setting

Ptf(x) = E(f(ϕ(t, ·, x))

for all measurable and bounded functions f : X → R. If ω 7→ µω is a F0
−∞-measurable invariant

random measure in the sense of (1.5.1), also called Markov measure, then

ρ(·) = E[µω(·)] =

∫
Ω
µω(·)P(dω)

turns out to be an invariant measure for the Markov semigroup (Pt)t≥0, often also called station-

ary measure for the associated process. If ρ is an invariant measure for the Markov semigroup,

then

µω = lim
t→∞

ϕ(t, θ−tω, ·)ρ

exists P-a.s. and is an F0
−∞-measurable invariant random measure.

We observe similarly to [10] that, in the situation of µ and ρ corresponding in the way

described above,

E[µω(·)|F∞0 ] = E[µω(·)] = ρ(·) ,

and, hence,

E[µ(·)|F∞0 ] = (P× ρ)(·) .

Therefore the probability measure P × ρ is invariant for (Θt)t≥0 on (Ω × X,F∞0 × B(X)). In

words, the product measure with marginals P and ρ is invariant for the random dynamical

system restricted to one-sided path space. We will discuss a similar relation for quasi-stationary

and quasi-ergodic measures in Chapter 5.



Chapter 2

Spectral theories of random

dynamical systems

2.1 Lyapunov exponents and the Multiplicative Ergodic Theo-

rem

Fundamental for stochastic bifurcation theory is Oseledets’ Multiplicative Ergodic Theorem,

which implies the existence of Lyapunov exponents describing stability properties of a differen-

tiable random dynamical system.

The random dynamical system (θ, ϕ) is called Ck if ϕ(t, ω, ·) ∈ Ck for all t ∈ T and ω ∈ Ω,

where again T ∈ {R,R+
0 }. Let’s assume that X is a smooth d-dimensional manifold and that

(θ, ϕ) is C1. The linearisation or derivative Dϕ(t, ω, x) of ϕ(t, ω, ·) at x ∈ X is a linear map

from the tangent space Tx to the tangent space Tϕ(t,ω,x). If X = Rd, the linearisation is simply

the Jacobian d× d matrix

Dϕ(t, ω, x) =
∂ϕ(t, ω, x)

∂x
.

Differentiating the equation

ϕ(t+ s, ω, x) = ϕ(t, θsω, ϕ(s, ω, x))

on both sides and applying the chain rule to the right hand side yields

Dϕ(t+ s, ω, x) = Dϕ(t, θsω, ϕ(s, ω, x))Dϕ(s, ω, x) = Dϕ(t,Θs(ω, x))Dϕ(s, ω, x) ,

i.e. the cocycle property of Dϕ with respect to the skew product flow (Θt)t∈T.

Let us now assume that the random dynamical system possesses an invariant measure µ. In

case X = Rd, this implies that (Θ,Dϕ) is a (potentially one-sided) random dynamical system

with linear cocycle Dϕ over the metric dynamical system (Ω ×X,F ⊗ B(X), (Θt)t∈T), see e.g.

[2, Proposition 4.2.1]. Generally, we have that Dϕ is a linear bundle random dynamical system

on the tangent bundle TX (see [2, Definition 1.9.3, Proposition 4.25]).

16
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In large parts of this work, we will be concerned with a stochastic differential equation in

Stratonovich form

dXt = f0(Xt)dt+
m∑
i=1

fj(Xt) ◦ dW j
t (2.1.1)

where W j
t are independent real valued Brownian motions, f0 is a C1 vector field and f1, . . . , fm

are C2 vector fields satisfying bounded growth conditions, as e.g. (global) Lipschitz continuity,

in all derivatives to guarantee the existence of a (global) random dynamical system for ϕ and Dϕ.

We write the equation in Stratonovich form when differentiation is concerned as the classical

rules of calculus are preserved. If X = Rd, we can apply the conversion formula to the Itô

integral (see Appendix 1.4) to obtain the situation of (1.4.1).

According to [6], the derivative Dϕ(t, ω, x) applied to an initial condition v0 ∈ TxX ∼= Rd

solves uniquely the variational equation

dv = Df0(ϕ(t, ω, x))v dt+
m∑
j=1

Dfj(ϕ(t, ω, x))v ◦ dW j
t , v(0) = v0 ∈ TxX . (2.1.2)

In case the derivative can be written as a matrix, as for example for X = Rd, the Jacobian

Dϕ(t, ω, x) satisfies Liouville’s equation

det Dϕ(t, ω, x) = exp

(∫ t

0
trace Df0(ϕ(s, ω, x))ds

+
m∑
j=1

∫ t

0
trace Dfj(ϕ(s, ω, x)) ◦ dW j

s

)
. (2.1.3)

We summarise the different versions of the Multiplicative Ergodic Theorem for differentiable

random dynamical systems in one-sided and two-sided time in the following theorem [2, Theorem

3.4.1, Theorem 3.4.11, Theorem 4.2.6], containing all the properties we will need in the following.

Theorem 2.1.1 (Multiplicative Ergodic Theorem). (a) Suppose the C1-random dynamical sys-

tem (θ, ϕ), where ϕ is defined in forward time, has an ergodic invariant measure ν and

satisfies the integrability condition

sup
0≤t≤1

ln+ ‖Dϕ(t, ω, x)‖ ∈ L1(ν).

Then there exist a Θ-invariant set ∆ ⊂ Ω × X with ν(∆) = 1, a number 1 ≤ p ≤ d and

real numbers λ1 > · · · > λp, the Lyapunov exponents with respect to ν, such that for all

0 6= v ∈ TxX ∼= Rd and (ω, x) ∈ ∆

λ(ω, x, v) := lim
t→∞

1

t
ln ‖Dϕ(t, ω, x)v‖ ∈ {λp, . . . , λ1} .

Furthermore, the tangent space TxX ∼= Rd admits a filtration

Rd = V1(ω, x) ) V2(ω, x) ) · · · ) Vp(ω, x) ) Vp+1(ω, x) = {0} ,
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for all (ω, x) ∈ ∆ such that

λ(ω, x, v) = λi ⇐⇒ v ∈ Vi(ω, x) \ Vi+1(ω, x) for all i ∈ {1, . . . , p} .

In case the derivative can be written as a matrix, we have for all (ω, x) ∈ ∆

lim
t→∞

1

t
ln det Dϕ(t, ω, x) =

p∑
i=1

diλi , (2.1.4)

where di is the multiplicity of the Lyapunov exponent λi and
∑p

i=1 di = d.

(b) If the cocycle ϕ is defined in two-sided time and satisfies the above integrability condition

also in backwards time, there exists the Oseledets splitting

Rd = E1(ω, x)⊕ · · · ⊕ Ep(ω, x)

of the tangent space into random subspaces Ei(ω, x), the Oseledets spaces, for all (ω, x) ∈ ∆.

These have the following properties for all (ω, x) ∈ ∆:

(i) The Oseledets spaces are invariant under the derivative flow, i.e. for all t ∈ R

Dϕ(t, ω, x)Ei(ω, x) = Ei(Θt(ω, x)) ,

(ii)

lim
t→±∞

1

t
ln ‖Dϕ(t, ω, x)v‖ = λi ⇐⇒ v ∈ Ei(ω, x) \ {0} for all i ∈ {1, . . . , p} ,

(iii) The dimension equals the multiplicity of the associated Lyapunov exponent, i.e.

dimEi(ω, x) = di .

2.2 The Furstenberg–Khasminskii formula

The standard method for deriving an explicit formula of the largest Lyapunov exponent λ1 is

given by the Furstenberg-Khasminskii formula which will play a crucial role in Chapters ??

and 5, and also partly in Chapter ??. We give a short introduction based on [52]. For more

detailed discussions we refer to [2, 4].

Consider the linear Stratonovich equation

dYt = A0Yt dt+
m∑
j=1

AjYt ◦ dW j
t , Y0 = v ∈ Rd , (2.2.1)

where A0, . . . , Am ∈ Rd×d and W 1, . . . ,Wm are independent Wiener processes in two-sided time.

For keeping things simple, we let A0, . . . , Am ∈ Rd×d not depend on an underlying random
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system. Thus, equation (2.2.1) induces a linear cocycle Φ over the family of shifts (θt)t∈R on the

Wiener space Ω, as opposed to the previous section where the probability space was Ω×X for

some manifold X and the skew product flow (Θt)t∈T replaced (θt)t∈R. We will see in the course

of this work that the calculations below are still applicable in such situations.

We introduce the change of variables rt = ‖Yt‖ and st = Yt/rt, so that st lies on the unit

sphere Sd−1. The stochastic differential equation in polar coordinates is given by

dst = (A0st − 〈st, A0st〉st) dt+

m∑
j=1

(Ajst − 〈st, Ajst〉st) ◦ dW j
t ,

and

drt = 〈st, A0st〉rt dt+
m∑
j=1

〈st, Ajst〉rt ◦ dW j
t ,

Since Stratonovich integration obeys the classical chain rule we can write

rt = r0 exp

∫ t

0
〈sτ , A0sτ 〉dτ +

m∑
j=1

∫ t

0
〈sτ , Ajsτ 〉 ◦ dW j

τ

 .

Using the Itô-Stratonovich conversion we obtain

rt = r0 exp

∫ t

0

hA0(sτ ) +
m∑
j=1

kAj (sτ )

dτ +
m∑
j=1

∫ t

0
〈sτ , Ajsτ 〉 dW j

τ

 , (2.2.2)

where

hA(s) = 〈s,As〉 ,

kA(s) =
1

2
〈(A+A∗)s,As〉 − 〈s,As〉2 .

It is well known that the Itô integrals in (2.2.2) are of order (
√
t) for large t. Hence, we can

conclude that

1

t
ln rt =

1

t

∫ t

0

hA0(sτ ) +
m∑
j=1

kAj (sτ )

dτ +O(t−1/2) . (2.2.3)

We define

gA(s) = As− 〈s,As〉s for A ∈ Rd×d, s ∈ Sd−1 ,

and denote by L(gA0 , . . . , gAm)(s) the Lie algebra generated by these vector fields at s. We

impose the classical Hörmander condition on the hypoellpticity of these vector fields driving the

dynamics of st:

dimL(gA0 , . . . , gAm)(s) = d− 1 for all s ∈ Sd−1 . (2.2.4)

Note that the objects in Theorem 2.1.1 only depend on ω ∈ Ω in our situation. According to [51],

condition 2.2.4 guarantees that the distribution of the Oseledets space Ei(ω) in Theorem 2.1.1
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(b) possesses a smooth density for any i ∈ {1, . . . , p}. Therefore any initial point v ∈ Rd \ {0}
has almost surely a non-vanishing component in E1(ω) (and v ∈ V1(ω) \ V2(ω) almost surely in

the situation of Theorem 2.1.1 (a)), and, hence,

λ1 = lim
t→∞

1

t
ln rt almost surely.

The hypoellipticity condition (2.2.4) further implies irreducibility of the Markov semigroup in-

duced by (st)t≥0 on Sd−1, and since the unit sphere is a compact manifold, we can conclude that

(st)t≥0 possesses a unique stationary probability measure with smooth density p. The density p

solves the stationary Fokker-Planck equation

L∗p = 0 ,

where

L = gA0 +
1

2

m∑
j=1

g2
Aj

is the generator of (st)t≥0 in Hörmander notation and L∗ is the formal adjoint of L. By Birkhoff’s

Ergodic Theorem we observe that

lim
t→∞

1

t
ln rt = lim

t→∞

1

t

∫ t

0

hA0(sτ ) +

m∑
j=1

kAj (sτ )

dτ

=

∫
Sd−1

hA0(s) +
m∑
j=1

kAj (s)

 p(s) ds .

The Furstenberg–Khasminskii formula for the top Lyapunov exponent is therefore given by

λ1 =

∫
Sd−1

hA0(s) +

m∑
j=1

kAj (s)

 p(s) ds . (2.2.5)

2.3 Stable and unstable manifolds



Chapter 3

Random attractors

3.1 Basic definitions

Let (θ, ϕ) be a white noise random dynamical system on a metric space (X, d). We give the

definition of a random attractor of (θ, ϕ) with respect to tempered sets.

A random variable R : Ω→ R is called tempered if

lim
t→±∞

1

|t|
ln+R(θtω) = 0 for almost all ω ∈ Ω ,

see also [2, p. 164]. A set D ∈ F ⊗ B(X) is called tempered if there exists a tempered random

variable R such that

D(ω) ⊂ BR(ω)(0) for almost all ω ∈ Ω ,

where D(ω) := {x ∈ X : (ω, x) ∈ D}. D is called compact if D(ω) ⊂ X is compact for almost

all ω ∈ Ω. Denote by D the set of all compact tempered sets D ∈ F ⊗B(X). We now define the

notion of a random attractor with respect to D, see also [60, Definition 14.3].

Definition 3.1.1 (Random attractor). A set A ∈ D is called a random attractor (with respect

to D) if the following two properties are satisfied.

(i) A is ϕ-invariant, i.e.

ϕ(t, ω)A(ω) = A(θtω) for all t ≥ 0 and almost all ω ∈ Ω .

(ii) For all D ∈ D, we have

lim
t→∞

dist
(
ϕ(t, θ−tω)D(θ−tω), A(ω)

)
= 0 for almost all ω ∈ Ω ,

where dist(E,F ) := supx∈E infy∈F d(x, y).

The set A is called a weak random attractor if it satisfies the latter property with almost sure

convergence replaced by convergence in probability. We call A a (weak) random point attractor

if it satisfies the properties above with tempered random sets D replaced by single points y ∈ X

21
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in (ii). A (weak) random point attractor is said to be minimal if it is contained in each (weak)

random point attractor.

Remark 3.1.2. Note that we require that the random attractor is measurable with respect

to F ⊗ B(X), in contrast to a weaker statement normally used in the literature (see also [33,

Remark 4]).

Remark 3.1.3. Property (ii) is sometimes demanded only for compact subsets B ⊂ X as

for example in [47]. Note that any random attractor according to our definition is a random

attractor according to this weaker definition.

The existence of random attractors is proved via so-called absorbing sets. A set B ∈ D is

called an absorbing set if for almost all ω ∈ Ω and any D ∈ D, there exists a T > 0 such that

ϕ(t, θ−tω)D(θ−tω) ⊂ B(ω) for all t ≥ T .

A proof of the following theorem can be found in [48, Theorem 3.5].

Theorem 3.1.4 (Existence of random attractors). Suppose that (θ, ϕ) is a continuous random

dynamical system with an absorbing set B. Then there exists a unique random attractor A,

given by

A(ω) :=
⋂
τ≥0

⋃
t≥τ

ϕ(t, θ−tω)B(θ−tω) for almost all ω ∈ Ω.

Furthermore, ω 7→ A(ω) is measurable with respect to F0
−∞, i.e. the past of the system.

Remark 3.1.5. Naturally, random attractors are related to invariant probability measures of

a random dynamical system (θ, ϕ). It follows directly from [31, Proposition 4.5] that, if the

fibres of a random attractor A, i.e. ω 7→ A(ω), are measurable with respect to F0
−∞, there is an

invariant measure µ for (θ, ϕ) such that ω 7→ µω is measurable with respect to F0
−∞, i.e. is a

Markov measure, and satisfies µω(A(ω)) = 1 for almost all ω ∈ Ω. In particular, if there exists

a unique invariant probability measure ρ for the Markov semi-group (Pt)t≥0, then the invariant

Markov measure, supported on A, is unique by the one-to-one correspondence explained above.

Additionally, if the Markov semi-group is strongly mixing, i.e.

Ptf(x)
t→∞−−−→

∫
X
f(y)ρ(dy) for all continuous and bounded f : X → R and x ∈ X ,

then the set Ã ∈ F ×B(X), given by Ã(ω) = suppµω ⊂ A(ω) for almost all ω ∈ Ω, is a minimal

weak random point attractor according to [47, Proposition 2.20].

3.2 Ergodic theory of chaotic random attractors

This chapter is dedicated to shedding more light on the character of the random (point) attractor

A and the invariant random measures µω supported on the fibres A(ω), in case the top Lyapunov

exponent λ1 is positive. We have called A a random strange attractor in this situation and refer
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to Figures ?? and ?? for getting an idea of the shape of such an attractor. In Figures ??–

?? we approximate the support of µω for model (??) with high shear intensity b by computing

ϕ(T, θ−Tω)ρ̃ for increasing T , where ρ̃ is a numerical approximation of the stationary measure ρ.

In Figure ?? we do exactly the same for model (??). In both cases, we observe one-dimensional

structures that resemble Henon-like attractors.

Hence, a first thing to show is that µω is almost surely not supported on a singleton if

λ1 > 0; a fact we have already claimed in Corollary ??. We will follow work by Baxendale

and Stroock [14, 10] extending their results to the non-compact case. This will be the content

of Section 3.2.1 where we show Theorem 3.2.1 which states that positive Lyapunov exponents

imply atomless invariant measures, in particular in the situations of Chapters ?? and ??.

Section 3.2.2 concerns Pesin’s formula, i.e. the equality of metric entropy and the sum of

positive Lyapunov exponents, for model (??) on Rd and model (??) on R×S1. The formula was

proven by Ledrappier & Young [69] for discrete-time random dynamical systems generated by

randomly drawn diffeomorphisms on a compact manifold with absolutely continuous stationary

measure. Biskamp [15] has proven the formula for discrete-time random dynamical systems

X+(Rd, ν), where ν is the law of the random diffeomorphisms on Rd, given a class of Assumptions

(A1)-(A5) and an absolutely continuous stationary (not necessarily ergodic) probability measure

µ. The formula reads

hµ

(
X+(Rd, ν)

)
=

∫
Rd

∑
i

λi(x)+mi(x)µ(dx) ,

where hµ denotes metric entropy and λi(x)+ are the positive Lyapunov exponents with multiplic-

ities mi(x). The section gives an introduction to the concept of entropy for random dynamical

systems, following [15, 59, 73], and links discrete-time systems with random dynamical systems

generated by stochastic differential equations via their time-one maps. This allows to formulate

Theorem 3.2.10 as a direct consequence of [15, Theorem 9.1] stating Pesin’s formula for systems

derived from stochastic differential equations. Finally, we prove Corollary 3.2.11 which says

that the random dynamical system induced by model (??) has positive entropy for large enough

shear or noise respectively, i.e. if λ1 > 0. The same would hold true for model (??), once positive

Lyapunov exponents can be established.

Section 3.2.5 introduces the concept of SRB measures for random systems with positive

Lyapunov exponent. In short, the random measures µω are called SRB measures if they are

absolutely continuous with respect to the Riemannian measure on fibres of unstable manifolds.

Hence, if the µω can be shown to be SRB measures, their supports are non-singular subsets of the

closures of unstable manifolds, perhaps even equal them. This gives a strong characterisation of

the shapes we observe in Figures ?? and ??. Following [69], we formulate Theorem 3.2.17 and

Corollary 3.2.18 implying the SRB property for sample measures of discrete-time systems and

systems induced by stochastic differential equations on compact manifolds, in case the stationary

measure µ is absolutely continuous. It is beyond the scope of this work to show the results for

the non-compact case since there are a lot of technical intricacies to be taken care of. We simply
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refer to the intuition that if the maps/flows and their derivatives satisfy uniform bounds, the

results are applicable to the non-compact case.

We concede that, too a large extent, the work presented in this chapter is not original.

However, it is important to embed the results of chapters ?? and ?? into the context of ergodic

theory. Furthermore, we understand this chapter as a contribution to linking the Arnold school,

on which the other chapters are based, to the school represented by Kifer, Ledrappier and Young

that puts more emphasis on smooth ergodic theory.

3.2.1 Positive Lyapunov exponents imply atomless invariant measures

We are extending the statement in [10] about positive Lyapunov exponents implying atomless

invariant random measures to the non-compact setting. Let M be a connected smooth Rie-

mannian manifold of dimension N . Similarly to (2.1.1), we consider the Stratonovich stochastic

differential equation on M

dξt(x) = X0(ξt(x))dt+

d∑
k=1

Xk(ξt(x)) ◦ dW k
t , ξ0(x) = x . (3.2.1)

Here X0, X1, . . . , Xd are smooth vector fields on M satisfying a one-sided Lipschitz condition

guaranteeing unique solutions and {W k
t : t ≥ 0}, 1 ≤ k ≤ d, are independent real valued

Brownian motions on some probability space (Ω,F ,P). Let further denote X̃k the natural lifts

of the vector fields Xk on M to vector fields on SM , the unit sphere bundle in TM . For v ∈ SM
and u ∈ C([0,∞),Rd), let Ψ(·, v, u) denote the curve in SM satisfying

Ψ̇(t, v, u) = X̃0(Ψ(t, v, u)) +
d∑

k=1

uk(t)X̃k(Ψ(t, v, u))

with Ψ(0, v, u) = v. Now we demand the following assumption similarly to (2.2.4) which implies

that the generator of (3.2.1) is hypoelliptic and that, if there is a stationary probability measure

ρ, it is unique and has a smooth density with respect to the Riemannian measure on M :

(A1)
(
X̃0, . . . , X̃d

)
(v) = TvSM

and {Ψ(t, v, u) : t ≥ 0 and u ∈ C([0,∞),Rd)} is dense in SM for all v ∈ SM .

Equation (3.2.1) induces a random dynamical system as before where the notations identify

as ϕ(t, ·, x) = ξt(x). Let µ be the invariant Markov measure of the RDS, i.e. the invariant

probability measure of the skew product flow corresponding with ρ, and µω its disintegrations

to the state space. We denote µ̄ = E[µω × µω] which is a stationary probability measure for the

two-point motion {(ξt(x), ξt(y)) : t ≥ 0} on M ×M . The generator of the two-point motion is

denoted by L(2). Further, ∆ denominates the diagonal in M×M and we write M̂ = M×M \∆.

Before we can establish the statement about atomless measures, we have to introduce the

moment Lyapunov function Λ̃ : R→ R. It is defined by

Λ̃(p) = lim
t→∞

1

t
lnEµ |Dξt(x)(v)|p , v ∈ TxM , |v| 6= 0 .
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If M is compact, Assumption (A1) guarantees that the above limit exists and is independent

from the choice of v. Further Λ̃ is a convex analytic function of p according to results in [14].

These results are directly applicable to the situation of model (??) since the variational equation

is solely dependent on the angular process which is defined on the compact manifold S1.

We formulate the result in the following theorem. Note that the proof contains a summary

of arguments coming from [14, 10, 58] that cannot be found in such an overview otherwise. The

issues with non-compactness are rather benign and are pointed out at the respective parts of

the argument:

Theorem 3.2.1 (Positive λ1 implies atomless µω). Assume that the top Lyapunov exponent

λ1 for the random dynamical system induced by (3.2.1) is positive, that the moment Lyapunov

function Λ̃ exists independently from v ∈ TM , that the system has a stationary measure ρ and

that (A1) holds. Then

µ̄
(
M̂
)

= 1

or equivalently µω is atomless almost surely.

Proof. Define the map Φ : TM →M ×M by

Φ((x, v)) = (x, expx(v)) ,

where expx : TxM → M is the exponential map. For the strategy of the proof it is essential

that there exists an injectivity radius δ0 > 0 such that for any 0 < δ ≤ δ0, Φ is a diffeomorphism

from {(x, v) ∈ TM : 0 < |v| < δ} onto M̂δ := {(x, y) ∈M2 : 0 < d(x, y) < δ} via

(x, θ, r) ∈ SM × (0, δ) 7→ Φ((x, rθ)) ∈ M̂δ .

In the original setting of [14] this follows immediately from compactness. For non-compact

manifolds with positive injectivity radius, as for example the infinite cylinder or RN , the result

carries over immediately, as we will see from the following arguments. In case of no positive

injectivity radius being guaranteed, fix ε > 0. In order to adapt the proof to this setting, we

start with a compact ball K such that (ρ× ρ)(K ×K) > 1− ε/3. Writing K̂ = K ×K \∆, we

proceed as in the proof of [10, Remark 4.12].

Observe that Λ̃(0) = 0 and Λ̃′(0) = λ1 > 0. From [14], we further know that Λ̃(−N) ≥ 0

and that Λ̃ is convex. Hence, there is a p < 0 such that Λ̃(p) < 0. Denote the injectivity radius

of K by δ0. Now, according to [14, Theorem 3.18] there is a δ ≤ δ0 and φp ∈ C∞(SM × (0, δ))

such that

L(2)φp ≤ Λ̃(p)φp and Crp ≤ φp(x, θ, r) , (x, θ, r) ∈ SM × (0, δ) , (3.2.2)

where C > 0 is some constant. By the coordinate transformation from above, we take V : K̂ → R
to be a smooth non-negative extension of φp with smooth compactly supported extension Ṽ to

M̂ . Since p, Λ̃(p) < 0 we obtain from (3.2.2) that V satisfies

L(2)V (x, y)→ −∞ as d(x, y)→ 0 ,
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and ∫
M̂
Ṽ d(ρ× ρ) <∞.

This allows to apply Khasminskii’s pointwise estimate in the proof of [58, Theorem 3.7] to the

distance of the two-point motion from the diagonal for any (x, y) ∈ K̂. As the upper bound in

Khasminskii’s estimate [58, (3.54)] does not depend on the initial point (x, y) ∈ K̂ but only on

the distance of the two points, we can integrate over the stationary distribution ρ× ρ on M̂ and

conclude that there is a γ > 0 such that

1

t

∫ t

0

∫
M̂

P
(

(ϕ(s, ·, x), ϕ(s, ·, y)) ∈ Bγ(∆) ∩ K̂
)

(ρ× ρ)(dx, dy) ds < ε/3

for any t > 0. Observe that by ergodicity

1

t

∫ t

0
P
(

(ϕ(s, ·, x), ϕ(s, ·, y)) ∈ M̂ \ K̂
)

ds
t→∞−−−→ (ρ× ρ)(M̂ \ K̂) < ε/3

for (ρ× ρ)-almost all (x, y) ∈ K2. Since K2 is compact, we can conclude that there is a t∗ > 0

such that for all t ≥ t∗

1

t

∫ t

0

∫
K̂
P
(

(ϕ(s, ·, x), ϕ(s, ·, y)) ∈ M̂ \ K̂
)

(ρ× ρ)(dx,dy) ds < ε/3.

We define K1 = K2 ∩ {(x, y) ∈ M̂ : d(x, y) ≥ γ} which is obviously compact. Let {Pt : t ≥ 0}
denote the Markov semi-group acting on C(M ×M) and {P ∗t : t ≥ 0} the adjoint semi-group

acting on measures on M×M . Observe that by the choice of K and K1 and the above it follows

for t ≥ t∗ that

1

t

∫ t

0

∫
M̂
Ps1M̂\K1

d(ρ× ρ)ds

=
1

t

∫ t

0

∫
M̂

P
(

(ϕ(s, ·, x), ϕ(s, ·, y)) ∈ Bγ(∆) ∩ K̂
)

(ρ× ρ)(dx,dy) ds

+
1

t

∫ t

0

∫
M̂

P
(

(ϕ(s, ·, x), ϕ(s, ·, y)) ∈ M̂ \ K̂
)

(ρ× ρ)(dx, dy) ds

<
ε

3
+

2ε

3
= ε.

Hence, for t ≥ t∗ we obtain(
1

t

∫ t

0
P ∗s (ρ× ρ)ds

)
(K1) =

1

t

∫ t

0

∫
M̂
Ps1K1 d(ρ× ρ) ds > 1− ε.

Since K1 ⊂ M̂ compact, we have shown that the family of probability measures{
1

t

∫ t

0
P ∗s (ρ× ρ) ds

}
t≥t∗

,
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is uniformly tight on M̂ . Further note that these probability measures are supported on M̂ due

to absolute continuity of ρ. Hence, by Prokhorov’s Theorem there is a probability measure ν on

M̂ and a time sequence {tn}n∈N such that 1
tn

∫ tn
0 P ∗s (ρ × ρ)ds → ν as n → ∞. We know from

[10, Proposition 2.6] that P ∗t (ρ× ρ) converges weakly to µ̄ as t→∞. So we can conclude that

ν = µ̄ and therefore µ̄(M̂) = 1 as required.

3.2.2 Pesin’s formula

In this section, we want to investigate what positive Lyapunov exponents imply for the entropy

of the system. We will follow [15, 73, 69, 59] and try to apply their work to situations interesting

for stochastic bifurcation theory.

3.2.3 Entropy for discrete time systems

Firstly, we formulate the statements for Rd and random dynamical systems in discrete time

generated by composed maps
{
fnω : n ≥ 0, ω ∈

(
ΩN,B(Ω)N, νN

)}
which will be referred to as

X+(Rd, ν). Here, Ω denotes the set of two-times differentiable diffeomorphisms on Rd with the

topology induced by uniform convergence on compact sets for all derivatives up to order 2. The

maps are i.i.d. with law ν, and for a sequence ω = (f0(ω), f1(ω), . . . ) ∈ ΩN the compositions are

given as

f0
ω = id , fnω = fn−1(ω) ◦ fn−2(ω) ◦ · · · ◦ f0(ω) .

Later we will formulate the statements for stochastic flows that are related to discrete time

random dynamical systems via their time-one maps.

Definition 3.2.2 (Stationary measure). A Borel probability measure µ on Rd is called a sta-

tionary measure of X+(Rd, ν) if

µ(·) =

∫
Ω
µ
(
f−1(·)

)
ν(df) .

If ξ is a finite partition of a Lebesgue space (X,B, µ) and C1, . . . , Ck denote the elements of

ξ, we define the entropy of ξ with respect to µ by

Hµ(ξ) = −
k∑
j=1

µ(Cj) ln(µ(Cj)) .

Furthermore, for two partitions ξ1 and ξ2 we define

ξ1 ∨ ξ2 = {A ∩B : A ∈ ξ1, B ∈ ξ2} ,

such that elements of
∨n−1
i=0 (f iω)−1ξ are of the form

{x : x ∈ Cj0 , fωx ∈ Cj1 , . . . , fn−1
ω x ∈ Cjn−1}
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for some (j0, . . . , jn−1) sometimes called the address of the orbit.

Following [73] and [15] we define the entropy of a random dynamical system in the following

way:

Definition and Lemma 3.2.3 (Entropy). For any finite partition ξ of Rd and stationary

measure µ of X+(Rd, ν) the limit

hµ

(
X+(Rd, ν), ξ

)
:= lim

n→∞

1

n

∫
ΩN
Hµ

(
n−1∨
k=0

(fkω)−1ξ

)
νN(dω)

exists. The number hµ
(
X+(Rd, ν), ξ

)
is called the entropy of X+(Rd, ν) with respect to ξ. The

number

hµ

(
X+(Rd, ν)

)
:= sup

ξ
hµ

(
X+(Rd, ν), ξ

)
is called the entropy of X+(Rd, ν).

Consider the product spaces ΩN × Rd and ΩZ × Rd. Since Ω equipped with the uniform

topology on compact sets is a separable Banach space, the product σ-algebras B(Ω)N ⊗ B(Rd)
and B(Ω)Z ⊗ B(Rd) satisfy

B(Ω)N ⊗ B(Rd) = B(ΩN × Rd) ,

B(Ω)Z ⊗ B(Rd) = B(ΩZ × Rd) .

We denote the left shift operator on ΩN and ΩZ by τ , i.e.

fn(τω) = fn+1(ω)

for all ω ∈ ΩN, n ∈ N and ω ∈ ΩZ, n ∈ Z respectively, and the associated skew product systems

by

F : ΩN × Rd → ΩN × Rd , (ω, x)→ (τω, f0(ω)x) ,

G : ΩZ × Rd → ΩZ × Rd , (ω, x)→ (τω, f0(ω)x).

First recall the following classical result which we already mentioned in Chapter 1 for continuous

time systems.

Proposition 3.2.4. Let µ be a probability measure on Rd. Then µ is a stationary measure for

X+(Rd, ν) iff νN × µ is an invariant measure for the one-sided skew product system F .

Proof. See for example [59, Lemma I.2.3].

Furthermore, we have the following proposition which associates the invariant probability

measure νN × µ on ΩN × Rd to an invariant probability measure µ∗ on ΩZ × Rd.
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Proposition 3.2.5. For every stationary probability measure µ of X+(Rd, ν) there exists a

unique Borel probability measure µ∗ on ΩZ × Rd such that Gµ∗ = µ∗ and Pµ∗ = νN × µ, where

P denotes the projection to the measures on ΩN × Rd.

Proof. See [73, Proposition I.1.2].

Hence, we have established a relationship between the one-sided and two-sided time system

with respect to their invariant measures. We can also establish a relation in terms of entropy; for

that we need to study conditional entropies with respect to the appropriate σ-algebras and their

generating partitions. We define the following σ-algebras with their corresponding generating

partitions. For ΩN × Rd we have

σ0 :=
{

Γ× Rd : Γ ∈ B(ΩN)
}
, ξ0 := {{ω} × Rd : ω ∈ ΩN} ,

and for ΩZ × Rd we define

σ+ :=

{( −1∏
−∞

Ω

)
× Γ× Rd : Γ ∈ B

( ∞∏
0

Ω

)}
,

ξ+ :=

{( −1∏
−∞

Ω

)
× {ω} × Rd : ω ∈

( ∞∏
0

Ω

)}
,

and

σ :=
{

Γ′ × Rd : Γ′ ∈ B(ΩZ)
}
, ξ := {{ω} × Rd : ω ∈ ΩZ} .

Generally, for a probability space (X,B, µ), a σ-algebra A ⊂ B and a measurable partition ζ of

X we define the corresponding conditional entropy as

Hµ(ζ|A) := −
∫
X

∑
c∈ζ

µ(C|A) lnµ(C|A) dµ .

Following [59, 73, Section 0.4 and Section 0.5], we obtain:

Definition and Lemma 3.2.6. Consider a measure-preserving transformation T : X → X

and a σ-algebra A ⊂ B with T−1A ⊂ A. Then for any measurable partition ζ of X with

Hµ(ζ|A) <∞ the limit

hAµ (T, ζ) := lim
n→∞

1

n
Hµ

(
n−1∨
k=0

T−kζ
∣∣A)

exists. The number hAµ (T, ζ) is called the A-conditional entropy of T with respect to ζ. The

number

hAµ (T ) := sup
ζ
hAµ (T, ζ)

is called the A-entropy of T .

We are now ready to state the very important theorem about the equality of entropy of the
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random dynamical system and the conditional entropies of the skew product systems, condi-

tioned on the σ-algebras introduced above.

Theorem 3.2.7. Let µ be a stationary probability measure of X+(Rd, ν). Then the following

equalities hold for the entropy of X+(Rd, ν) and the conditional entropies of the skew product

systems:

hµ

(
X+(Rd, ν)

)
= hσ0

νN×µ (F ) = hσ
+

µ∗ (G) = hσµ∗ (G) .

Proof. See [73, Proposition I.2.2 and I.2.3]

One can define the entropies conditioned on the σ-algebras σ0, σ
+ and σ also via the cor-

responding generating partitions ξ0, ξ
+ and ξ. For details we refer to [15, Section 2]. It is

important to state the relation between the σ-algebras and the associated partitions, since this

is the key to proving Pesin’s formula. It is also crucial for making the following observation: We

can define

hµ(fω, ζ) := lim
n→∞

1

n
Hµ

(
n−1∨
k=0

(fkω)−1ζ

)
,

in case the limit exists. Then according to [69, Proposition 2.1.2] we have for every partition ζ

with Hµ(ζ) <∞ that for almost all ω ∈ ΩZ

hµ(fω, ζ) = hσµ∗
(
G, ζ̃

)
,

where ζ̃ = {ΩZ ×A : A ∈ ζ}. In particular, we obtain

sup
ζ
hµ(fω, ζ) = hσµ∗ (G) .

Summarising, we observe that averaged, conditioned and fibrewise entropy in the ways defined

above are all the same quantity.

Furthermore, we recall Oseledets’ Multiplicative Ergodic Theorem 2.1.1 and apply it to

(G,µ∗) without µ∗ being necessarily ergodic, following [69, Section 2.2]. There is an Oseledets

splitting

TxM = E1(ω, x)⊕ · · · ⊕ Ep(ω,x)(ω, x)

such that for µ∗-a.e. (ω, x)

lim
n→∞

1

n
ln ‖Df±nω v‖ = ±λi(ω, x) if 0 6= v ∈ Ei(ω, x) . (3.2.3)

The maps (ω, x) 7→ p(ω, x), λi(ω, x),dimEi(ω, x) are measurable and constant along orbits of

G. In fact, there are functions p, λi, di : M → R such that for µ∗-a.e. (ω, x)

p(ω, x) = p(x), λi(ω, x) = λi(x) and dimEi(ω, x) = di ,

where di is the multiplicity of λi. As before, if µ∗ is ergodic, these functions are constant, i.e. the

x-dependence vanishes.
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In [15] we find five integrability assumptions which we denote by (A1)-(A5). It is not

necessary for our purposes to list these here specifically as the assumptions are satisfied for

sufficiently regular stochastic flows anyway. The theorem confirming Pesin’s formula in this

setting reads as follows:

Theorem 3.2.8 (Pesin’s formula). Let X+(Rd, ν) be a random dynamical system which has an

absolutely continuous stationary probability measure µ and satisfies (A1)-(A5). Then we have

hµ

(
X+(Rd, ν)

)
=

∫
Rd

∑
i

λi(x)+mi(x)µ(dx) , (3.2.4)

where λi(x)+ are the positive Lyapunov exponents and mi(x) their multiplicities.

Proof. See [15].

3.2.4 Entropy for stochastic flows

We now make this result applicable to random dynamical systems induced by stochastic differ-

ential equations. In [15] the results are stated for general stochastic differential equations driven

by semimartingales. Since all our models work with Brownian motion and time-independent

vector fields, we transfer the general statements into this particular setting.

Consider the Itô SDE

dXt = F (Xt)dt+G(Xt)dWt , (3.2.5)

where F : Rd → Rd and G : Rd → Rd×m are the drift and diffusion coefficients of the SDE and

Wt is an m-dimensional Wiener process on the canonical filtered probability space of continuous

paths
(
Ω̄, F̄ , (F̄t)t≥0,P

)
as introduced in Chapter 1. We further define the diffusion tensor

Dij(x) =
m∑
k=1

Gik(x)Gjk(x) .

Note that for the models in Chapter ?? and ?? Stratonovich and Itô noise are the same. In

general, one has to account for the Itô-Stratonovich correction if one wants to relate the following

results to results stated in Stratonovich form.

Assume that the entries of the diffusion matrix D and the drift F are in Ck,δloc for some

k ≥ 1, 0 < δ ≤ 1 and satisfy a typical linear growth condition such that the SDE induces a Ck

random dynamical system (θ, ϕ) in the sense of Chapter 1. We relate the system to a stochastic

flow of Ck diffeomorphisms in the sense of [63] by defining the maps

ϕ̃ : R+
0 × R+

0 × Ω̄× Rd → Rd, ϕ̃s,t(ω̄, x) = ϕ(t− s, θsω̄, x) .

By this definition ϕ̃s,t(ω̄, ·) is a Ck diffeomorphism for each s, t ≥ 0 and ω̄ ∈ Ω̄.

We can associate the stochastic flow ϕ̃ with the probability space
(

Ω̃, F̃ , P̃
)

, where

Ω̃ = C0

(
R, C(Rd,Rd)

)
:=
{
f : R→ C(Rd,Rd) : f is continuous and f(0) = 0

}
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is equipped with the topology of uniform convergence on compact sets and F̃ := B(Ω̃) . The

measure P̃ is defined by P̃(ω̃(0) = Id) = 1 and the property that for all n ≥ 0, 0 ≤ t1 < t2 <

· · · < tn and all B ∈ B(C(Rd,Rd))⊗n we have

P̃
((
ω̃(t1), ω̃(t2) ◦ ω̃(t1)−1, . . . , ω̃(tn) ◦ ω̃(tn−1)−1

)
∈ B

)
= P

((
ϕ̃t0,t1 , ϕ̃t1,t2 , . . . , ϕ̃tn−1,tn

)
∈ B

)
.

Now let k ≥ 2 and define Ω as above as the space of C2 diffeomorphisms equipped with the

uniform topology on compact sets. In this case, the measure

ν(·) = P{ω̄ ∈ Ω̄ : ϕ̃0,1(ω̄, ·) ∈ ·} (3.2.6)

on (Ω,B(Ω)) and the random diffeomorphisms

f0(ω) = ω̃(1) = ϕ̃0,1(ω̄, ·) = ϕ(1, ω̄, ·) (3.2.7)

generate, as before, a random dynamical system in discrete time

X+(Rd, ν) =
{
fnω : n ≥ 0, ω ∈

(
ΩN,B(Ω)N, νN

)}
.

Observe that the measure µ is stationary for this system if for any set A ∈ B(Rd)

µ(A) =

∫
Ω̄
µ
(
(ϕ̃0,1(ω̄, ·))−1(A)

)
P(dω̄) .

Let P (t, x, ·) denote the transition probabilities associated to the stochastic differential equation.

Then we make the following observation:

Lemma 3.2.9. Any invariant probability measure ρ for the Markov semi-group associated to

the stochastic differential equation (3.2.5) is stationary for the induced discrete time system

X+(Rd, ν).

Proof. For all A ∈ B(Rd) we have with Fubini that

ρ(A) =

∫
Rd

P (1, x, A) ρ(dx) =

∫
Rd

∫
Ω̄
1A(ϕ̃0,1(ω̄, x))P(dω̄)ρ(dx)

=

∫
Ω̄

∫
Rd

1A(ϕ̃0,1(ω̄, x)) ρ(dx)P(dω̄) =

∫
Ω̄
ρ
(
(ϕ̃0,1(ω̄, ·))−1(A)

)
P(dω̄) ,

which shows the claim.

According to [63, Section 4.1], if D and F are Ck,δloc for some k ≥ 1 and 0 < δ ≤ 1 and the

correction term

c(x, t) :=

d∑
j=1

∂D·,j
∂xj

(x) (3.2.8)

is also Ck,δloc , then the backward flow {ϕ̃t,s : 0 ≤ s ≤ t <∞} is also Ck,δloc .
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Using the relations between stochastic flows, continuous-time random dynamical systems

and discrete time random dynamical systems as explained above, we can now formulate Pesin’s

formula for random dynamical systems induced by stochastic differential equations:

Theorem 3.2.10 (Pesin’s formula for SDEs). Let (θ, ϕ) be a random dynamical system induced

by a stochastic differential equation with diffusion matrix D, drift F and correction term c,

as given in (3.2.8), all being Ck,δloc for some k ≥ 2. Let further be ρ an absolutely continuous

stationary probability measure satisfying∫
Rd

(ln(|x|+ 1)1/2 ρ(dx) <∞ . (3.2.9)

Then the discrete time random dynamical system X+(Rd, ν) associated with (θ, ϕ) satisfies (A1)-

(A5) and, hence,

hρ

(
X+(Rd, ν)

)
=

∫
Rd

∑
i

λi(x)+mi(x)ρ(dx)

holds.

Proof. A direct consequence of [15, Theorem 9.1].

We are now in the situation to apply this result to the models we have discussed in the

previous chapters and obtain a more profound notion of chaos.

Corollary 3.2.11. Let X = R × S1 and X+(X, ν) denote the discrete-time random dynami-

cal system induced by model (??) in the way explained above. Let further be ρ the stationary

probability measure for the SDE (??) and f be chosen as in (??). If σ > σ0(α, b), then the

measure-theoretic entropy of X+(X, ν) is positive, i.e.

hρ
(
X+(X, ν)

)
> 0 .

Proof. The whole proof of Theorem 3.2.10 carries obviously over to X ⊂ Rd. Condition 3.2.9

is satisfied due to the same considerations as in Section ?? concerning the boundedness by the

Ornstein-Uhlenbeck process, i.e. the exponential decay of ρ in the amplitude.

The drift is smooth. The diffusion matrix D is given by

D =

(
1 0

0 0

)
,

and therefore c(x, t) = 0 for all x, t. Hence, all the conditions of Theorem 3.2.10 are satisfied. We

further have for ρ-almost all x, P-almost all ω̄ and νN-almost all ω that for all 0 6= v ∈ X\V2(ω̄, x)

λ1 = lim
n→∞

1

n
‖Dxf

n
ω (x)v‖ = lim

n→∞

1

n
‖Dϕ(n, ω̄, x)v‖ > 0

according to Theorem ??. Hence, the claim follows.
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Remark 3.2.12. Since ρ is ergodic and λ1 is the only positive exponent, we actually have that

hρ
(
X+(X, ν)

)
= λ1 .

In other words, the entropy of the random dynamical system is identical to the first Lyapunov

exponent.

Remark 3.2.13. The analogous corollary can obviously be stated for system (??) once Con-

jecture ?? is shown. The conditions of Theorem 3.2.10 are easily satisfied in this case.

3.2.5 SRB measures

Another more profound notion of chaos could be given by showing the SRB-property of the

random measures µω, which are the disintegrations of an invariant probability measure µ∗ for

the two-sided skew product system, i.e. µ∗(dx,dω) = µω(dx)νZ(dω). Let’s assume we are in

exactly the same setting of a discrete time random dynamical system as above with the only

difference that the state space is a compact smooth manifold M , calling such a system X+(M,ν),

generated by C2 diffeomorphisms and a law ν. Let the sample measures µω be associated with a

stationary measure µ in the sense of Proposition 3.2.5 and write Ei(ω, x) for the Oseledets spaces

corresponding with the Lyapunov exponents λi(x). We follow [69] for the following definitions

and results.

Definition 3.2.14. Let (ω, x) ∈ ΩZ × M be s.t. λi(x) > 0 for some i. Then the unstable

manifold and the stable manifold of the skew product flow G at (ω, x) are given by

W u(ω, x) =

{
y ∈M : lim sup

n→∞

1

n
ln d(f−nω x, f−nω y) < 0

}
,

W s(ω, x) =

{
y ∈M : lim sup

n→∞

1

n
ln d(fnωx, f

n
ωy) < 0

}
.

At µ∗-a.e. (ω, x) with λi(x) > 0 for some i, W u(ω, x) is a
(∑

λi>0 dimEi(ω, x)
)
-dimensional

C2 immersed submanifold of M . We set W u(ω, x) = {x} if λi(x) ≤ 0 for all i. If η is a partition

of ΩZ ×M , ηω denotes the restriction of η to the fibre {ω} ×M which is a partition of M . We

write ηω(x) for the element of ηω that contains x.

Definition 3.2.15. A measurable partition η of ΩZ ×M is called subordinate to W u if for

µ∗-a.e. (ω, x), ηω(x) ⊂ W u(ω, x) and contains an open neighbourhood of x in W u(ω, x), this

neighbourhood being taken in the submanifold topology of W u(ω, x).

Identifying σ-algebras with their generating partitions, recall that σ is the partition of ΩZ×M
into sets of the form {ω} ×M . If η is a partition subordinate to W u, µ∗ disintegrates into a

system of conditional measures on elements of η∨σ, denoted by
{
µ∗η∨σ(ω,x)

}
. For µ∗-a.e. (ω, x) we

have the identification µ∗η∨σ(ω,x) = (µω)ηωx . Finally let λWu(ω,x) denote the Riemannian measure on

W u(ω, x).
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Definition 3.2.16 (SRB measures). The sample measures µω are called SRB measures or

absolutely continuous conditional measures on W u-manifolds if for every measurable partition

η subordinate to W u, µ∗η∨σ(ω,x) is absolutely continuous with respect to λWu(ω,x) for µ∗-a.e. (ω, x).

Ledrappier & Young [69] can then prove the following statement.

Theorem 3.2.17. Suppose the stationary measure µ of the random dynamical system X+(M,ν)

is absolutely continuous with respect to the Lebesgue measure and λ1 > 0. Then the sample

measures µω are SRB measures.

Similarly to before, we can then formulate the following corollary for stochastic differential

equations. As usual for the manifold case, we use the Stratonovich integral due to its classical

properties in terms of the chain rule:

Corollary 3.2.18. Let (θ, ϕ) be a random dynamical system induced by a stochastic differen-

tial equation of type 3.2.1 with C2 coefficients and stationary absolutely continuous probability

distribution ρ on a compact manifold M . Let further λ1 > 0 and µ̃ be the invariant probability

measure of (θ, ϕ) corresponding to ρ. Then the sample measures µ̃ω̄ are SRB measures.

Proof. By Lemma 3.2.9, ρ is stationary for the induced discrete time system X+(M,ν). Then

the claim follows immediately from Theorem 3.2.17 if we can show that µ̃ω̄ are the disintegrations

µω of the invariant measure µ∗ of X+(M,ν) associated to ρ. According to [69, Proposition 1.2.3],

the probability measures µω are given by

µω = lim
n→∞

fnτ−nωρ for νZ-a.e. ω .

However, identifying ω and ω̄ via relation (3.2.7) we have seen in Section 1.5 that µ̃ω̄ satisfies

µ̃ω̄ = lim
n→∞

ϕ(n, θ−nω̄, ·)ρ = lim
n→∞

fnτ−nωρ for νZ-a.e. ω .

Hence, the claim follows.

We would like to apply this theorem to our setting and generally extend it to the non-

compact case. Heuristically, this isn’t a problem at all for dissipative systems with compact

random attractors as for example models (??) and (??). However, the proof of Theorem 3.2.17

is technically very involved and makes a lot of references to the deterministic case [66, 67].

Hence, a rigorous proof analogous to [69] would require a complete own chapter. Checkroun

et al. [26, Appendix] state a Theorem analogous to Corollary 3.2.18 for stochastic differential

equations on Rd with global random attractors, also based on the results in [69]. However, they

do not give a rigorous proof accounting for the non-compactness of the state space either.

Ignoring the mentioned technical intricacies, the picture is as follows. The chaotic random

(point) attractors Aω as depicted in Figures ?? and ?? are the support of the sample measures

µω and thereby non-singular subsets (maybe the same) of (as) the closures of the unstable

manifolds W u(ω, x) for all x ∈ Aω. The measures µω are absolutely continuous with respect to

Lebesgue measure on W u(ω, x) which indicates chaotic motion on the attractor Aω.
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(
σf ′(ϑ)s2 − s1σf

′(ϑ)s1s2

−s2σf
′(ϑ)s1s2

)
◦ dW 1

t .

Following Section 2.2 we use the Itô-Stratonovich formula to observe similarly to (2.2.3) that

1

t
ln rt =

1

t

∫ t

0
[hA(sτ ) + kB(sτ )] dτ +O(t−1/2) , (3.2.10)

where the functions hA and kB are given by

hA(s) = 〈s,As〉 = −αs2
1 + bs1s2 ,

kB(s) =
1

2
〈(B +B∗) s,Bs〉 − 〈s,Bs〉2 =

1

2
σ2f ′(ϑ)2s2

2 − σ2f ′(ϑ)2s2
1s

2
2 .

The Furstenberg–Khasminskii formula for the top Lyapunov exponent (see chapter 1) is given

by

λ1 =

∫
R

∫
[0,1]

∫
S1

(hA(s) + kB(s)) ρ(ds, dϑ,dy), (3.2.11)

where ρ is the joint invariant measure for the diffusion s on the unit circle and the processes ϑ and

y induced by (??). Similarly to the calculations in [52], we change variables to s = (cosφ, sinφ).

Note that the functions hA and kB are π-periodic, which implies that the formula (3.2.11) for

the top Lyapunov exponent reads as

λ1 =

∫
R×[0,1]×[0,π]

(
− α cos2 φ+ b cosφ sinφ

+
1

2
σ2f ′(ϑ)2 sin2 φ(1− 2 cos2 φ)

)
ρ̃(dφ, dϑ, dy), (3.2.12)

where ρ̃ denotes the corresponding image measure of ρ. The SDE determining the dynamics of

φ ∈ [0, π) reads as

dφ = − 1

sinφ
ds1 = (α cosφ sinφ+ b cos2 φ)dt− σf ′(ϑ) sin2 φ ◦ dW 1

t , (3.2.13)

where we denote

c(φ, ϑ) = σf ′(ϑ) sin2 φ and d(φ) = α cosφ sinφ+ b cos2 φ . (3.2.14)

The integrand in (3.2.10) and thereby in (3.2.12) only depends on φ and not on ϑ and y if f ′(ϑ)2

is constant, and in addition to that, the dependence on ϑ in the Fokker–Planck equation for φ,

is restricted to f ′(ϑ)2. This means that the calculation of λ1 becomes much simpler if f ′(ϑ)2 is

constant, an observation that we exploit in the following.
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3.2.6 Explicit formula for the top Lyapunov exponent

We continue the analysis of the top Lyapunov exponent under the assumption that f : [0, 1]→ R
is given by (??). Importantly, f ′(ϑ)2 is constant in this special case and our results hold in fact

for every continuous and piecewise linear f with constant absolute value of the derivative almost

everywhere.

The map is not differentiable at 1
2 and 0, and we verify that does not cause any problems.

We need the following results to justify the variational equation defining Dϕ:

Lemma 3.2.19. Let W : R+
0 × Ω → R denote the canonical real-valued Wiener process, and

let X : R+
0 × Ω → [0, 1] be a stochastic process adapted to the natural filtration of the Wiener

process. Furthermore, suppose there exists a measurable set A ⊂ [0, 1] such that

P
({
ω ∈ Ω :

∫ t
0 1{Xu∈A} du = 0

})
= 1 for all t > 0 , (3.2.15)

i.e. A is visited only on a measure zero set with full probability. Consider a measurable function

g : [0, 1]→ [0, 1] such that g = 0 on [0, 1] \A. Then∫ t

0
g(Xu) dWu = 0 almost surely for all t > 0 .

Proof. The statement follows directly from Itô’s isometry

E

[(∫ t

0
g(Xu)dWu

)2
]

= E
[∫ t

0
g(Xu)2du

]
= E

[∫ t

0

(
g(Xu)21{Xu∈A} + g(Xu)21{Xu∈[0,1]\A}

)
du

]
= 0 ,

where the last equality follows immediately from (3.2.15) and g = 0 on [0, 1] \A. We conclude(∫ t

0
g(Xu) dWu

)2

= 0 almost surely

due to nonnegativity, and the claim follows.

Proposition 3.2.20. Let f ′ denote the weak derivative of f as given by (??). Then the choice of

representative of f ′ by determining f ′(1
2) and f ′(0) does not affect the solution to the variational

equation (??).

Proof. First, we show that

P
({
ω ∈ Ω :

∫ t
0 1{ϑu=1/2} du = 0

})
= 1 for all t > 0

by assuming the contrary to obtain a contradiction. As ϑ is a continuously differentiable process,

this implies that ϑu = 1
2 for u ∈ [t∗, t∗+ε] for some t∗ ∈ (0, t) and ε > 0 with positive probability.

This leads to y(u) = −1
b mod 1 for u ∈ (t∗, t∗ + ε) with positive probability. However, this
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implies that the continuous process yu for u ∈ (t∗, t∗ + ε) given by

dy = −αy du+ σ dWu

is constant with positive probability. This contradicts its definition as an Ornstein–Uhlenbeck

process. The same reasoning obviously holds for θ = 0.

Let f ′1 = f ′2 = f ′ on (0, 1) \ {1
2} and assign arbitrary values at 1

2 and 0. Define

dv =

(
−α 0

b 0

)
v dt+

(
0 σf

′
1(ϑ)

0 0

)
v ◦ dW 1

t ,

dw =

(
−α 0

b 0

)
w dt+

(
0 σf

′
2(ϑ)

0 0

)
w ◦ dW 1

t .

We apply Lemma 3.2.19 by choosing Xu = ϑu and g(ϑu) = f ′1(ϑu)− f ′2(ϑu) to conclude that∫ t

0
f ′1(ϑu) dWu =

∫ t

0
f ′2(ϑu) dWu almost surely.

As we do not have an Itô–Stratonovich correction in this case, we can infer that vt = wt almost

surely for all t > 0.

We view f ′ in the weak sense, disregarding the points 1
2 and 0, and we define f ′(ϑ) =

sign(1
2 − ϑ), where

sign(x) =

1 if x ≥ 0 ,

−1 if x < 0 .

By Proposition 3.2.20, Dϕ(t, ω, x) does not depend on the choice of f ′(1
2), so the variational

equation (??) becomes

dv =

(
−α 0

b 0

)
v dt+

(
0 σ sign(1

2 − ϑt)
0 0

)
v ◦ dW 1

t . (3.2.16)

We derive the following formula for the first Lyapunov exponent in this case:

Proposition 3.2.21. The top Lyapunov exponent of system (??) with f as defined in (??) is

given by

λ1 =

∫ π

0
q(φ)p(φ) dφ , (3.2.17)

where q(φ) := −α cos2 φ+ b cosφ sinφ+ 1
2σ

2(1− 2 cos2 φ) sin2 φ, and p(φ) is the solution of the

stationary Fokker–Planck equation L∗p = 0. L∗ is the formal L2-adjoint of the generator L,

which is given by

Lg(φ) =

(
d(φ) +

1

2
c̃(φ)c̃′(φ)

)
g′(φ) +

1

2
c̃2(φ)g′′(φ) , (3.2.18)

where d = d(φ) is defined as in (3.2.14), and c̃(φ) := σ sin2 φ.
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Proof. Note that in our special case, the function c from (3.2.14) reads as

c(φ, ϑ) = σ sign(1
2 − ϑ) sin2 φ ,

which implies that both c(φ, ϑ)c′(φ, ϑ) and c2(φ, ϑ) do not depend on ϑ and read as c̃c̃′ and c̃2,

respectively. Consider the SDE for the process φ(t) in Itô form

dφ = r(φ)dt+ c(φ, ϑ)dWt ,

where

r(φ) = d(φ) +
1

2
c(φ, ϑ)c′(φ, ϑ) = d(φ) +

1

2
c̃(φ)c̃′(φ) .

As the coefficients of the SDE are smooth in φ, we consider the kinetic equation for the proba-

bility density function of the process φ(t) (cf. [86])

∂p(ψ, t)

∂t
=

∞∑
n=1

(−1)n

n!

∂n

∂ψn
[an(ψ, t)p(ψ, t)] ,

where

an(ψ, t) = lim
∆t→0

1

∆t
E [(φ(t+ ∆t)− φ(t))n|φ(t) = ψ] for all n ∈ N .

Pick ∆t small, denote ∆Wt = W (t+∆)−W (t) and recall that E[∆Wt] = 0 and E[(∆Wt)
2] = ∆t.

Observe that

φ(t+ ∆t)− φ(t) = r(φ(t))∆t+ c(φ(t), ϑ(t))∆Wt + o(∆t) ,

and

(φ(t+ ∆t)− φ(t))2 = r2(φ(t))(∆t)2 + c2(φ(t), ϑ(t))(∆Wt)
2

+ 2r(φ(t))c(φ(t), ϑ(t))∆Wt∆t+ o(∆t) .

Since ∆Wt is independent from φ(t) and ϑ(t), we obtain that

a1(ψ, t) = r(ψ) and a2(ψ, t) = c̃2(ψ) .

We can see immediately from above that an(ψ, t) = 0 for n ≥ 3. This proves (3.2.18), and

(3.2.17) follows from (3.2.12).

In this case, the stationary Fokker–Planck equation reduces to a linear nonautonomous

ordinary differential equation for p = p(φ) defined on [0, π) with periodic boundary conditions:

−
(

1

2
c̃2p

)′
+

(
d+

1

2
c̃c̃′
)
p = κ,

where the constant κ has to be determined from the boundary and the normalization condition.
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The ordinary differential equations is given in explicit form as

p′ =

(
2d(φ)

c̃2(φ)
− c̃′(φ)

c̃(φ)

)
p+

2κ

c̃2(φ)

=

(
2
α

σ2

1

sin2 φ
tan−1 φ+ 2

b

σ2

1

sin2 φ
tan−2 φ− c̃′(φ)

c̃(φ)

)
p+

2κ

c̃2(φ)
.

The solution of this equation follows from the variation of constants formula, and is given by

p(φ) =
G(φ)

∫ π
φ

2
c̃2(ψ)G(ψ)

dψ∫ π
0 G(φ)

∫ π
φ

2
c̃2(ψ)G(ψ)

dψ dφ
, (3.2.19)

where

G(φ) =
1

c̃(φ)
exp

(
− 1

σ2

[
α tan−2 φ+

2

3
b tan−3 φ

])
.

The derivation of a closed formula for λ1 and λ2 using (3.2.19) for the stationary density of the

process φt closely follows Imkeller and Lederer [52]. It can also be seen as a special case of the

more general formulas obtained in [53].

Theorem 3.2.22 (Formula for λ1 and λ2). Consider the stochastic differential equation (??),

where the function f is of the form (??). Then the two Lyapunov exponents are given by

λ1(α, b, σ) = −α
2

+
b2σ2

2

∫ ∞
0

v mσ,b,α(v) dv , (3.2.20)

λ2(α, b, σ) = −α
2
− b2σ2

2

∫ ∞
0

v mσ,b,α(v) dv . (3.2.21)

where

mσ,b,α(v) =

1√
v

exp
(
−σ4b4

6 v3 + α2

2 v
)

∫∞
0

1√
u

exp
(
−σ4b4

6 u3 + α2

2 u
)

du
. (3.2.22)

Proof. We define the function g : [0, φ)→ R ∪ {∞} by

g(φ) := − ln sinφ for all φ ∈ (0, π) ,

g(0) :=∞ ,

and apply this function formally to the generator as given in (3.2.18):

Lg(φ) =
(
α cosφ sinφ+ b cos2 φ+ σ2 sin3 φ cosφ

)
(− tan−1 φ) +

1

2
σ2 sin4 φ

1

sin2 φ

= −b tan−1 φ+ q(φ).

This can be made precise by choosing suitable C∞-functions to approximate g. Observe that

0 =

∫ π

0
g L∗p dφ =

∫ π

0
Lg p dφ =

∫ π

0

(
−b tan−1 +q

)
p dφ ,
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and we conclude that

λ1 = b

∫ π

0
tan−1(φ)p(φ)dφ .

Working with expression (3.2.19), we conduct a change of variables s = tan−1 φ and t = tan−1 ψ

which leads to

λ1 = b

∫∞
−∞

∫ s
−∞ s exp

(
− 1
σ2

[
α(s2 − t2) + 2

3b(s
3 − t3)

])
dtds∫∞

−∞
∫ s
−∞ exp

(
− 1
σ2

[
α(s2 − t2) + 2

3b(s
3 − t3)

])
dtds

. (3.2.23)

We introduce a new variable u = s− t, which implies that u ∈ (0,∞). We observe

αs2 − α(s− u)2 +
2

3
bs3 − 2

3
b(s− u)3 = −αu2 + 2αsu+ 2bus2 − 2bu2s+

2

3
bu3

= 2bu

(
s− u− α/b

2

)2

+
b

6
u3 − 1

2
u
α2

b
.

Using this expression, we modify (3.2.23) and obtain

λ1 = b

∫∞
0

∫∞
−∞ s exp

(
−2u
σ2

(
s− u−α/b

2

)2
)

ds exp
(
− b

6a2
u3 + 1

2u
α2

σ2b

)
du

∫∞
0

∫∞
−∞ exp

(
−2bu

σ2

(
s− u−α/b

2

)2
)

ds exp
(
− b

6σ2u3 + 1
2u

α2

σ2b

)
du

= b

∫∞
0

1√
u
u−α/b

2 exp
(
− b

6σ2u
3 + 1

2u
α2

σ2b

)
du∫∞

0
1√
u

exp
(
− b

6σ2u3 + 1
2u

α2

σ2b

)
du

= −α
2

+
b2σ2

2

∫∞
0

1√
v
v exp

(
−σ4b4

6 v3 + α2

2 v
)

dv∫∞
0

1√
v

exp
(
−σ4b4

6 v3 + α2

2 v
)

dv
,

where we have done another change of variables v = u/(bσ2) in the last equality, and we used

well-known properties of the normal distribution. Hence, we write

λ1 = −α
2

+
b2σ2

2

∫ ∞
0

v mσ,b,α(v) dv ,

where mσ,b,α(v) is given as in (3.2.22). From Proposition ??, we obtain that λ1 + λ2 = −α, and

this means that

λ2 = −α
2
− b2σ2

2

∫ ∞
0

v mσ,b,α(v)dv.

This finishes the proof of this theorem.



Chapter 4

Topological conjugacies and

bifurcations
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Chapter 5

Local RDS, quasi-stationary

dynamics and bifurcations

Note that model (??) operates with unbounded white noise whereas the nature of the determin-

istic Hopf bifurcation is local, in the sense that the bifurcation happens in a neighbourhood of

the origin and α = 0. The same problem holds for the typical example of stochastic pitchfork

bifurcation where the drift fα is given as the derivative of a potential Vα, i.e.

fα(x) = −∂xVα(x) , with Vα = −α
2
x2 +

1

4
x4 . (5.0.1)

Without noise, the bifurcation implies a change of the attractor from {0} for α ≤ 0 to [−
√
α,
√
α]

for α > 0. Recall that the bifurcation is ”destroyed” in the presence of noise in the sense that

the random attractor is a random equilibrium for all σ > 0, α ∈ R [32]. The white noise lets

the system explore the whole state space and the global stability results in a negative Lyapunov

exponent. Local finite-time instabilities can be captured by the dichotomy spectrum Σ which

is given by Σα = [−∞, α] for all α ∈ R. However, the dichotomy spectrum is generally not as

directly interpretable as the sign of a Lyapunov exponent and still contains a measure of global

stability by covering R−0 . The question is what kind of analysis can most accurately describe a

local stochastic bifurcation, in particular if the system does not exhibit global stability outside

a critical neighbourhood. If the system is not in normal form, such a problem naturally arises

for pitchfork as well as Hopf bifurcations.

We tackle this problem by embedding stochastic bifurcation theory into the context of

Markov processes that induce a random dynamical system and are absorbed at the bound-

ary of a domain. The process is said to be killed when it hits the trap and it is assumed that

this happens almost surely at a finite hitting time T . We investigate the asymptotic dynamics of

surviving trajectories. Due to the loss of mass by absorption at the boundary, the existence of a

stationary distribution is impossible and, therefore, stationarity is replaced by quasi-stationarity.

A quasi-stationary distribution preserves mass along the process conditioned on survival. Given

a quasi-stationary distribution, one can derive the existence of a quasi-ergodic distribution for

which expectations of time averages conditioned on survival equal the space average with respect

43



CHAPTER 5. LOCAL RDS, QUASI-STATIONARY DYNAMICS AND BIFURCATIONS 44

to this distribution. We introduce these concepts and summarise important results, in particular

for stochastic differential equations, following [25, 24, 28, 74], in Section 5.1.

In Section 5.2, we develop a theory of asymptotic average Lyapunov exponents for systems

absorbed at the boundary of a domain. We mainly focus on stochastic differential equations

with additive noise, i.e.

dXt = f(Xt) dt+ σ dWt , X0 = ξ ∈ E ,

where f is continuously differentiable and E ⊂ Rd a bounded domain. Using work by Villemon-

ais, Champagnat, He and others [25, 24, 49], we are able to show Proposition 5.2.3 which says

that the conditioned expectation of the finite-time Lyapunov exponents of a system induced by

such an SDE converges to a real number λ. This conditioned average Lyapunov exponent is

given by a Furstenberg-Khasminskii-formula, i.e. the average of a functional with respect to the

quasi-ergodic distribution.

Furthermore, we can show in Theorem 5.2.8 that the finite-time Lyapunov exponents of the

surviving trajectories converge to its assemble average λ in probability. Note that this gives λ

the strongest possible dynamical meaning in the setting with absorption at the boundary since

convergence almost surely is ruled out by the killing of almost all trajectories. The crucial ingre-

dient for proving Theorem 5.2.8 is Lemma 5.2.7 which shows decay of correlations conditioned

on survival.

Section 5.3 gives negative λ a dynamical interpretation. We prove the local synchronisation

Theorem 5.3.1 which says that, if λ < 0, there is exponentially fast local synchronisation of

trajectories in discrete time with arbitrarily high probability. We formulate the result for general

differentiable random dynamical systems with killing and observe the implications for additive

noise SDEs as a corollary.

In Section 5.4 we try to relate quasi-stationary and quasi-ergodic measures to sample mea-

sures of the killed random dynamical system. Leaving out the past of the system enables us to

show Propositions 5.4.2 and 5.4.4 which establish a correspondence with conditionally invariant

measures for the associated open system on the skew-product space where the hole is confined

to the state space. In two-sided time it turns out to be unclear how one could relate quasi-

stationary or quasi-ergodic distributions to conditionally invariant measures and in particular

its sample or fibre measures. We discuss some ideas into this direction, as for example the

survival process, but remain sceptical whether this is a feasible endeavour.

We further define the dichotomy spectrum for the situation with killing in Section ?? and

prove in Theorem ?? that the essential supremum and infimum of finite-time Lyapunov expo-

nents converge to the boundary of the dichotomy spectrum. In addition to that, we show that the

dichotomy spectrum consists of a finite number n ∈ {1, . . . , d} of closed intervals (Theorem ??),

where d is the dimension of the space.

In Section ?? we consider the examples of pitchfork and Hopf bifurcation with additive noise

and approximate the quasi-ergodic distribution using a finite-difference scheme. We analyse the

change of sign of λ and the corresponding bifurcation behaviour depending on the bifurcation

parameter and the diameter of the domain. We also determine the dichotomy spectrum for the
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pitchfork problem with killing. Following considerations about the possibility of a Lyapunov

spectrum in Section 5.2 we conduct numerical experiments for the Hopf example that indicate

its existence. However, a proof seems out of reach.

In short, this chapter is structured as follows. Section 5.1 gives an overview over results

concerning killed processes and quasi-stationary distributions which we need in the following.

In Section 5.2 we prove the existence of a characteristic Lyapunov exponent λ for killed systems

generated by additive noise SDEs and the fact that finite-time Lyapunov exponents converge to

this quantity in conditioned probability. Section 5.3 discusses local synchronisation results for

negative λ and Section 5.4 relates the developed theory of quasi-stationary dynamics to open

systems on the skew product space. In Section ?? we transfer important results for exponential

dichotomies of random dynamical systems to the situation with killing. Section ?? discusses the

stochastic pitchfork and Hopf bifurcation in bounded domains with absorbing boundary, using

the stability theory developed in the previous sections.

5.1 Quasi-stationary and quasi-ergodic distributions

5.1.1 General setting

Let (Xt)t≥0 be a time-homogeneous Markov process (see e.g. [80, Definition III.1.1]) on a

topological state space E with boundary ∂E and Borel σ-algebra E := B(E ∪ ∂E), where the

process is associated with a family of probabilities (Px)x∈E on a filtered space (Ω, (Ft)t≥0). We

have

Px(X0 = x) = 1 for all x ∈ E ∪ ∂E

and the transition probabilities (P̂t)t≥0 are given by

P̂t(x,A) = Px(Xt ∈ A) for all x ∈ E ∪ ∂E,A ∈ E .

The process is further associated with a semi-group of operators (Pt)t≥0 given by

Ptf(x) = Ex[f(Xt)]

for f ∈ Ẽ := B(E ∪ ∂E), the measurable and bounded functions from E ∪ ∂E to R.

We consider the Markov process to be absorbed at ∂E, i.e. Xs ∈ ∂E implies Xt = Xs for all

t ≥ s. This implies that the random variable

T := inf{t ≥ 0, Xt ∈ ∂E}

is a stopping time and we let Xt = XT for all t ≥ T . We make two assumptions that cover all

the problems we are interested in: firstly, we assume for all x ∈ E that

T <∞ Px − a.s. , (5.1.1)
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which means that almost every trajectory hits the boundary in finite time. Secondly, we demand

that for all x ∈ E and t ≥ 0

Px(T > t) > 0 , (5.1.2)

i.e. that for any initial condition, the probability of survival until any given time is positive. We

will further mainly consider Markov processes which induce a random dynamical system but we

will specify this later.

Quasi-stationary distributions

For any measure µ on E we will use the notation

Pµ =

∫
E
Px µ(dx) .

Almost every statement in random dynamical system theory requires a stationary measure for

the underlying Markov process (Xt)t≥0 which is a measure µ on E with the property that

Pµ(Xt ∈ A) = µ(A) for all measurable A ⊂ E , t ≥ 0 .

Note that in the situation with trapping at the boundary such a measure cannot exist: assume

there was a stationary measure µ. Due to (5.1.1) there is a t∗(µ) > 0 such that for all t > t∗(µ)

1 >

∫
E
Px(T > t)µ(dx) = Pµ(Xt ∈ E) = µ(E) = 1 ,

which is a contradiction. This leads to the following definition.

Definition 5.1.1 (QSD). A quasi-stationary distribution (QSD) is a probability measure ν on

E such that for all t ≥ 0 and all measurable sets B ⊂ E

Pν (Xt ∈ B|T > t) = ν(B) . (5.1.3)

Without stating any further assumptions, we can make the following well-known observation

[46] about the exponentially distributed killing time of a process started with a QSD ν.

Proposition 5.1.2. If ν is a QSD, then there exists a λ0 < 0 such that for all t ≥ 0

Pν(T > t) = eλ0t ,

that is, starting from ν, T is exponentially distributed with parameter λ0. We call λ0 the (expo-

nential) survival rate and −λ0 the (exponential) escape rate associated with the quasi-stationary

distribution.

Proof. We follow [28]: from the definition of a QSD and a classical application of the Monotone-

Class Theorem [80, Theorem II.3.1], we have for all measurable and bounded observables g :
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E → R that

Eν(g(Xt)1T>t) =

(∫
E
g dµ

)
Pν(T > t) for all t ≥ 0 .

Choosing g(x) = Px(T > s) for some s ≥ 0 we obtain

Eν(PXt(T > s)1T>t) = Pν(T > s)Pν(T > t) for all t ≥ 0 .

Using the Markov property and the commutation property of conditional expectations, we de-

duce for all t, s ≥ 0 that

Pν(T > t+ s) = Eν(1T>t+s) = Eν (E(1T>t+s|Ft)1T>t)

= Eν(EXt(1T>s)1T>t) = Pν(T > s)Pν(T > t) .

Since the equality f(t + s) = f(t)f(s) is only satisfied by exponential functions, the claim

follows.

Champagnat and Villemonais [25] have given three equivalent conditions for exponential

convergence to a quasi-stationary distribution. We restrict ourselves to formulating the weakest

assumption among them, denoted by (A’) in the original paper. This condition will turn out to

be satisfied by the stochastic differential equations we are investigating:

Assumption (A) There exists a family of probability measures (νx1,x2)x1,x2∈E on E such that

(A1) there exist t0, c1 > 0 such that for all x1, x2 ∈ E,

Pxi(Xt0 ∈ ·|T > t0) ≥ c1νx1,x2(·) for i = 1, 2 ;

(A2) there exists c2 > 0 such that for all x1, x2 ∈ E and t ≥ 0,

Pνx1,x2 (T > t) ≥ c2 sup
x∈E

Px(T > t) .

We summarise three results from [25] in the following theorem which contains the most relevant

ingredients for our further purposes. Statement (a) guarantees the existence of a QSD with

exponential convergence of initial distributions. Part (b) characterizes the limit of the survival

probability for an initial Dirac distribution at x divided by the survival probability under the

QSD as the value at x of an eigenfunction of the generator L with eigenvalue λ0 from Proposi-

tion 5.1.2. Statement (c) implies λ0 being the largest non-zero eigenvalue of L and the existence

of a spectral gap. We sketch the proofs of (b) and (c) as η and λ0 will be crucial objects in this

chapter. Note that Champagnat and Villemonais [25] are working in the more general setting

of measurable spaces and therefore without the notion of a boundary. In their case, the role of

the boundary is replaced by a cemetery state {∂}. In the proof of the following theorem, we

account for this slight technical difference which does not change anything about the statements

made in this chapter.
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Theorem 5.1.3 (Exponential convergence to QSD and dominant survival rate as eigenvalue of

the generator).

(a) Assumption (A) is equivalent to the existence of a unique quasi-stationary probability mea-

sure ν on E and two constants C, γ > 0 such that for all initial distributions µ on E

‖Pµ(Xt ∈ ·|T > t)− ν(·)‖TV ≤ Ce−γt for all t ≥ 0 , (5.1.4)

where ‖P − Q‖TV := supA∈F |P(A)−Q(A)| denotes the total variation distance for proba-

bility measures. In words: the process starting from any initial distribution µ, in particular

µ = δx for x ∈ E, converges exponentially fast to the QSD.

(b) In the situation of (a), we can define a non-negative function η on E ∪ ∂E, positive on E

and vanishing on ∂E, by

η(x) := lim
t→∞

Px(T > t)

Pν(T > t)
= lim

t→∞
e−λ0tPx(T > t) , (5.1.5)

where the convergence holds uniformly in E ∪ ∂E and
∫
η dν = 1.

Furthermore, η is a bounded eigenfunction of the infinitesimal generator L of the semi-group

(Pt)t≥0 on (Ẽ , ‖ · ‖∞) with eigenvalue λ0, i.e.

Lη = λ0η ,

where −λ0 is the exponential escape rate as in Proposition 5.1.2.

(c) Let Assumption (A) hold and f ∈ Ẽ be an eigenfunction of L for an eigenvalue λ, being

constant on ∂E. Then either

(i) λ = 0 and f is constant,

(ii) or λ = λ0, f =
(∫
f dν

)
η and f |∂E ≡ 0,

(iii) or λ ≤ λ0 − γ,
∫
f dν = 0 and f |∂E ≡ 0.

Proof. Part (a) is a shortened version of [25, Theorem 2.1].

Part (b) is contained in [25, Proposition 2.3]. Its proof uses the following fact: Let M1(E)

denote the set of probability measures on E. Then it can be shown that Assumption (A) implies

that for any µ ∈M1(E) the constant c2(µ) defined by

c2(µ) := inf
t≥0,ρ∈M1(E)

Pµ(T > t)

Pρ(T > t)
(5.1.6)

is positive. This implies immediately that η(x) is positive if it exists. Its existence follows from

showing (by using (a)) that

sup
x∈E
|ηt+s(x)− ηt(x)| ≤ C

c2(ν)
e−γt ,
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where

ηt(x) :=
Px(T > t)

Pν(T > t)
.

That η is vanishing on ∂E follows directly from its definition.

The claim in (c) is essentially [25, Corollary 2.4]. Let Lf = λf . By definition of the generator,

we obtain

Ex(f(Xt)) = Ptf(x) = eλtf(x) .

When f |∂E ≡ c 6= 0, we observe, by taking x ∈ ∂E, that λ = 0. On the other hand for any

x ∈ E, the left hand side converges to c and therefore f is constant. This shows (i).

Let now f |∂E ≡ 0. This entails together with (a) that

Ptf(x)

Pt1E(x)
=

Ex[f(Xt)]

Px(Xt ∈ E)
=

Ex[f(Xt)1E(Xt)]

Ex[1E(Xt)]
= Ex[f(Xt)|T > t]

t→∞−−−→
∫
f dν

uniformly in x ∈ E and exponentially fast. To obtain (ii), we first assume that
∫
f dν 6= 0. Then

we obtain from (b) and the above that for all x ∈ E

e(λ−λ0)tf(x)

η(x)
=
e−λ0tPx(T > t)

η(x)

Ptf(x)

Pt1E(x)

t→∞−−−→
∫
f dν .

This implies that λ = λ0 and f(x) =
(∫
f dν

)
η(x) for all x ∈ E.

We finally assume
∫
f dν = 0. By definition of c2 we deduce that for all x ∈ E

c2(ν)e(γ+λ−λ0)tf(x) ≤ eγtPtf(x)

Pt1E(x)

t→∞−−−→
∫
f dν .

The right hand-side is bounded by (a) and, hence, we obtain γ + λ + λ0 ≤ 0, which shows

(iii).

Quasi-ergodic distributions

By a classical application of the Monotone-Class Theorem [80, Theorem II.3.1], Theorem 5.1.3

implies that for all bounded and measurable functions h : E → R we have

lim
t→∞

Ex(h(Xt)|T > t) =

∫
E
h(y)ν(dy) uniformly in x ∈ E . (5.1.7)

However, as we want to study ergodic quantities like Lyapunov exponents, we are interested in

time averages. This motivates the following definition.

Definition 5.1.4 (QED). A probability measure m on E is called quasi-ergodic distribution

(QED) if for all t > 0, every bounded and measurable function h : E → R and every x ∈ E, the

following limit exists and satisfies

lim
t→∞

Ex
(

1

t

∫ t

0
f(Xs)ds

∣∣∣∣T > t

)
=

∫
E
fdm. (5.1.8)
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The next theorem tells us that in the situation of Theorem 5.1.3 the quasi-ergodic distribution

m exists and is absolutely continuous with respect to the quasi-stationary distribution ν. The

density is exactly the function η from Theorem 5.1.3. In the proof we follow He et al. [49] who

made this observation very recently based on [25]. We give the whole proof here as we will use

its techniques later on.

Theorem 5.1.5 (Existence of unique QED). Assume that the process (Xt)t≥0 on E ∪ ∂E with

killing at the boundary ∂E satisfies Assumption A. Then (Xt)t≥0 has a unique quasi-ergodic

distribution m, where the convergence in (5.1.8) is uniform over all x ∈ E and m possesses a

density

m(dx) = η(x)ν(dx) .

Proof. Observe from (5.1.5) that
∫
Em(dx) =

∫
E η(x)ν(dx) = 1. So m is a probability measure

on E. Fix u > 0 and define hu : E → R+
0 by

hu(x) = inf
t≥u

(
e−λ0t

Px(T > t)

η(x)

)
.

Let f : E → R+
0 be bounded and measurable. Let further be 0 < q < 1 and (1− q)t ≥ u. Then

we obtain for all x ∈ E that

Ex(f(Xqt)|T > t) =
Ex[f(Xqt)1{T>t}]

Px(T > t)

=
Ex[f(Xqt)1{T>qt}PXqt(T > (1− q)t)]

Px(T > t)
,

where we used the Markov property. Hence, we can infer that

Ex(f(Xqt)|T > t) =
e−λ0qtEx[f(Xqt)1{T>qt}e

−λ0(1−q)tPXqt(T > (1− q)t)]
e−λ0tPx(T > t)

≥
e−λ0qtEx[f(Xqt)1{T>qt}hu(Xqt)η(Xqt)]

e−λ0tPx(T > t)
,

According to Theorem 5.1.3 η is bounded and the convergence of the limit, via which η is defined

is uniform in x. Hence, there exists a constant C > 0 such that for all t ≥ u and x ∈ E

|f(x)hu(x)η(x)| ≤
∣∣∣f(x)e−λ0tPx(T > t)

∣∣∣ ≤ ‖f‖∞C‖η‖∞ . (5.1.9)

Thus, the function fhuη is bounded and obviously measurable. We observe from property
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(5.1.7), the definition of η and the above that uniformly over all x ∈ E

lim inf
t→∞

Ex(f(Xqt)|T > t) ≥ lim
t→∞

e−λ0qtEx[f(Xqt)hu(Xqt)η(Xqt)1{T>qt}]

e−λ0tPx(T > t)

= lim
t→∞

e−λ0qtPx(T > qt)

e−λ0tPx(T > t)
Ex[f(Xqt)hu(Xqt)η(Xqt)|T > qt]

=

∫
I
f(x)hu(x)η(x)ν(dx) .

Due to (5.1.9) and the fact that hu(x)→ 1 for all x ∈ E, we can apply the dominated convergence

theorem to conclude that

lim inf
t→∞

Ex(f(Xqt)|T > t) ≥
∫
I
f(x)m(dx) .

Replacing f by ‖f‖∞ − f , we can see easily that

lim sup
t→∞

Ex(f(Xqt)|T > t) ≤
∫
I
f(x)m(dx) .

Therefore we have shown that for all bounded and positive functions f

lim
t→∞

Ex(f(Xqt)|T > t) =

∫
I
f(x)m(dx) ,

uniformly over x ∈ E. We can extend the result to arbitrary measurable and bounded f by

writing f = f+− f− for f+ := max{f, 0}, f− := −min{f, 0} and using linearity. Finally, with a

change of variables, Fubini and the dominated convergence theorem we obtain for all bounded

and measurable functions f : E → R that uniformly over x ∈ E

lim
t→∞

Ex
(

1

t

∫ t

0
f(Xs) ds|T > t

)
= lim

t→∞
Ex
(∫ 1

0
f(Xqt) dq|T > t

)
= lim

t→∞

∫ 1

0
Ex (f(Xqt)|T > t) dq =

∫
E
f(x)m(dx) .

Uniqueness is immediate from the definition of a quasi-ergodic distribution.

The measure m has an additional meaning as we learn in [25]. We will see that we can define

the Q-process (Yt) with probabilities (Qx)x∈E such that for any s ≥ 0

Qx((Yu)0≤u≤s ∈ ·) = lim
t→∞

Px((Xu)0≤u≤s ∈ ·|T > t) .

The Q-process is also called the survival process since its finite-time distributions equal the ones

of the original process (Xt)t≥0 conditioned on asymptotic survival. We will come back to the

potential role the Q-process could play within a random dynamical systems theory of killed

processes.

The measure m turns out to be the unique invariant probability measure of the Markov
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semigroup associated with Yt. We give the following short version of [25, Theorem 3.1]:

Theorem 5.1.6 (Q-process and QED). Assumption (A) implies

(i) the existence of the Q-process: there exists a family (Qx)x∈E of probability measures on Ω

defined by

lim
t→∞

Px(A|T > t) = Qx(A)

for all Fs-measurable sets A for any given s ≥ 0. The process ((Yt)t≥0, (Qx)x∈E) on

(Ω, (Ft)t≥0) is an E-valued time-homogeneous Markov process. In addition, if (Xt)t≥0 is

a strong Markov process under (Px)x∈E, then so is (Yt) under (Qx)x∈E.

(ii) exponential ergodicity: the probability measure m on E defined by

m(dx) = η(x)ν(dx)

is the unique invariant distribution of ((Yt)t≥0, (Qx)x∈E). Furthermore, there are C1, γ1 > 0

such that for any initial distribution µ on E we obtain

‖Qµ(Yt ∈ ·)−m(·)‖TV ≤ C1e
−γ1t for all t ≥ 0 .

Proof. See [25, Theorem 3.1] which we have slightly reformulated for convenience of the reader.

5.1.2 Stochastic differential equations

Consider the Markov process (Xt)t≥0 as a solution of a stochastic differential equation

dXt = f(Xt)dt+ g(Xt) ◦ dWt, X0 ∈ E , (5.1.10)

in a bounded connected domain E ⊂ Rd with absorption at the boundary ∂E which is assumed

to be C2. (Wt) denotes some r-dimensional standard Brownian motion, f : E → Rd a Lipschitz-

continuous vector field and g : E → Rd×r is a differentiable, Lipschitz-continuous matrix-valued

map such that gg∗ is uniformly elliptic and the Itô-Stratonovich correction term is also Lipschitz

continuous (see Appendix 1.4). Champagnat et al. [24] can then prove a result which immediately

implies the following:

Theorem 5.1.7 (QSD and QED for stochastic differential equations). If (Xt)t≥0 is the solution

process of the stochastic differential equation (5.1.10) in a bounded connected domain E ⊂ Rd

with absorption at the C2 boundary ∂E and f and g are as above, Assumption (A) is satisfied.

In particular,

(a) there is a QSD ν and C > 0, γ > 0 such that for all probability measures µ on E

‖Pµ(Xt ∈ ·|T > t)− ν(·)‖TV ≤ Ce−γt, for all t ≥ 0 .
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Furthermore, there is a subset D ⊂ D(L) of the domain of the generator L on E ∪ ∂E such

that ∫
Lf dν = λ0

∫
f dν , for all f ∈ D ,

i.e. ν is an eigenmeasure of L∗ for the largest non-zero eigenvalue λ0 < 0 of L with Dirichlet

boundary conditions on E ∪ ∂E. As before, −λ0 is the exponential escape rate as given in

Proposition 5.1.2.

(b) there is a QED m given by

m(dx) = η(x)ν(dx) ,

where

η(x) = lim
t→∞

Px(T > t)

Pν(T > t)
= lim

t→∞
e−λ0tPx(T > t)

is a bounded eigenfunction of L for eigenvalue λ0, as in Theorem 5.1.3 (b).

(c) the QED m is the unique invariant distribution of the Q-process ((Yt)t≥0, (Qx)x∈E). Fur-

thermore, there are C1, γ1 > 0 such that for any initial distribution µ on E we obtain

‖Qµ(Yt ∈ ·)−m(·)‖TV ≤ C1e
−γ1t for all t ≥ 0 .

Proof. See [24, Theorem 3.1] for showing that the process satisfies Assumption (A). The state-

ment about ν being an eigenmeasure of L∗ is a direct consequence of [74, Proposition 4]. The

other implications are taken from Theorem 5.1.3 and 5.1.5 applying the statements to the situ-

ation of the SDE (5.1.10).

Let us now consider a case where ν and m can be determined as eigenfunctions of the

generator L. For that purpose we study a special case of (5.1.10), namely a stochastic differential

equation of the form

dXt = f(Xt)dt+ σ dWt , (5.1.11)

where X0 ∈ I, I = (l, r) for some l, r ∈ R and f ∈ C1(I)∩C(Ī). First observe that if we consider

the process on the real line and if exp
(∫ x
−∞ f(y)dy

)
is integrable, the process has a stationary

measure with density

p(x) =
1

Z
exp

(
2

σ2

∫ x

−∞
f(y)dy

)
,

where Z > 0 is the normalisation constant. Following [28, Section 6.1.1] we define

γ(x) :=
2

σ2

∫ x

l
f(y) dy .

Furthermore, we define the measure

µ(dx) := exp (γ(x)) dx
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on I. Consider the generator of the semigroup associated with (5.1.11)

L· = σ2

2
∂xx ·+f∂x· , (5.1.12)

with Dirichlet boundary conditions at x = l and x = r, and its formal adjoint

L∗· = σ2

2
∂xx · −∂x(f ·) . (5.1.13)

With standard theory (see e.g. [27, Chapter 7]), we observe that L is self-adjoint in L2([l, r],dµ)

and possesses a complete orthonormal basis of eigenfunctions in L2([l, r],dµ). We can apply

Theorem 5.1.3 or deploy the well-known theory for one-dimensional second-order linear ODEs,

as used in [28, Lemma 6.1], to observe the following properties of the eigenvalues λn 6= 0 for n ≥ 0:

Each λn is simple, negative and the only possible accumulation point of the set {λn : n ≥ 1} is

−∞. As before, we write without loss of generality

0 > λ0 > λ1 > · · · > λn > λn+1 > . . . .

We denote by ψλn the unique solution to

Lψ = λnψ, ψ(l) = ψ(r) = 0,

∫
I
ψ2dµ = 1, ψ′(l) > 0 .

Note that ψλn is smooth for all n ≥ 0 due to the ellipticity of L. We further observe that

φλn(x) = ψλn(x) exp(γ(x)) satisfies

L∗φ = λnφ, φ(l) = φ(r) = 0, φ′(0) > 0 .

Following [28], we obtain the following formula for the killed semigroup Pt defined as an operator

on bounded and measurable observables h : I → R by

Pth(x) = Ex[h(Xt)1{T>t}] .

Note that the result is even stated for the larger space L2(I, dµ).

Proposition 5.1.8. For all t, all x ∈ I and all h ∈ L2(I, dµ),

Ex[h(Xt)1{T>t}] =
∑
n

eλnt
(∫

I
h(y)ψλn(y)µ(dy)

)
ψλn(x) .

Proof. See [28, Proposition 6.2].

From this formula we can immediately derive the following similarly to [28, Theorem 6.4]:

Theorem 5.1.9. The unique quasi-stationary distribution ν for the process (Xt)t≥0 on I derived
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from (5.1.11) with absorption at the boundary ∂I is given by

ν(dx) =
ψλ0(x)µ(dx)∫
ψλ0(y)µ(dy)

=
φλ0(x) dx∫
φλ0(y) dy

.

The QED m can be written as

m(dx) = ψ2
λ0(x)µ(dx)

and we have

η(x) =

(∫
I
ψλ0(y)µ(dy)

)
ψλ0(x) .

The statements from Theorem 5.1.7 about exponential convergence for all initial distributions

hold for ν and m.

Proof. Obviously all assumptions are satisfied to apply Theorem 5.1.7. Hence, we know already

that there is a unique QSD. Furthermore, we obtain from Proposition 5.1.8 that for all h ∈
L2([l, r],dµ) and x ∈ I,

lim
t→∞

e−λ0tEx[h(Xt)1{T>t}] = ψλ0(x)

∫
I
h(y)ψλ0(y)µ(dy) .

In particular, by taking h ≡ 1, we obtain

lim
t→∞

e−λ0tPx(T > t) = ψλ0(x)

∫
I
ψλ0y)µ(dy) .

So we can deduce that for all bounded and measurable functions h and x ∈ I we have the limit

lim
t→∞

Ex(h(Xt)|T > t) =

∫
I
h(y) ν(dy) ,

where ν is given as in the statement of the theorem. Hence, ν is the unique QSD. From the

fact that η has to be proportional to ψλ0 and the normalisation condition on ψλ0 , we get the

expressions for m and η.

5.2 Lyapunov exponents and local stability

We are turning to the study of killed processes from a random dynamical systems perspective.

In this section, we mainly investigate the existence of asymptotic average Lyapunov exponents

and the convergence behaviour of finite-time exponents to such quantities.

Let (Xt)t≥0 be a time-homogeneous Markov process on a topological state space E with

absorption at the boundary ∂E, where the process possesses the family of transition probabil-

ities (Px)x∈E on a filtered probability space (Ω,F , (Ft)t≥0,P). Further, let there be a random

dynamical system (θ, ϕ̂) associated with this process such that

Px(Xt ∈ B) = P(ϕ̂(t, ·, x) ∈ B) for all t ≥ 0, x ∈ E,B ∈ B(Ē) .
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We encounter such a setting, for example, if the random dynamical system is induced by (5.1.10)

in the canonical way. In such a situation, we can make the following definition.

Definition and Lemma 5.2.1. Let (θ, ϕ̂) denote the random dynamical system associated

with a Markov process (Xt)t≥0 on a topological state space E with absorption at the boundary

∂E. Define T̃ : Ω× E → R+
0 as

T̃ (ω, x) = inf{t > 0 : ϕ̂(t, ω, x) ∈ ∂E}

such that for all x ∈ E and t ≥ 0

Px(T > t) = P(T̃ (·, x) > t) .

Then together with (θ,Ω), the map ϕ : R+
0 × Ω× Ē → Ē given by

ϕ(t, ω, x) =


ϕ̂(t, ω, x) if t < T̃ (ω, x) ,

ϕ̂(T̃ (ω, x), ω, x) if t ≥ T̃ (ω, x) ,

x if x ∈ ∂E .

constitutes a random dynamical system.

Proof. Measurability and ϕ(0, ω, ·) = id are clear from the definition. It remains to check the

cocycle property by distinguishing different cases. Fix (ω, x) ∈ Ω × Ē. First note from the

cocycle property of the original system ϕ̂ that for s < T̃ (ω, x) we have

ϕ̂(T̃ (ω, x)− s, θsω, ϕ̂(s, ω, x)) = ϕ̂(T̃ (ω, x), ω, x) ,

and therefore

T̃ (θsω, ϕ(s, ω, x)) = T̃ (θsω, ϕ̂(s, ω, x)) = T̃ (ω, x)− s . (5.2.1)

Hence, if t+ s < T̃ (ω, x), it follows that

ϕ(t+ s, ω, x) = ϕ̂(t+ s, ω, x) = ϕ̂(t, θsω, ϕ̂(s, ω, x)) = ϕ(t, θsω, ϕ(s, ω, x)) .

Now let t+ s ≥ T̃ (ω, x): If t, s ≥ T̃ (ω, x), we have by definition of ϕ

ϕ(t+ s, ω, x) = ϕ̂(T̃ (ω, x), ω, x) = ϕ(t, θsω, ϕ̂(T̃ (ω, x), ω, x)) = ϕ(t, θsω, ϕ(s, ω, x)) .

If w.l.o.g s < T̃ (ω, x), we obtain from (5.2.1) that t ≥ T̃ (ω, x) − s ≥ T̃ (θsω, ϕ(s, ω, x)) and

therefore

ϕ(t+ s, ω, x) = ϕ(T̃ (ω, x), ω, x) = ϕ(t, θsω, ϕ(s, ω, x)) .

This concludes the proof.

Remark 5.2.2. Note that Definition and Lemma 5.2.1 defines a local random dynamical system
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in the sense of [2, Definition 1.2.1] with extension to the boundary. The domain D ⊂ R+
0 ×Ω×E

of the local random dynamical system satisfies

D(ω, x) = {t ∈ R+
0 : (t, ω, x) ∈ D} = [0, T̃ (ω, x)) ,

and

D(t, ω) = {x ∈ E : (t, ω, x) ∈ D} = {x ∈ E : T̃ (ω, x) > t} .

The classical motivation to consider local random dynamical systems is the possible explosion

of solutions for a stochastic or random differential equation in an unbounded state space outside

the domain D. If the eternal survival sets

E(ω) =
⋂
t∈R+

0

D(t, ω)

are non-empty almost surely, any invariant random measure has to be supported on these fibres

and the formulation of a Multiplicative Ergodic Theorem is possible for such an invariant mea-

sure. However, in the situations we are interested in, i.e. stochastic differential equations with

additive noise on a bounded domain E ⊂ Rd, E(ω) is empty almost surely. Hence, the problem

demands for a new method describing asymptotic expansion and contraction rates, using the

idea of quasi-ergodic distributions.

Note that ϕ, as defined in Definition and Lemma 5.2.1, is not continuous at x ∈ ∂E for all t >

0 and ω ∈ Ω, so ϕ isn’t a continuous random dynamical system in the sense of Definition 1.1.1.

However, for any x in E and ω ∈ Ω, the system ϕ is continuous in x for all t < T̃ (ω, x), and

even differentiable if ϕ̂ is. In the situation of (5.1.10) this is the case if the coefficients are

differentiable. We can consider the finite-time Lyapunov exponents

λv(t, ω, x) =
1

t
ln
‖Dϕ(t, ·, x)v‖

‖v‖
for t < T̃ (ω, x) ,

where Dϕ = Dϕ̂ solves the variational equation corresponding to (5.1.10) given by

dY (t, ω, x) = Df(ϕ(t, ω, x))Y (t, ω, x) dt+
r∑
j=1

Dgj(ϕ(t, ω, x))Y (t, ω, x) ◦ dW j
t , (5.2.2)

where Y (0, ω, x) = Id, and gj denotes the j-th column of g and W j
t the j-th entry of Wt.

We want to investigate the convergence behaviour of the finite-time Lyapunov exponents under

conditioning to absorption at the boundary.

We restrict ourselves to problems with additive noise as this will be enough for our most

relevant examples. Consider the stochastic differential equation

dXt = f(Xt) dt+ σ dWt , X0 = ξ ∈ E , (5.2.3)

where E ⊂ Rd is a bounded connected domain with C2 boundary ∂E and f : E → Rd is a



CHAPTER 5. LOCAL RDS, QUASI-STATIONARY DYNAMICS AND BIFURCATIONS 58

continuously differentiable vector field with bounded derivative. Then all the conditions of The-

orem 5.1.7 are satisfied. Hence, the quasi-stationary distribution ν on E is a limiting distribution

whose density φ vanishes at the boundary and satisfies

L∗φ = λ0φ ,

where L∗ is the formal adjoint of the generator L which is given by

L = f · ∇+
1

2
σ2∇2 .

Furthermore we know that

Lη = λ0η ,

and that the quasi-ergodic distribution m satisfies

m(dx) = η(x)ν(dx) .

Hence, in principle these measures can be calculated explicitly.

The Jacobian Dϕ of the RDS is the solution of the variational equation, which in this case

reads
d

dt
Y (t, ω, x) = Df(ϕ(t, ω, x))Y (t, ω, x), Y (0, ω, x) = Id . (5.2.4)

A first question to ask is if there are limits for the average finite-time Lyapunov exponents as

in the classical case. That means that we want to find out if for v ∈ Rd \ {0} there are λv ∈ R
such that for all x ∈ E

λv := lim
t→∞

E
[
λv(t, ·, x)|T̃ (·, x) > t

]
= lim

t→∞

1

t
E
[
ln
‖Dϕ(t, ·, x)v‖

‖v‖

∣∣∣∣T̃ (·, x) > t

]
. (5.2.5)

Indeed, we can show the following modified Furstenberg-Khasminskii-formula:

Proposition 5.2.3 (Conditioned average Lyapunov exponent). Let (θ, ϕ) be the random dy-

namical system with absorption at the boundary corresponding to the Markov process (Xt)t≥0

solving equation (5.2.3), and let

st =
Dϕ(t, ·, ·)
‖Dϕ(t, ·, ·)‖

denote the induced process on the unit sphere of the tangent space. If the generator L̃ of

(Xt, st)t≥0 is hypoelliptic, then for all v ∈ Rd \ {0} the average exponent λv as defined in (5.2.5)

exists and is given independently from v by

λv = λ :=

∫
Sd−1×E

〈s,Df(y)s〉 m̃(ds, dy), (5.2.6)

where m̃ is the quasi-ergodic joint distribution of (Xt, st)t≥0 and the convergence is uniform over

all x ∈ E and v ∈ Rd \ {0}. We call λ the conditioned average Lyapunov exponent.
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Proof. Note that the angular component st as defined above lies on the unit sphere Sd−1 and

write rt = ‖Dϕ(t, ·, ·)‖ for the radial component. The variational equation (5.2.4) in vector polar

coordinates is given by

dst = Df(ϕ(t, ·, ·))st − 〈st,Df(ϕ(t, ·, ·))st〉st dt , s0 ∈ Sd−1 ,

drt = 〈st,Df(ϕ(t, ·, ·))st〉rt dt , r0 = 1 .

We obtain for all ω ∈ Ω, x ∈ E

rt(ω, x) = r0 exp

(∫ t

0
h(ϕ(τ, ω, x), sτ (ω, x)) dτ

)
,

where h : E × Sd−1 → R is given by

h(x, s) = 〈s,Df(x)s〉 .

We observe that (Xt, st)t≥0 constitutes a skew product system on E × Sd−1 with killing at

∂E × Sd−1. To apply the theory of Section 5.1.1, we need to check that Assumption (A) is

satisfied. We know that (Xt)t≥0 satisfies the assumption on E ∪ ∂E, i.e. there is a family

(νx1,x2) that fulfils (A1) and (A2) for some constants t0, c1, c2 > 0. Due to the hypoellipticity

condition, there exists a c0 > 0 and a family of probability measures (µz1,z2) such that for any

zi = (xi, si) ∈ E × Sd−1, i = 1, 2 and A ∈ B(E) with νx1,x2(A) > 0

Pzi(st0 ∈ ·|Xt0 ∈ A, T > t0) ≥ c0µz1,z2(·) ,

for similar reasons as in the proof of [24, Theorem 3.1]. We define the family of probability

measures

ν̃z1,z2(A×B) = νx1,x2(A)µz1,z2(B) for all measurable A ⊂ E,B ⊂ Sd−1, z1, z2 ∈ E × Sd−1 .

Since (Xt)t≥0 and therefore T are independent from (st)t≥0, we observe that for all z1, z2 ∈
E × Sd−1 and measurable A ⊂ E,B ⊂ Sd−1

Pzi((Xt0 , st0) ∈ A×B|T > t0) =
Pzi((Xt0 , st0) ∈ A×B, T > t0)

Pxi(T > t0)

= Pzi(st0 ∈ B|Xt0 ∈ A, T > t0)Pxi(Xt0 ∈ A|T > t0)

≥ c0µz1,z2(B)Pxi(Xt0 ∈ A|T > t0) ≥ c0c1ν̃z1,z2(A×B) .

This shows (A1). Using again the independence of the hitting time T from st, (A2) follows by

observing that for all z1, z2 ∈ E × Sd−1

Pνz1,z2 (T > t) =

∫
Sd−1

∫
E
Px(T > t) νx1,x2(dx)µz1,z2(ds) ≥ c2 sup

x∈E,s∈Sd−1

Px,s(T > t) .
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Theorem 5.1.3 and Theorem 5.1.5 allow us to conclude that there are a unique QSD ν̃ and

associated QED m̃ on E × Sd−1 which due to the skew product structure have ν and m as their

marginals on E. Hence, by definition of a quasi-ergodic measure and the fact that h is bounded

and measurable by the assumptions, we conclude that for all v ∈ Rd with v = ‖1‖ (which is

enough for the claim) and x ∈ E

λv = lim
t→∞

1

t
Ex,s0 [ln rt|T > t] = lim

t→∞

1

t
Ex[ln rt|T > t]

= lim
t→∞

1

t
E
[∫ t

0
h(ϕ(τ, ·, x), sτ (·, x)) dτ

∣∣∣∣T̃ (·, x) > t

]
=

∫
hdm̃ ,

where the convergence is uniform according to Theorem 5.1.5. This concludes the proof of the

proposition.

Remark 5.2.4. In principle, we can extend this result to the general situation of (5.1.10). We

refrain from doing this here for two reasons. Firstly, in case of a nonlinear diffusion term g, the

functional that has to be added to 〈s,Df(x)s〉 assumes a complicated shape including second

derivatives, if the original and linearised process have interfering noise terms. We avoid the

loss of clarity and comprehensibility of this situation. Secondly, the relevant examples of this

thesis have additive noise terms such that the formulation of Proposition 5.2.3 suffices for our

purposes.

In one dimension, the problem is reduced to considering systems on an interval I ⊂ R induced

by the one-dimensional SDE (5.1.11), where f ∈ C1(I) ∩ C(Ī) and f ′ is bounded on I. In this

case the finite-time exponents are simply given by

λ(t, ω, x) =
1

t
ln |Dϕ(t, ω, x)| for t < T̃ (ω, x) ,

where Dϕ(t, ω, x) solves the linear variational equation for (5.1.11)

v̇(t, ω, x) = f ′(ϕ(t, ω, x))v(t, ω, x), v(0, ω, x) = 1 , for all x ∈ I, ω ∈ Ω.

So in this one-dimensional scenario we can immediately infer that

λ(t, ω, x) =
1

t

∫ t

0
f ′(ϕ(s, ω, x)) ds for t < T̃ (ω, x) .

Let us write ψ = ψλ0 from now on. We can show the following formula for the conditioned aver-

age Lyapunov exponent λ in the one-dimensional scenario in congruence with Proposition 5.2.3.

Proposition 5.2.5 (Conditioned average Lyapunov exponent in one dimension). Let (θ, ϕ) be

the random dynamical system on Ī ⊂ R induced by (5.1.11) with absorption at the boundary,

where f ∈ C1(I)∩C(Ī) and f ′ is bounded on I. Then the conditioned average Lyapunov exponent
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λ is given, independently from x ∈ I, by

λ = lim
t→∞

E
(
λ(t, ·, x)|T̃ (·, x) > t

)
=

∫
I
f ′(y)m(dy) =

∫
I
f ′(y)ψ2(y)eγ(y) dy (5.2.7)

for all x ∈ I.

Proof. The claim follows immediately from Theorem 5.1.5 by using that f ′ is bounded and

measurable on I which implies, by definition of the QED m, that

lim
t→∞

E
(
λ(t, ·, x)|T̃ (·, x) > t

)
= lim

t→∞
E
(

1

t

∫ t

0
f ′(ϕ(s, ·, x)) ds|T̃ (·, x) > t

)
= lim

t→∞
Ex
(

1

t

∫ t

0
f ′(Xs) ds|T > t

)
=

∫
I
f ′(y)m(dy) .

The formula for this integral is taken from Theorem 5.1.9.

Remark 5.2.6. To obtain a priori estimates on the sign of λ, we could try to use the fact that

ψ is an eigenfunction of L for the eigenvalue λ0, i.e.

1

2
σ2ψ′′(x) + f(x)ψ′(x) = λ0ψ(x) . (5.2.8)

Using integration by parts, we observe that∫
I
f ′(x)ψ2(x)eγ(x)dx = −

∫
I
f(x)

(
2

σ2
f(x)ψ2(x)eγ(x) + 2ψ(x)ψ′(x)eγ(x)

)
dx

= − 2

σ2

∫
I
f2(x)m(dx)︸ ︷︷ ︸
≤0

− 2

∫
I
f(x)ψ′(x)ψ(x)eγ(x) dx︸ ︷︷ ︸

sign unclear

.

Note that the second term vanishes in case I = R since ψ is a constant function in this case and

m is the stationary distribution. That is how one observes negativity of the Lyapunov exponent

in the classical setting. In our context, the sign of the second term depends on the product

f(x)ψ′(x) which makes a direct a priori estimate impossible. Using (5.2.8), we can rewrite it as∫
I
f ′(x)ψ2(x)eγ(x)dx = −

∫
I
f(x)

(
2

σ2
f(x)ψ2(x)eγ(x) + 2ψ(x)ψ′(x)eγ(x)

)
dx

= − 2

σ2

∫
I
f2(x)m(dx)︸ ︷︷ ︸
≤0

−2λ0︸ ︷︷ ︸
>0

+σ2

∫
I
ψ′′(x)ψ(x)eγ(x) dx︸ ︷︷ ︸

sign unclear

.

Again, we remain with a term whose sign is unclear, this time depending on ψ′′(x). It appears

not possible to obtain general statements about the sign of λ.

We observe that λ as defined in Proposition 5.2.3 (and given in Proposition 5.2.5 for one

dimension) is defined as a limit of conditioned expected values. In random dynamical system

theory, however, we are usually interested in ω-wise asymptotic statements. Due to the killing
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at the boundary, the best we can hope for in this context is a convergence result of finite-time

Lyapunov exponents in probability. Indeed, we are able to prove such a result in Theorem 5.2.8

which shows that this number λ actually has a dynamical meaning. Before we can prove the

Theorem, we show the following Lemma about decay of correlations:

Lemma 5.2.7. Let (Xt)t≥0 be a Markov process on a topological state space E with absorption at

the boundary ∂E as introduced in Section 5.1.1. Then for any measurable and bounded functions

f, g : E → R, 0 < r < q < 1 we have

lim
t→∞

Ex (f(Xqt)g(Xrt)|T > t) =

(∫
fdm

)(∫
gdm

)
uniformly over all x ∈ E .

Proof. Let f, g : X → R+
0 be measurable and bounded functions, 0 < r < q < 1 and x ∈ E.

Similarly to the proof of Theorem 5.1.5, we fix u > 0 and define the observable

hu(x) = inf{e−λ1tPx(T > t)/η(x) : t ≥ u} .

Let t be large enough such that (q − r)t ≥ u and (1 − q)t ≥ u. We obtain with the Markov

property

Ex [f(Xqt)g(Xrt)|T > t] =
Ex[g(Xrt)f(Xqt)1{T>t}]

Px(T > t)

=
Ex[g(Xrt)f(Xqt)1{T>qt}PXqt(T > (1− q)t)]

Px(T > t)

≥
Ex[g(Xrt)1{T>qt}e

−λ0(q−1)tf(Xqt)hu(Xqt)η(Xqt)]

Px(T > t)
.

Let us denote ρ(x) = f(x)hu(x)η(x) and ρ̃(x) = g(x)hu(x)η(x) which are positive and bounded

for the same reasons as in the proof of Theorem 5.1.5. Analogously to the above, we obtain

Ex (f(Xqt)g(Xrt)|T > t) ≥ e−λ0(q−1)tEx
[
g(Xrt)1{T>rt}EXrt [1{T>(q−r)t}ρ(X(q−r)t)]

]
Px(T > t)

≥ e−λ0(q−1)tEx
[
g(Xrt)hu(Xrt)η(Xrt)1{T>rt}EXrt [1{T>(q−r)t}ρ(X(q−r)t)]

Px(T > t)PXrt(T > t)e−λ0t

]
= Ex

[
e−λ0rtρ̃(Xrt)1{T>rt}

Px(T > t)e−λ0t
e−λ0(q−r)tEXrt [1{T>(q−r)t}ρ(X(q−r)t)]

PXrt(T > t)e−λ0t

]
.

By Theorem 5.1.7 the limits of the killed semigroup are uniform in x. For the second term in
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the expectation above we obtain∣∣∣∣∣1{T>rt} e−λ0(q−r)tEXrt [1{T>(q−r)t}ρ(X(q−r)t)]

PXrt(T > t)e−λ0t
−
∫
ρdν

∣∣∣∣∣
=

∣∣∣∣∣1{T>rt} e−λ0(q−r)tPXrt(T > (q − r)t)
e−λ0tPXrt(T > t)

EXrt [ρ(X(q−r)t)|T > (q − r)t]−
∫
ρdν

∣∣∣∣∣
≤Ce−γt + ‖ρ‖∞

∣∣∣∣∣1{T>rt} e−λ0(q−r)tPXrt(T > (q − r)t)
e−λ0tPXrt(T > t)

− 1

∣∣∣∣∣
≤Ce−γt + ‖ρ‖∞ sup

x∈E

∣∣∣∣∣e−λ0(q−r)tPx(T > (q − r)t)
e−λ0tPx(T > t)

− η(x)

η(x)

∣∣∣∣∣
where the second term converges to 0 as t→∞ according to Theorem 5.1.7. Hence, the second

factor in the expectation converges uniformly to its limit∫
ρ dν =

∫
fhu dm.

Therefore we observe that

lim inf
t→∞

Ex (f(Xqt)g(Xrt)|T > t)

≥ lim
t→∞

Ex

[
e−λ0rtρ̃(Xrt)1{T>rt}

Px(T > t)e−λ0t
e−λ0(q−r)tEXrt [1{T>(q−r)t}ρ(X(q−r)t)]

PXrt(T > t)e−λ0t

]

= lim
t→∞

Ex
[
e−λ0rtρ̃(Xrt)1{T>rt}

]
Px(T > t)e−λ0t

∫
fhu dm

=

∫
ghu dm

∫
fhu dm.

Since hu is uniformly bounded as seen in the proof of Theorem 5.1.5 and hu(x) → 1, we have

by the dominated convergence theorem that

lim inf
t→∞

Ex (f(Xqt)g(Xrt)|T > t) ≥
(∫

fdm

)(∫
gdm

)
.

Replacing f(Xqt)g(Xrt) by

(‖f‖∞ − f(Xqt))(‖g‖∞ + g(Xrt)) and (‖f‖∞ + f(Xqt))(‖g‖∞ − g(Xrt)) ,
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we can see directly that

2‖f‖∞‖g‖∞ − lim sup
t→∞

Ex (2f(Xqt)g(Xrt))|T > t)

≥ lim inf
t→∞

Ex
(

(‖f‖∞ − f(Xqt))(‖g‖∞ + g(Xrt))

∣∣∣∣T > t

)
+ lim inf

t→∞
Ex
(

(‖f‖∞ + f(Xqt))(‖g‖∞ − g(Xrt))

∣∣∣∣T > t

)
≥ 2‖f‖∞‖g‖∞ −

(∫
fdm

)(∫
gdm

)
.

Therefore, we deduce that

lim sup
t→∞

Ex (f(Xqt)g(Xrt)|T > t) ≤
(∫

fdm

)(∫
gdm

)
.

So, we have shown the claim for positive measurable and bounded functions f, g. We can extend

the result to arbitrary measurable and bounded f, g analogously to the proof of Theorem 5.1.5

by replacing fg with (f+ − f−)(g+ − g−). Uniformity of the convergence follows for the same

reasons as in Theorem 5.1.5.

We are ready to prove the following theorem which equips the limit of expected values λ,

as given in Propositions 5.2.3 and 5.2.5, with the strongest possible dynamical meaning for the

setting with killing at the boundary.

Theorem 5.2.8 (Convergence in conditional probability). Let (θ, ϕ) be the random dynamical

system with absorption at the boundary corresponding to the Markov process (Xt)t≥0 solving

equation (5.2.3). Then for all ε > 0 we have

lim
t→∞

P
(
|λv(t, ·, x)− λ| ≥ ε

∣∣∣∣T̃ (·, x) > t

)
= 0 (5.2.9)

uniformly over all x ∈ E, v ∈ Sd−1. This means that the finite-time Lyapunov exponents of the

surviving trajectories converge to its assemble average in probability. Note that in one dimension

this reads

lim
t→∞

P
(
|λ(t, ·, x)− λ| ≥ ε

∣∣∣∣T̃ (·, x) > t

)
= 0 . (5.2.10)

Proof. Recall from above that

λ = lim
t→∞

Ex,s0 (λv(t, ·, x)|T > t) = lim
t→∞

E
(
λv(t, ·, x)|T̃ (·, x) > t

)
=

∫
Sd−1×E

〈s,Df(x)s〉 m̃(ds, dx) .

In the following, we will write g(x, s) = 〈s,Df(x)s〉 and m̃(h) :=
∫
hdm̃ for any bounded and

measurable function h. Note that in one dimension we have g(x, s) = f ′(x) and m̃ = m. We
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observe that

P
(
|λv(t, ·, x)− λ| ≥ ε

∣∣∣∣T̃ (·, x) > t

)
≤ P

(∣∣∣λv(t, ·, x)− E
(
λv(t, ·, x)|T̃ (·, x) > t

)∣∣∣ ≥ ε∣∣∣∣T̃ (·, x) > t

)
+ P

(∣∣∣λ− E
(
λv(t, ·, x)|T̃ (·, x) > t

)∣∣∣ ≥ ε∣∣∣∣T̃ (·, x) > t

)
.

The term in the second line converges to zero for t to infinity by definition of λ. The first term

can be estimated by Chebyshev’s inequality:

P
(∣∣∣λv(t, ·, x)− E

(
λv(t, ·, x)|T̃ (·, x) > t

)∣∣∣ ≥ ε∣∣∣∣T̃ (·, x) > t

)
≤ Var(λv(t, ·, x)|T̃ (·, x) > t)

ε2
.

This means that, in order to prove the claim, we simply need to show that

lim
t→∞

E
(
λv(t, ·, x)2|T̃ (·, x) > t

)
= lim

t→∞

[
E
(
λv(t, ·, x)|T̃ (·, x) > t

)]2
,

where

lim
t→∞

[
E
(
λv(t, ·, x)|T̃ (·, x) > t

)]2
= λ2 = m̃(g)2 .

Similarly to the proof of Theorem 5.1.5 we obtain with Fubini that

lim
t→∞

E
(
λv(t, ·, x)2|T̃ (·, x) > t

)
= lim

t→∞
Ex

((
1

t

∫ t

0
g(Xτ , sτ ) dτ

)2

|T > t

)

= lim
t→∞

Ex

((∫ 1

0
g(Xqt, sqt) dq

)2

|T > t

)

= lim
t→∞

∫ 1

0

∫ 1

0
Ex (g(Xqt, sqt)g(Xrt, srt)|T > t) dq dr

= lim
t→∞

[ ∫ 1

0

∫ q

0
Ex (g(Xqt, sqt)g(Xrt, srt)|T > t) dr dq

+

∫ 1

0

∫ r

0
Ex (g(Xqt, sqt)g(Xrt, srt)|T > t) dq dr

]
.

It follows immediately from Lemma 5.2.7 that for 0 < r < q < 1 (and 0 < q < r < 1)

lim
t→∞

Ex (g(Xqt, sqt)g(Xrt, srt)|T > t) = lim
t→∞

Ex,s0 (g(Xqt, sqt)g(Xrt, srt)|T > t) = m̃(g)2 ,

where the convergence is uniform over the initial values. Hence, by using dominated convergence,

we conclude that

lim
t→∞

E
(
λv(t, ·, x)2|T̃ (·, x) > t

)
=

∫ 1

0

∫ q

0
m̃(g)2 dr dq +

∫ 1

0

∫ r

0
m̃(g)2 dq dr = m̃(g)2 ,

such that the claim follows.
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Proposition 5.2.3 tells us, not surprisingly, that if we take the limit of the expectation of the

tangent flow, the initial vector v on the tangent space does not matter. Figuratively speaking,

we average out the geometry of the dynamics. In the classical setting, this geometry is reflected

by a spectrum of Lyapunov exponents associated with a filtration or splitting of flow-invariant

subspaces. Something like that is not directly obtainable in our setting since such filtrations or

subspaces depend on the noise realisation ω which only has a finite survival time in our context.

However, we can try to find a spectrum of Lyapunov exponents following the Furstenberg-Kesten

Theorem [2, Theorem 3.3.3].

For a time t > 0, consider Φ(t, ω, x) := Dϕ(t, ω, x) ∈ Rd×d for all (ω, x) such that ϕ(s, ω, x) ∈
E for all 0 ≤ s ≤ t. Let

0 < σd(Φ(t, ω, x)) ≤ · · · ≤ σ1(Φ(t, ω, x))

be the singular values of Φ(t, ω, x), i.e. the eigenvalues of
√

Φ∗(t, ω, x)Φ(t, ω, x). We would like

to show the following:

Conjecture 5.2.9 (Lyapunov spectrum). Let Φ be the linearised flow associated with prob-

lem (5.2.3). Then there are σi ∈ R such that for all x ∈ E we have

1

t
E[lnσi(Φ(t, ·, x))|T̃ (·, x) > t]

t→∞−−−→ σi for all 1 ≤ i ≤ d .

In this case, we can define a Lyapunov spectrum of average expansion rates of the surviving

assemble by denoting λ1 > λ2 > . . . λp for the 0 < p ≤ d different values of σ1 ≥ · · · ≥ σd.

Considering Proposition 5.2.3, the goal would be to show that there are cases where p > 1.

We will give numerical evidence for this later.

We consider the classical setting without killing at the boundary and replace (ω, x) ∈ Ω×Rd

by ω ∈ Ω as driving metric dynamics for ease of notation. The Furstenberg-Kesten Theorem [2,

Theorem 3.3.3] uses the subadditivity of exterior powers to show convergence of the exponents

expressed as singular values. We denote the k-fold exterior powers of the matrix Φ by ΛkΦ for

1 ≤ k ≤ d. Then the condition

sup
0≤t≤1

ln+ ‖Φ(t, ω)±1‖ ∈ L1(Ω)

guarantees that Kingman’s Subadditive Ergodic Theorem [2, Theorem 3.3.2] can be used to

show that there is a measurable map γk such that almost surely

lim
t→∞

1

t
ln ‖ΛkΦ(t, ω)‖ = γk(ω) .

In particular, we obtain

lim
t→∞

1

t
E
[
ln ‖ΛkΦ(t, ·)‖

]
= E[γk] .

We can then define measurable σ1(ω) ≥ σ2(ω) ≥ · · · ≥ σd(ω) such that for all 1 ≤ k ≤ d and
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ω ∈ Ω

σ1(ω) + σ2(ω) + · · ·+ σk(ω) = γk(ω) .

Recall that σk(ω) denotes the k-th largest singular value of Φ(t, ω). By using the well-known

fact for all t > 0 and ω ∈ Ω

σ1(ω) + · · ·+ σk(ω) = ‖ΛkΦ(t, ·)‖ ,

one can deduce recursively that

σk(ω) = lim
t→∞

1

t
lnσk(Y (t, ω)) .

In particular, we may conclude that

E[σk(·)] = lim
t→∞

1

t
E [lnσk(Y (t, ·))] .

The different numbers λ1(ω) > · · · > λp(ω) in the sequence σ1(ω) ≥ σ2(ω) ≥ · · · ≥ σd(ω) are the

Lyapunov exponents. In an ergodic situation, the Lyapunov exponents and their number p(ω)

are constant over almost all ω and we obtain that E[λk(·)] = λk ∈ R.

The main ingredient for showing Conjecture 5.2.9 is proving the convergence of the exterior

powers. As mentioned above, this is achieved in the classical setting by using the subadditivity

of

ρk(ω, t) := ln ‖ΛkΦ(t, ω)‖

and then applying Kingman’s Subadditive Ergodic Theorem. The subadditivity follows directly

from the cocycle property

ΛkΦ(t+ s, ω) = ΛkΦ(t, θsω)ΛkΦ(s, ω).

Going back to our problem, we would like to show the existence of

lim
t→∞

1

t
E[ρk(·, t)|T > t]

under mild conditions. An approach using subadditivity would need to establish that

E[ρk(·, t+ s)|T > t+ s] ≤ E[ρk(·, t)|T > t] + E[ρk(·, s)|T > s] .

Unfortunately, showing this seems very difficult, if not impossible, as it is generally not clear

what effect the conditioning on non-absorption has on values of ρk(cot, t). Another even more

general approach would be to investigate the limit of

E[g(·, t)|T > t] ,



CHAPTER 5. LOCAL RDS, QUASI-STATIONARY DYNAMICS AND BIFURCATIONS 68

for g : C([0,∞))× R+
0 → R which satisfy

(ω, t) 7→ ht(X0≤s≤t(ω)) for maps ht : C([0, t])→ R .

But this seems an even harder problem.

The following Lemma shows that we can bound the Lyapunov spectrum, if it exists, from

above and below. In more detail, we define an upper and a lower conditioned average Lyapunov

exponent λu and λl by

λu := lim sup
t→∞

sup
‖v‖=1

1

t
E
[
ln ‖Dϕ(t, ·, x)v‖|T̃ (·, x) > t

]
,

and

λl := lim inf
t→∞

inf
‖v‖=1

1

t
E
[
ln ‖Dϕ(t, ·, x)v‖|T̃ (·, x) > t

]
.

Defining similarly to chapter ??

λ+(x) = max
‖r‖=1

(Df(x)r, r), λ−(x) = min
‖r‖=1

(Df(x)r, r) ,

we find the following bounds for these quantities.

Lemma 5.2.10. Let (θ, ϕ) be the random dynamical system with killing at the boundary asso-

ciated to (5.2.3). Then the upper and lower conditioned average Lyapunov exponents satisfy∫
X
λ−(x)m(dx) ≤ λl ≤ λ ≤ λu ≤

∫
X
λ+(x)m(dx) ,

where λ is the conditioned average Lyapunov exponent given by Proposition 5.2.3.

Proof. For any ω ∈ Ω, x ∈ E and 0 6= v ∈ Rd define rt(ω, x, v) := Dϕ(t,ω,x)v
‖Dϕ(t,ω,x)v‖ . We observe that

d

dt
‖Dϕ(t, ω, x)v‖2 = 2 (Df(ϕ(t, ω, x))(t, ω, x)v,Dϕ(t, ω, x)v)

= 2 (Df(ϕ(t, ω, x))rt(ω, x, v), rt(ω, x, v)) ‖Dϕ(t, ω, x)v‖2

≤ 2λ+(ϕ(t, ω, x))‖Dϕ(t, ω, x)v‖2.

Analogously we obtain

d

dt
‖Dϕ(t, ω, x)v‖2 ≥ 2λ−(ϕ(t, ω, x))‖Dϕ(t, ω, x)v‖2 .

Hence, we can conclude that for all 0 6= v ∈ Rd

‖Dϕ(t, ω, x)v‖2 ≤ ‖v‖2 exp

(
2

∫ t

0
λ+(ϕ(s, ω, x))ds

)
(5.2.11)

‖Dϕ(t, ω, x)v‖2 ≥ ‖v‖2 exp

(
2

∫ t

0
λ−(ϕ(s, ω, x))ds

)
. (5.2.12)
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Since λ+ and λ− are measurable and bounded on E, we can conclude with Theorem 5.1.5 that

λu ≤ lim sup
t→∞

E
[

1

t

∫ t

0
λ+(ϕ(s, ·, x))ds|T̃ (·, x) > t

]
= lim

t→∞
Ex
[

1

t

∫ t

0
λ+(Xs) ds|T > t

]
=

∫
X
λ+(x)m(dx) ,

and

λl ≥ lim inf
t→∞

E
[

1

t

∫ t

0
λ−(ϕ(s, ·, x))ds|T̃ (·, x) > t

]
= lim

t→∞
Ex
[

1

t

∫ t

0
λ−(Xs) ds|T > t

]
=

∫
X
λ−(x)m(dx) .

The fact that λl ≤ λ ≤ λu follows directly from the respective definitions.

Note that the computation of λ can be very difficult and costly in higher dimensions as we

have to determine m̃(ds, dx), the joint quasi-ergodic distribution of the original process and

the derivative angular process. In some cases it will definitely be easier and cheaper to simply

compute or approximate m(dx), the quasi-ergodic distribution of the singular process. Then

the integrals m(λ−) and m(λ+) can help to reveal if λ, which can be expected to equal λ1 in

case the spectrum exists, is positive or negative respectively.

5.3 Local synchronisation for nonlinear systems

This section is dedicated to showing implications of λ having a negative sign. As one would ex-

pect, the main implication in terms of the random dynamics is the synchronisation of surviving

trajectories starting close enough to each other. In the following, we prove a general state-

ment about local synchronisation in discrete time for systems with absorption at the boundary

and then show a corollary for systems induced by stochastic differential equations using the

definitions and results of the previous two sections.

Theorem 5.3.1 (Local synchronisation theorem). Let (θ, ϕ) be a continuously differentiable

RDS with killing on a bounded domain E ⊂ Rd, and let there exist a λ < 0 such that uniformly

over all x ∈ E and v ∈ Sd−1

lim
n→∞

P
[

1

n
ln ‖Dϕ(n, ·, x)v‖ ≤ λ

∣∣∣∣T̃ (·, x) > n

]
= 1 . (5.3.1)

Then for all λε ∈ (λ, 0), x ∈ E and 0 < ρ < 1, there are αx > 0, 0 < β < 1, Kε > 1 and sets

Ωn
x ⊂ Ω with Px(Ωn

x|T > n) > 1− ρ for all n ∈ N such that we have the following:

a) For all n ∈ N, ω ∈ Ωn
x and y, y′ ∈ Bαx(x)

‖ϕ(n, ω, y)− ϕ(n, ω, y′)‖ ≤ Kεe
λεn‖y − y′‖ ,
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and, in particular, for all y ∈ Bαx(x)

‖ϕ(n, ω, x)− ϕ(n, ω, y)‖ ≤ βeλεn .

b) There is exponentially fast local synchronisation of trajectories in discrete time with arbitrarily

high probability, i.e.

lim
n→∞

P
(

1

n
ln ‖ϕ(n, ·, x)− ϕ(n, ·, y)‖ ≤ λε for all y ∈ Bαx(x)

∣∣∣∣T̃ (·, x) > n

)
> 1− ρ .

Proof. Let 0 < ρ < 1 be fixed for the following. For x ∈ E and n ∈ N, let Ωn
x ⊂ {ω ∈ Ω :

T̃ (ω, x) > n} be a set with Px(Ωn
x|T > n) > 1 − ρ whose construction is given later in (5.3.4).

Furthermore we define for any x ∈ E

Ux := {y ∈ Rd : x+ y ∈ E} .

For fixed (ω, x) ∈ Ω× E we define on Ux

Zn((ω, x), y) := ϕ(n, ω, y + x)− ϕ(n, ω, x) .

Note that in particular Zn((ω, x), 0) = 0 for all n. Define further

F(ω,x)(y) := Z1((ω, x), y)

and write

Fn(ω,x) = FΘn−1(ω,x) ◦ · · · ◦ F(ω,x) .

In addition we define

L(ω, x) = DF(ω,x)(0) = Dϕ(1, ω, x)

and for all n ≥ 1

Ln(ω, x) = L(Θn−1(ω, x)) .

Similarly to [81], let 0 < η = −λε/2. Since the system is C1 on a bounded domain, we have

G := sup
(ω,x)
‖F(ω,x)‖C1 <∞ .

Let δ > 0 be given. Choose 0 < β < 1 such that Gβeη < δ. Take further κ > 1 such that κβ ≤ 1

and Gκβeη ≤ δ.
Recall that

ΩK
x ⊂ {ω ∈ Ω : T̃ (ω, x) > K}

and define

SK(β) = {y ∈ Ux : ‖Fn(ω,x)(y)‖ ≤ βeλεn for all 0 ≤ n ≤ K and ω ∈ ΩK
x } .
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For y ∈ SK(κβ) we define for all 1 ≤ n ≤ K

L′n(ω, x) =

∫ 1

0
DFΘn−1(ω,x)(tF

n−1
(ω,x)(y)) dt .

Observe that this choice yields for 1 ≤ n ≤ K

L′n(ω, x)y = L′n(ω, x) · · ·L′1(ω, x)y = Fn(ω,x)(y) .

We deduce that for any y ∈ SK(κβ)

sup
ω∈ΩK

x

sup
n≤K
‖L′n(ω, x)− Ln(ω, x)‖eηn ≤ sup

ω∈ΩK
x

sup
n≤K
‖DFθn−1(ω,x)‖κβ exp

(
n(η + λε)− λε

)
≤ Gκβeη < δ .

Claim: We can deduce from

sup
ω∈ΩK

x

sup
n≤K
‖L′n(ω, x)− Ln(ω, x)‖eηn < δ

that for all ω ∈ ΩK
x , y ∈ SK(κβ) and 1 ≤ n ≤ K

‖L′n(ω, x)y‖ ≤ Kεe
nλε‖y‖

uniformly over K, for some Kε > 1.

Let us assume that the claim is true for the time being and define dx = d(x, ∂E)/2. Choose

αx = min (dx, β/Kε) < β. From the claim we observe that uniformly over K for all y ∈
Bαx(0) ∩ SK(κβ) and 1 ≤ n ≤ K

‖Fn(ω,x)(y)‖ ≤ Kεe
nλεαx ≤ βenλε

and therefore

DK(αx) := Bαx(0) ∩ SK(β) = Bαx(0) ∩ SK(κβ) .

Since the boundaries of SK(β) and SK(κβ) are disjoint, this implies that Bαx(0) = DK(αx) for

all K > 0 and the second statement in a) follows.

For any y, y′ ∈ DK(αx) and 1 ≤ n ≤ K we define similarly to before

L′n((ω, x)) =

∫ 1

0
DFΘn−1(ω,x)

(
tFn−1

(ω,x)(y) + (1− t)Fn−1
(ω,x)(y

′)
)

dt .

Observe that for 1 ≤ n ≤ K

L′n(ω, x)(y − y′) = L′n(ω, x) · · ·L′1(ω, x)(y − y′) = Fn(ω,x)(y)− Fn(ω,x)(y
′) .
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Therefore we observe analogously to before that

sup
ω∈ΩK

x

sup
n≤K
‖L′n(ω, x)− Ln(ω, x)‖eηn < δ ,

which using the claim gives that for all ω ∈ ΩK
x , y, y′ ∈ DK(αx) and 1 ≤ n ≤ K

‖Fn(ω,x)(y)− Fn(ω,x)(y
′)‖ ≤ Kεe

λεn‖y − y′‖ .

Hence, the first statement in a) follows.

Now, we prove the claim above. To make the notation easier, we fix (ω, x) and write L for

the Jacobian and L′ for the perturbation. Take ‖ξ(0)‖ = 1, define the sequence ξ(n) as units

along Ln and write

Lnξ
(n−1) = t(n)ξ(n) .

For our purposes it is enough to exercise through the one-dimensional case since the convergence

in (5.3.1) is assumed to be uniform over all v ∈ Sd−1 in the d-dimensional scenario. We refer to

[81] for the full details of the multidimensional scenario which are not needed here.

If we write L′nu = u(n), we see that supn ‖L′n − Ln‖eηn < δ implies∣∣∣u(n)
∣∣∣ ≤ t(n)

∣∣∣u(n−1)
∣∣∣+ δe−nη

∣∣∣u(n−1)
∣∣∣ . (5.3.2)

Since the finite-time Lyapunov exponents are bounded away from −∞ according to the assump-

tions of the model, there is a C > 0 independent from (ω, x) such that for any N ∈ N

1

C
e−Nη ≤ t(N) .

If we fix ν ≥ 1 and set U (ν) =
∣∣u(ν)

∣∣ and for N > ν

U (N) =

(
N∏

n=ν+1

t(n)

)(
N∏

n=ν+1

(1 + Cδe−nη)

)
U (ν) ,

we can observe with (5.3.2) that U (N) ≥
∣∣u(N)

∣∣ for all N ≥ ν.

Now we set δ = 1
C

∏∞
n=1(1− e−nη)2 and

C ′ =

∏∞
n=1(1 + Cδe−nη)∏∞
n=1(1− e−nη)

≤
∞∏
n=1

(1− e−nη)−2 =
1

Cδ
.

Note that δ and C ′ do not depend on (ω, x). It is easy to infer similarly to [81] that

∣∣∣u(N)
∣∣∣ ≤ C ′( N∏

n=ν+1

t(n)

)(
N∏

n=ν+1

(1− e−nη)

)∣∣∣u(ν)
∣∣∣ (5.3.3)
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and ∣∣∣u(N)
∣∣∣ ≥ ( N∏

n=ν+1

t(n)

)(
N∏

n=ν+1

(1− e−nη)

)∣∣∣u(ν)
∣∣∣ .

We take ν = 0 from here on. Observe that the finite Lyapunov exponents satisfy

λ(N,ω, x) =
1

N
ln

N∏
n=1

t(n) .

Let ε = λε − λ > 0. By assumption, there exists an N∗ > 0 such that for all N ≥ N∗ we have

P
(
λ(N, ·, x) < λ+ ε/2

∣∣∣∣T̃ (·, x) > N

)
> 1− ρ .

Recall that δ, C,C ′ do not depend on (ω, x). Now define the measurable sets

ΩN
x =

{ω ∈ Ω : T̃ (ω, x) > N, λ(N,ω, x) < λ+ ε/2} if N ≥ N∗ ,

{ω ∈ Ω : T̃ (ω, x) > N} if N < N∗ .
(5.3.4)

Hence, Px(Ωn
x|T > n) > 1− ρ for all n ∈ N. We can conclude from (5.3.3) that there is C ′′ > 0

such that for all x ∈ E, N ≥ N∗ and ω ∈ ΩN
x

1

N
ln ‖L′N (ω, x)‖ ≤ C ′′

N
+

1

N
ln

N∏
n=ν+1

t(n) =
C ′′

N
+ λ(N,ω, x) .

From the assumptions we have that

s∗ := sup
(ω,x)

sup
N≤N∗

λ(N,ω, x) <∞ .

We define

Kε = max{eC′′ , e−λεN∗s∗} .

Then we obtain the statement of the claim, i.e. for all N ∈ N and ω ∈ ΩN
x

‖L′N (ω, x)‖ ≤ Kεe
λεN .

Finally, we show statement b). We conclude from the second statement in a), and the fact that

β < 0, that for all n ∈ N

P
(
‖ϕ(n, ·, x)− ϕ(n, ·, y)‖ ≤ eλεn for all y ∈ Bαx(x)

∣∣∣∣T̃ (·, x) > n

)
≥ P

(
Ωn
x

∣∣∣∣T̃ (·, x) > n

)
> 1− ρ .
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Hence, we actually obtain for all n ∈ N

P
(

1

n
ln ‖ϕ(n, ω, x)− ϕ(, ω, y)‖ ≤ λε for all y ∈ Bαx(x)

∣∣∣∣T̃ (·, x) > n

)
> 1− ρ ,

which implies the claim.

We can immediately observe the following corollary about local synchronisation of random

dynamical systems induced by solutions of stochastic differential equations with absorption at

the boundary of a domain:

Corollary 5.3.2. Let the RDS with killing induced by the SDE (5.2.3) have a negative condi-

tioned asymptotic Lyapunov exponent λ < 0. Then for all x ∈ E, λε ∈ (λ, 0) and 0 < ρ < 1,

there is an αx > 0 such that

lim
n→∞

P
(

1

n
ln |ϕ(n, ·, x)− ϕ(n, ·, y)| ≤ λε for all y ∈ Bαx(x)

∣∣∣∣T̃ (·, x) > n

)
> 1− ρ.

Proof. This is an immediate consequence of Theorem 5.3.1 in combination with Theorem 5.2.8.

We would like to show a global synchronisation theorem as well. An obvious very weak

statement is expressed in the following proposition which is simply supposed to sketch a first

direction for this endeavour:

Proposition 5.3.3. Let the RDS with killing induced by the SDE (5.2.3) have a negative con-

ditioned average Lyapunov exponent λ. Let x, y ∈ I, αx be the radius of stability from Theo-

rem 5.3.1 for some 0 < ρ < 1 and let there be a time t ≥ 0 such that

P
(
|ϕ(t, ·, x)− ϕ(t, ·, y)| < αx

∣∣∣∣T̃ (·, x) > t

)
> 0.

Then there is a sequence tn →∞ such that for any ε > 0

lim
n→∞

P
(
|ϕ(tn, ·, x)− ϕ(tn, ·, y)| < ε

∣∣∣∣T̃ (·, x) > tn

)
> 0.

Proof. This is a direct consequence of Corollary 5.3.2 in combination with the Markov property.

In the one-dimensional case one could hope for using monotonicity arguments to show a

stronger statement. This is left as future work.

5.4 Relation to pathwise random dynamics

This section is dedicated to finding further relations between Markov processes with absorp-

tion at the boundary and the induced random dynamical systems, in particular understanding
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the latter ones as skew product systems. It suggests itself to investigate the connection between

quasi-stationary and quasi-ergodic measures and suitable associated measures for the skew prod-

uct, similarly to the setting without killing as introduced in Chapter 1. Hereby, conditionally

invariant measures for dynamical systems with a hole turn out to be the he right concept.

5.4.1 Conditionally invariant measures on the skew product space

Let (Xt)t≥0 be a Markov process on some topological space X, defined over a filtered probability

space (Ω+,F , (Ft)t≥0,P) and equipped with a family of maps θt : Ω+ → Ω+ such that

θt+s = θt ◦ θs for all t, s ≥ 0

and

Xt+h(ω) = Xt(θhω) for all t, h ≥ 0 and ω ∈ Ω+ .

Note that the existence of (θt) is sometimes part of the definition of a Markov process (see e.g.

[85]) and that the σ-algebra generated by θt is independent from Ft for all t ≥ 0. Let further θt

be P-invariant for all t ≥ 0 and the process induce a random dynamical system with one-sided

skew product flow

Θt : Ω+ ×X → Ω+ ×X, Θt(ω, x) = (θtω, ϕ(t, ω, x)) , for all t ≥ 0 .

As before let E ⊂ X be some open subset such that (Xt)t≥0 with transition probabilities (Px)x∈E

satisfies the assumptions of this chapter if the process is absorbed at ∂E. Note that the described

setting is for example given in the situation of random dynamical systems induced by stochastic

differential equations as described in Section 5.1.2, defined on the one-sided canonical path space

with Wiener measure P projected to one-sided time and canonical one-sided shift (θt)t≥0.

We now consider the problem of killed diffusion from the perspective of dynamical systems

with holes. We can write E =
◦
X = X \H where H = X \E is a closed set constituting a hole in

the space X. Define
◦
M = Ω+ ×

◦
X = Ω+ × E as the product space with hole in only one factor

and
◦
Mt =

⋂
0≤s≤t

(Θs)
−1

◦
M ,

◦
Θt = Θt

∣∣ ◦
Mt
, (5.4.1)

i.e. the survival set and the flow restricted to the survival set. We further define for each ω ∈ Ω+

Et(ω) =
⋂

0≤s≤t
ϕ(s, ω, ·)−1E ,

◦
ϕ(t, ω, ·) = ϕ(t, ω, ·)

∣∣
Et
,

i.e. the ω-wise survival set and cocycle restricted to the survival set.

Definition 5.4.1 (Conditionally invariant measure). A measure µ supported on
◦
M is called a
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conditionally invariant probability measure for (
◦
Θt)t≥0 on Ω+ × E if

µ
( ◦

Θ−1
t (C)

)
µ(

◦
Mt)

= µ(C) for all t ≥ 0 and C ∈ F × B(E) .

See for example [29] or [34] for fundamental work on conditionally invariant probability

measures. First, we can show the following result similarly to Homburg and Zmarrou [50,

Lemma 5.2.].

Proposition 5.4.2. The measure P× ν is a conditionally invariant probability measure for the

one-sided skew product flow (
◦
Θt)t≥0 on Ω+×E iff the measure v is a quasi-stationary distribution

for (Xt)t≥0 on E.

Proof. The measure v being quasi-stationary means that for all Borel-sets B ⊂ E we have

ν(B) = Pν
(
Xt ∈ B

∣∣T > t
)

=

∫
E P(ϕ(t, ·, x) ∈ B, T̃ (·, x) > t) ν(dx)∫

E Px(T > t) ν(dx)
. (5.4.2)

Let C ⊂ Ω+ ×E be measurable with respect to F × B(E). Hence, we may assume C = A×B.

Let us first assume that ν is a quasi-stationary distribution for the process. We observe that

(P× ν)
( ◦

Θ−1
t C

)
(P× ν)

◦
Mt

=

∫
E P

(
ω : θtω ∈ A,ϕ(t, ω, x) ∈ B, T̃ (ω, x) > t

)
ν(dx)∫

E Px (T > t) ν(dx)
.

Recall that (ϕ(t, ·, ·))t≥0 is adapted to (Ft)t≥0 and σ(θt) is independent from Ft for all t ≥ 0

since θt is the one-sided shift on Ω+. Hence, we can infer with (5.4.2) that

(P× ν)
( ◦

Θ−1
t C

)
(P× ν)

◦
Mt

=

∫
E P(ω : θtω ∈ A)P

(
ω : , ϕ(t, ω, x) ∈ B, T̃ (ω, x) > t

)
ν(dx)∫

E Px (T > t) ν(dx)

= Pν
(
Xt ∈ B

∣∣T > t
)
P(A) = ν(B)P(A) = (P× ν)(C) . (5.4.3)

As one can see directly from (5.4.3), we can show the reverse direction analogously, i.e. assum-

ing P × ν to be conditionally invariant immediately gives us (5.4.2) and therefore the quasi-

stationarity of ν.

Recall from the proof of Theorem 5.1.5 that for any bounded and measurable function f ,

x ∈ E and 0 < p < 1

lim
t→∞

Ex(f(Xpt)|T > t) =

∫
I
f(x)m(dx) .

This observation prompts the definition of the maps Hp
t : Ω+ ×X → Ω+ ×X by

Hp
t (ω, x) = (θtω, ϕ(pt, ω, x)) for all ω ∈ Ω+, x ∈ X ,

for all t ≥ 0 and 0 < p < 1. This means that the shift on the probability space is considered
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for time t ≥ 0 whereas the mapping on the state space is only followed up to time 0 ≤ pt < t.

Note that Hp
t does not satisfy the flow property but the definition is supposed to illustrate the

distinction between quasi-stationarity and quasi-ergodicity. We give the following definition:

Definition 5.4.3. Let 0 < p < 1. A p-quasi-stationary distribution (QSD) for the process

(Xt)t≥0 is a probability measure m on E such that for all t ≥ 0 and measurable sets B ⊂ E

Pm (Xpt ∈ B|T > t) = m(B) . (5.4.4)

As before, set
◦
Hp
t = Hp

t

∣∣ ◦
Mt

. We can prove the following proposition analogously to Propo-

sition 5.4.2:

Proposition 5.4.4. For any 0 < p < 1, the measure P×m is a conditionally invariant probability

measure for the family of one-sided skew product maps (
◦
Hp
t )t≥0 iff the measure m is a p-quasi-

stationary distribution for (Xt)t≥0 on E.

Proof. Recall from Definition 5.4.4 that the measure m is a p-quasi-stationary probability dis-

tribution iff for all Borel-sets B ⊂ E we have

m(B) = Pm
(
Xpt ∈ B

∣∣T > t
)

=

∫
E P(ϕ(pt, ·, x) ∈ B, T̃ (·, x) > t)m(dx)∫

E Px(T > t)m(dx)
. (5.4.5)

Let C ⊂ Ω+ ×E be measurable with respect to F × B(E). Hence, we may assume C = A×B.

Let us first assume that m is a p-quasi-stationary distribution for the process. We observe that

(P×m)
(

(
◦
Hp
t )−1C

)
(P×m)

◦
Mt

=

∫
E P

(
ω : θtω ∈ A,ϕ(pt, ω, x) ∈ B, T̃ (ω, x) > t

)
m(dx)∫

E Px (T > t) m(dx)
.

Recall that (ϕ(pt, ·, ·))t≥0 is adapted to (Fpt)t≥0 and σ(θt) is independent from Fpt for all t ≥ 0

since θt is the one-sided shift on Ω+ and p < 1. Hence, we can infer with (5.4.5) that

(P×m)
( ◦

Θ−1
t C

)
(P×m)

◦
Mt

=

∫
E P(ω : θtω ∈ A)P

(
ω : , ϕ(pt, ω, x) ∈ B, T̃ (ω, x) > t

)
m(dx)∫

E Px (T > t) m(dx)

= Pm
(
Xpt ∈ B

∣∣T > t
)
P(A) = m(B)P(A) = (P×m)(C) . (5.4.6)

As one can see directly from (5.4.6), we can show the reverse direction analogously, i.e. assuming

P×m to be conditionally invariant for (
◦
Hp
t )t≥0 immediately gives us (5.4.5) and therefore that

m is a p-quasi-stationary distribution for the process (Xt)t≥0.

Making Proposition 5.4.4 useful for characterising a quasi-ergodic distribution m requires p-

quasi-stationarity of m for some 0 < p < 1. We conjecture the following even stronger statement

for which we have not found a proof yet. Such a proof should work similarly to [74, Proposition

1], using the same tricks as in the proof of Theorem 5.1.5.
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Conjecture 5.4.5. If m is a quasi-ergodic distribution for (Xt)t≥0 on E, then it is also a

p-quasi-stationary distribution for any 0 < p < 1.

Therefore we obtain as a direct consequence of Proposition 5.4.4: if the measure m is a quasi-

ergodic distribution for (Xt)t≥0 on E, the measure P×m is a conditionally invariant probability

measure for the family of one-sided skew product maps (
◦
Hp
t )t≥0 for any 0 < p < 1.

We have discussed the correspondences between, on the one side, quasi-stationary and quasi-

ergodic distributions for the process and, on the other side, conditionally invariant measures for

the skew product systems, as long as we consider everything in one-sided time. Usually, as

introduced in Chapter 1, the metric dynamical system on the probability space, underlying the

random dynamical system, is considered in two-sided time. This is necessary if we want to

investigate random attractors, for example.

5.4.2 Two-sided time and relation to the survival process

We now consider the problem in two-sided time, i.e. we consider (Ω,F , (F ts)s≤t∈R,P) with the

maps (θt)t∈R such that θt is P-invariant for all t ∈ R. A natural question to ask is whether in

this situation there is also a conditionally invariant probability measure for the skew product

flow corresponding with a quasi-stationary distribution ν. In more detail, we would like to keep

P fixed as the marginal and find a conditionally invariant measure for (
◦
Θt)t≥0 of the form

µ(dω,dx) = µω(dx)P(dω) , (5.4.7)

where the µω are measurable with respect to F0
−∞, i.e. the past of the system, and∫

Ω
µω(·)P(dω) = ν(·) ,

analogously to the case without killing of trajectories where these measures are called Markov

measures. From the previous section we know that if the µω are demanded to be measurable

with respect to F∞0 , i.e. the future of the system, we get µω = ν almost surely according to

Proposition 5.4.2.

Let us first assume the existence of such a conditionally invariant Markov measure. Then

we observe that the invariance of the sample measures requires an additional assumption.

Lemma 5.4.6. Assume that there exists a conditionally invariant Markov probability measure µ

on Ω×E for (
◦
Θt)t≥0. Then for any t ∈ R+, its disintegrations µω such that Et(ω) is non-empty

satisfy the relation

µω
( ◦
ϕ(t, ω, ·)−1A

)
µω(Et(ω))

= µθtω(A) for almost all ω ∈ Ω and all A ∈ B(E) , (5.4.8)

if and only if for all t ≥ 0 we have

µω(Et(ω)) = µ(
◦
Mt) for almost all ω ∈ Ω with Et(ω) 6= ∅ . (5.4.9)
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Proof. Fix t ≥ 0. We proceed similarly to [61, Proposition 1.3.27]. Take bounded and mea-

surable functions f : E → R and g : Ω → R and observe that by definition of the conditional

invariance∫
Ω×E

f(x)g(ω)µω(dx)P(dω) =

∫
Ω×E f(ϕ(t, ω, x))g(θtω)1 ◦

Mt
(ω, x)µω(dx)P(dω)∫

Ω µω(Et(ω))P(dω)
.

Using the invariance of P with respect to θt for the change of variables ω → θ−tω, we can

therefore write∫
Ω

[∫
E
f(x)µθtω(dx)

]
g(ω)P(dω) =

∫
Ω

[∫
E
f(x)µω(dx)

]
g(θ−tω)P(dω)

=

∫
Ω

[∫
E f(ϕ(t, ω, x))1 ◦

Mt
(ω, x)µω(dx)

]
g(ω)P(dω)∫

Ω µω(Et(ω))P(dω)
.

Since this is true for any g, we conclude that for almost all ω ∈ Ω∫
E f(ϕ(t, ω, x))1Et(ω)(x)µω(dx)∫

Ω µω(Et(ω))P(dω)
=

∫
E
f(x)µθtω(dx) .

Hence, equation (5.4.8) is satisfied if and only if

µω(Et(ω)) =

∫
Ω
µω′(Et(ω

′))P(dω′) = µ(
◦
Mt) for almost all ω ∈ Ω with Et(ω) 6= ∅ ,

which is equivalent to Assumption (5.4.9).

Two questions arise. First of all, one is inclined to ask how reasonable Assumption (5.4.9)

is. Secondly, one might want to investigate if ν as given in (5.4.7) can now be shown to be a

quasi-stationary distribution for the associated Markov process. Both are theoretical questions

that should be investigated in the future.

Let us now assume that a quasi-stationary distribution ν exists. The question is how to

construct the disintegrations µω such that µ is a conditionally invariant Markov probability

measure. The natural analogue to the case without absorption is given by

µω(·) := lim
t→∞

ν
( ◦
ϕ(t, θ−tω, ·)−1(·)

)
ν(Et(θ−tω))

,

if the limit exists. However, due to our assumption of almost sure killing, the numerator and

denominator both become zero in finite time for almost all ω such that this limit cannot exist

for any measurable subset of E.

One idea to overcome this problem would be to investigate if the Q-process, i.e. the survival

process, corresponds to a particular random dynamical system that can be studied in infinite

time in the classical way. However, we explain why this does not seem feasible. Recall from

Section 5.1.1 that the Q-process or survival process (Yt)t≥0 is the Markov process with state

space E, filtered probability space (Ω,F , (Ft)t≥0,P) and transition probabilities (Qx)x∈E such
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that for any s ≥ 0

Qx((Yu)0≤u≤s ∈ ·) = lim
t→∞

Px((Xu)0≤u≤s ∈ ·|T > t) .

Further the Markov semigroup of operators Qt defined by Qtf(x) = Ex(f(Yt)) on an appropriate

function space is m-invariant where m is the quasi-ergodic measure for the killed process. If

there was a random dynamical system (θ, ϕ) associated with this Q-process, each ω-trajectory

ϕ(t, ω, x) = Yt(ω) starting from x ∈ E would require a completely new interpretation since

the boundary is never hit. If, for example, the original process (Xt)t≥0 is a solution process to

a stochastic differential equation, the process (Yt)t≥0 cannot solve a corresponding stochastic

differential equation because there is no hitting of the boundary for the survival process. The

possible generation of a random dynamical system could come from a random differential equa-

tion with bounded noise that is solved by the process (Yt)t≥0. However, it is entirely opaque how

such an equation could be derived. A completely abstract generation of a random dynamical

system from the Q-process seems even less attainable.
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noise destroys Hopf bifurcation. In Stochastic dynamics (Bremen, 1997), pages 71–92.

Springer, New York, 1999.

[4] L. Arnold, E. Oeljeklaus, and E. Pardoux. Almost sure and moment stability for linear Itô
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