Strong solutions to McKean–Vlasov SDEs with coefficients of Nemytskii-type: the time-dependent case Grube S (2024) J. Evol. Equ.24(2), Article No. 37, 14pp. arXiv | DOI
Local well-posedness of the Benjamin–Ono equation for a class of bounded initial data Jöckel N (2024) arXiv:2402.01464. arXiv | DOI
Well-posedness of the periodic dispersion-generalized Benjamin–Ono equation in the weakly dispersive regime Jöckel N (2024) Nonlinearity37(8), Article No. 085002, 37pp. arXiv | DOI
Dean-Kawasaki Equation with Singular Interactions and Applications to Dynamical Ising–Kac Model
Wang L, Wu Z, Zhang R (2024) arXiv:2207.12774v3. arXiv | DOI
McKean–Vlasov PDE with Irregular Drift and Applications to Large Deviations for Conservative SPDEs Wu Z, Zhang R (2024) arXiv:2208.13142v2. arXiv | DOI
2023
Self-adjoint Laplacians and symmetric diffusions on hyperbolic attractors Alikhanloo S, Hinz M (2023) J. Lond. Math. Soc.107(6): 1925–1958 arXiv | DOI
Almost-Hermitian random matrices and bandlimited point processes
Ameur Y, Byun SS (2023) Anal. Math. Phys.13: Article No. 52, 57pp. arXiv | DOI
Universal scaling limits of the symplectic elliptic Ginibre ensemble Byun SS, Ebke M (2023) Random Matrices Theory Appl.12(1): Paper No. 2250047, 33pp. arXiv | DOI
Wronskian structures of planar symplectic ensembles Byun SS, Ebke M, Seo SM (2023) Nonlinearity36(2): 809–844 arXiv | DOI
Real eigenvalues of elliptic random matrices Byun SS, Kang NG, Lee JO, Lee J (2023) Int. Math. Res. Not.2023(3): 2243–2280 arXiv | DOI
Conformal field theory for annulus SLE: partition functions and martingale-observables Byun SS, Kang NG, Tak HJ (2023) Anal. Math. Phys.13: Article No. 1, 87pp. arXiv | DOI
Harnack inequality for nonlocal problems with non-standard growth
Chaker J, Kim M, Weidner M (2023) Math. Ann.386: 533–550 DOI
The concentration-compactness principle for the nonlocal anisotropic p-Laplacian of mixed order
Chaker J, Kim M, Weidner M (2023) Nonlinear Anal.232: Article No. 113254, 18pp. arXiv | DOI
A remake on the Bourgain–Brezis–Mironescu characterization of Sobolev spaces Foghem Gonoue GF (2023) Partial Differ. Equ. Appl.4: Article No. 16, 36pp. arXiv | DOI
Strong solutions to McKean–Vlasov SDEs with coefficients of Nemytskii-type Grube S (2023) Electron. Commun. Probab.28: Article No. 11, 13pp. arXiv | DOI
Construction of blow-up manifolds to the equivariant self-dual Chern–Simons–Schrödinger Equation Kim K, Kwon S (2023) Ann. PDE9: Article No. 6, 129pp. arXiv | DOI
On pseudoconformal blow-up solutions to the self-dual Chern-Simons-Schrödinger equation: existence, uniqueness, and instability Kim K, Kwon S (2023) Mem. Am. Math. Soc.284(1409) arXiv | DOI
Linearization and a superposition principle for deterministic and stochastic nonlinear Fokker–Planck–Kolmogorov equations Rehmeier M (2023) Ann. Sc. Norm-Sci.XXIV(3) arXiv | DOI
Nonuniqueness in law for stochastic hypodissipative Navier–Stokes equations Rehmeier M, Schenke A (2023) Nonlinear Anal.227, Article No. 113179, 37pp. arXiv | DOI
2022
Scaling limits of planar symplectic ensembles
Akemann G, Byun SS, Kang NG (2022) Symmetry Integr. Geom.18: Article No. 007, 40pp. arXiv | DOI
Skew-orthogonal polynomials in the complex plane and their Bergman-like kernels
Akemann G, Ebke M, Parra I (2022) Commun. Math. Phys.389: 621–659 arXiv | DOI
Gradient estimates for Orlicz double phase problems with variable exponents
Baasandorj S, Byun SS, Lee HS (2022) Nonlinear Anal.221 PUB | DOI
Global Maximal Regularity for Equations with Degenerate Weights
Balci AK., Byun SS, Diening L, Lee HS (2022) arXiv:2201.03524. arXiv | DOI
Maximal differentiability for a general class of quasilinear elliptic equations with right-hand side measures Byun SS, Cho N, Lee HS (2022) Int. Math. Res. Not. 13: 9722–9754 PUB | DOI
Zeros of random polynomials and their higher derivatives Byun SS, Lee J, Reddy TR (2022) Trans. Am. Math. Soc.375(9): 6311–6335 arXiv | DOI
Regularity for nonlocal problems with non-standard growth
Chaker J, Kim M, Weidner M (2022) Calc. Var. Partial Differ. Equ.61: Article No. 227, 31pp. arXiv | DOI
Approximation of partial differential equations on compact resistance spaces
Hinz M, Meinert M (2022) Calc. Var. Partial Differ. Equ.61: Article No. 19, 47pp. arXiv | DOI
Harnack inequality for nonlocal operators on manifolds with nonnegative curvature Kim J, Kim M, Lee KA (2022) Calc. Var. Partial Differ. Equ.61: Article No. 22, 29pp. arXiv | DOI
Strong solutions of stochastic differential equations with coefficients in mixed-norm spaces Ling C, Xie L (2022) Potential Anal.57: 227–241 arXiv | DOI
Nonlocal elliptic equation in Hölder space and the martingale problem Ling C, Zhao G (2022) J. Differ. Equ.314: 653–699 arXiv | DOI
On the effective impedance of finite and infinite networks Muranova A (2022) Potential Anal.56: 697–721 arXiv | DOI
The effective impedances of infinite ladder networks and Dirichlet problem on graphs Muranova A (2022) Bulg. J. Phys.49: 115–135 arXiv | DOI
Central limit theorem and moderate deviation principle for stochastic scalar conservation laws Wu Z, Zhang R (2022) J. Math. Anal. Appl.516(1): Paper No. 126445, 26pp. arXiv | DOI
2021
Territorial behaviour of buzzards versus random matrix spacing distributions
Akemann G, Baake M, Chakarov N, Krüger O, Mielke A, Ottensmann M, Werdehausen R (2021) J. Theor. Biol.509: Article No. 110475, 7pp. arXiv | DOI
A non-Hermitian generalisation of the Marchenko–Pastur distribution: from the circular law to multi-criticality
Akemann G, Byun SS, Kang NG (2021) Ann. Henri Poincaré22: 1035–1068 arXiv | DOI
Self-adjoint Laplacians on partially and generalized hyperbolic attractors Alikhanloo S, Hinz M (2021) arXiv:2105.04470. arXiv | DOI
Global gradient estimates for a general class of quasilinear elliptic equations with Orlicz growth
Baasandorj S, Byun SS, Lee HS (2021) Proc. Am. Math. Soc.149(10): 4189–4206 PUB | DOI
Calderón-Zygmund estimates for elliptic double phase problems with variable exponents Byun SS, Lee HS (2021) J. Math. Anal. Appl.501(1), Article No. 124015, 31pp. PUB | DOI
Gradient estimates of ω-minimizers to double phase variational problems with variable exponents Byun SS, Lee HS (2021) Q. J. Math.72(4): 1191–1221 PUB | DOI
Lemniscate ensembles with spectral singularity Byun SS, Lee SY, Yang M (2021) arXiv:2107.07221. arXiv
Estimates on transition densities of subordinators with jumping density decaying in mixed polynomial orders Cho S, Kim P (2021) Stoch. Process. Appl.139: 229–279 arXiv | DOI
Low regularity solutions to the non-abelian Chern–Simons–Higgs system in the Lorenz gauge
Cho Y, Hong S (2021) Nonlinear Differ. Equ. Appl.28: Article No. 70, 25pp. DOI
Asymptotic analysis for a Vlasov–Fokker–Planck/Navier–Stokes system in a bounded domain
Choi YP, Jung J (2021) Math. Models Methods Appl. Sci.31(11): 2213–2295 arXiv | DOI
Emergence of stochastic flocking for the discrete Cucker-Smale model with randomly switching topologies
Dong JG, Ha SY, Jung J, Kim D (2021) Commun. Math. Sci.19(1): 205–228 arXiv | DOI
Rate of Convergence to the Circular Law via Smoothing Inequalities for Log-Potentials
Götze F, Jalowy J (2021) Random Matrices Theory Appl.10(3): Article No. 2150026, 25pp. arXiv | DOI
Collective stochastic dynamics of the Cucker–Smale ensemble under uncertain communications
Ha SY, Jung J, Röckner M (2021) J. Differ. Equ.284: 39–82 arXiv | DOI
Capacities, removable sets and Lp-uniqueness on Wiener spaces
Hinz M, Kang S (2021) Potential Anal.54: 503–533 arXiv | DOI
Rate of Convergence for products of independent non-Hermitian random matrices Jalowy J (2021) Electron. J. Probab.26: 1–24 arXiv | DOI
Low regularity well-posedness for generalized Benjamin–Ono equations on the circle Kim K, Schippa R (2021) J. Hyperbolic Differ. Equ.18(4): 931–984 arXiv | DOI
Generalized Evans–Krylov and Schauder type estimates for nonlocal fully nonlinear equations with rough kernels of variable orders Kim M, Lee KA (2021) J. Differ. Equ.270: 883–915 arXiv | DOI
Loomis–Whitney-type inequalities and low regularity well-posedness of the periodic Zakharov-Kuznetsov equation
Kinoshita S, Schippa R (2021) J. Funct. Anal.280(6): Article No. 108904, 53pp. arXiv | DOI
Effective Impedance over Ordered Fields Muranova A (2021) J. Math. Phys.62(3): Article No. 033502pp. arXiv | DOI
Existence of flows for linear Fokker–Planck–Kolmogorov equations and its connection to well-posedness Rehmeier M (2021) J. Evol. Equ.21: 17–31 arXiv | DOI
Local well-posedness for the Zakharov system in dimension d≤3 Sanwal A (2021) Discrete Contin. Dyn. Syst.42(3): 1067–1103 arXiv | DOI
The Tamed MHD Equations Schenke A (2021) J. Evol. Equ.21: 969–1018 arXiv | DOI
The Stochastic Tamed MHD Equations – Existence, Uniqueness and Invariant Measures Schenke A (2021) Stoch. Partial Differ. Equ. Anal. Comput.10: 475–515 arXiv | DOI
On a priori estimates and existence of periodic solutions to the modified Benjamin–Ono equation below H1/2(T) Schippa R (2021) J. Differ. Equ.299: 111–153 arXiv | DOI
2020
Estimates on the tail probabilities of subordinators and applications to general time fractional equations Cho S, Kim P (2020) Stoch. Process. Appl.130(7): 4392–4443 arXiv | DOI
Almost critical regularity of non-abelian Chern-Simons-Higgs system in the Lorenz gauge
Cho Y, Hong S (2020) arXiv:2002.04154. arXiv
On the global well-posedness of focusing energy-critical inhomogeneous NLS
Cho Y, Hong S, Lee K (2020) J. Evol. Equ.20: 1349–1380 arXiv | DOI
On the coupling of kinetic thermomechanical Cucker–Smale equation and compressible viscous fluid system
Choi YP, Ha SY, Jung J, Kim J (2020) J. Math. Fluid Mech.22: Article No. 4, 34pp. DOI
On the stochastic flocking of the Cucker-Smale flock with randomly switching topologies
Dong JG, Ha SY, Jung J, Kim D (2020) SIAM J. Control Optim.58(4): 2332–2353 arXiv | DOI
Mosco convergence of nonlocal to local quadratic forms Foghem Gonoue GF, Kassmann M, Voigt P (2020) Nonlinear Anal.193: Article No. 111504, 22pp. arXiv | DOI
Random attractors for locally monotone stochastic partial differential equations
Gess B, Liu W, Schenke A (2020) J. Differ. Equ.269(4): 3414–3455 arXiv | DOI
On the distribution of Salem numbers
Götze F, Gusakova A (2020) J. Number Theory216: 192–215 arXiv | DOI
Distribution of Complex Algebraic Numbers on the Unit Circle
Götze F, Gusakova A, Kabluchko Z, Zaporozhets D (2020) J. Math. Sci.251(1): 54–66 DOI
Local sensitivity analysis for the Kuramoto–Daido model with random inputs in a large coupling regime
Ha SY, Jin S, Jung J (2020) SIAM J. Math. Anal.52(2): 2000–2040 DOI
A local sensitivity analysis for the hydrodynamic Cucker-Smale model with random inputs
Ha SY, Jin S, Jung J, Shim W (2020) J. Differ. Equ.268: 636–679 DOI
Sobolev Spaces and Calculus of Variations on Fractals
Hinz M, Koch D, Meinert M (2020)
in: Analysis, Probability and Mathematical Physics on Fractals. World Scientific, 419–450 arXiv | DOI
On the viscous Burgers equation on metric graphs and fractals
Hinz M, Meinert M (2020) J. Fractal Geom.7(2): 137–182 arXiv | DOI
Hydrodynamic limit of the kinetic thermomechanical Cucker–Smale model in a strong local alignment regime Kang MJ, Ha SY, Kim J, Shim W (2020) Commun. Pure Appl. Anal.19(3): 1233–1256 DOI
Universal distributions from non-Hermitian Perturbation of Zero-Modes Kieburg M, Mielke A, Rud M, Splittorff K (2020) Phys. Rev. E101: Article No. 032117, 12pp. arXiv | DOI
Stochastic Lohe Matrix Model on the Lie Group and Mean-Field Limit
Kim D, Kim J (2020) J. Stat. Phys178: 1467–1514 DOI
Blow-up dynamics for smooth finite energy radial data solutions to the self-dual Chern-Simons-Schrödinger equation Kim K, Kwon S, Oh SJ (2020) To appear in Ann. Sci. Éc. Norm. Supér arXiv:2010.03252. arXiv
Regularity for fully nonlinear integro-differential operators with kernels of variable orders Kim M, Lee KA (2020) Nonlinear Anal.193: Article No. 111312, 27pp. arXiv | DOI
On the notion of effective impedance Muranova A (2020) Oper. Matrices14(3): 723–741 arXiv | DOI
On Cherny's results in infinite dimensions: A theorem dual to Yamada–Watanabe Rehmeier M (2020) Stochastics and Partial Differential Equations: Analysis and Computations9: 33–70 arXiv | DOI
On Strichartz estimates from ℓ2-decoupling and applications Schippa R (2020) arXiv | DOI
Local and global well-posedness of dispersion generalized Benjamin–Ono equations on the circle Schippa R (2020) Nonlinear Anal.196: Article No. 111777, 38pp. arXiv | DOI
On the Cauchy problem for higher dimensional Benjamin–Ono and Zakharov–Kuznetsov equations Schippa R (2020) Discrete Contin. Dyn. Syst.40(9): 5189–5215 arXiv | DOI
On short-time bilinear Strichartz estimates and applications to the Shrira equation Schippa R (2020) Nonlinear Anal.198: Article No. 111910, 22pp. arXiv | DOI
On the existence of periodic solutions to the modified Korteweg–de Vries equation below H12(T) Schippa R (2020) J. Evol. Equ.20: 725–776 arXiv | DOI
2019
The high temperature crossover for general 2D Coulomb gases
Akemann G, Byun SS (2019) J. Stat. Phys.175: 1043–1065 arXiv | DOI
Universal Signature from Integrability to Chaos in Dissipative Open Quantum Systems
Akemann G, Kieburg M, Mielke A (2019) Phys. Rev. Lett.123(25): Article No. 254101, 6pp. arXiv | DOI
Preserving Topology while Breaking Chirality: From Chiral Orthogonal to Anti-symmetric Hermitian Ensemble
Akemann G, Kieburg M, Mielke A, Vidal P (2019) J. Stat. Mech.: Article No. 023102, 51pp. arXiv | DOI
Flocking behaviors of a Cucker–Smale ensemble in a cylindrical domain
Bae H.-O., Ha SY, Kim J, Ko D., Son S. (2019) SIAM J. Math. Anal.51(3): 2390–2424 DOI
Robust Hölder Estimates for Parabolic Nonlocal Operators
Chaker J, Kassmann M, Weidner M (2019) arXiv:1912.09919. arXiv
Well-posedness in a critical space of Chern-Simons-Dirac system in the Lorenz gauge
Cho Y, Hong S (2019) arXiv:1912.06790. arXiv
Asymptotic analysis for Vlasov–Fokker–Planck/compressible Navier–Stokes equations with a density-dependent viscosity
Choi YP, Jung J (2019) arXiv:1901.01221. arXiv | DOI
Time-delay effect on the flocking in an ensemble of thermomechanical Cucker–Smale particles
Dong JG, Ha SY, Kim D, Kim J (2019) J. Differ. Equ.266(5): 2373–2407 DOI
Random affine simplexes
Götze F, Gusakova A, Zaporozhets D (2019) J. Appl. Probab.56(1): 39–51 arXiv | DOI
A local sensitivity analysis for the kinetic Kuramoto equation with random inputs
Ha SY, Jin S, Jung J (2019) Netw. Heterog. Media14(2): 317–340 DOI
Emergent behaviors of the swarmalator model for position-phase aggregation
Ha SY, Jung J, Kim J, Park J, Zhang X (2019) Math. Models Methods Appl. Sci.29(12): 2225–2269 DOI
Emergence of anomalous flocking in the fractional Cucker–Smale model
Ha SY, Jung J, Kuchling P (2019) Discrete Contin. Dyn. Syst.39(9): 5465–5489 DOI
Infinite particle systems with collective behaviour and related mesoscopic equations
Ha SY, Kim J, Kuchling P, Kutoviy O (2019) J. Math. Phys.60: Article No. 122704, 18pp. DOI
Uniform stability and mean-field limit of a thermodynamic Cucker–Smale model
Ha SY, Kim J, Min CH, Ruggeri T, Zhang X (2019) Q. Appl. Math.77: 113–176 DOI
Complete cluster predictability of the Cucker–Smale flocking model on the real line
Ha SY, Kim J, Park J, Zhang X (2019) Arch. Ration. Mech. Anal.231: 319–365 DOI
A probabilistic approach for the mean-field limit to the Cucker–Smale model with a singular communication
Ha SY, Kim J, Pickl P, Zhang X (2019) Kinet. Relat. Models12(5): 1045–1067 DOI
Uniform Strichartz estimates on the lattice
Hong Y, Yang C (2019) Discrete Contin. Dyn. Syst.39(6): 3239–3264 arXiv | DOI
Strong Convergence for Discrete Nonlinear Schrödinger equations in the Continuum Limit
Hong Y, Yang C (2019) SIAM J. Math. Anal.51(2): 1297–1320 arXiv | DOI
Universal broadening of zero modes: A general framework and identification Kieburg M, Mielke A, Splittorff K. (2019) Phys. Rev. E99: Article No. 052112pp. arXiv | DOI
Scattering for Defocusing generalized Benjamin–Ono Equation in the Energy Space Kim K, Kwon S (2019) Trans. Am. Math. Soc.372(7): 5011–5067 arXiv | DOI
Boundary regularity for nonlocal operators with kernels of variable orders Kim M, Kim P, Lee J, Lee KA (2019) J. Funct. Anal.277(1): 279–332 arXiv | DOI
Heat kernels of non-symmetric jump processes with exponentially decaying jumping kernel
Kim P, Lee J (2019) Stoch. Process. Appl.129(6): 2130–2173 arXiv | DOI
SDEs with singular drifts and multiplicative noise on general space-time domains Ling C, Röckner M, Zhu X (2019) arXiv:1910.03989. arXiv
Small data scattering of semirelativistic Hartree equation Yang C (2019) Nonlinear Anal.178: 41–55 arXiv | DOI
Scattering results for Dirac Hartree-type equations with small initial data Yang C (2019) Commun. Pure Appl. Anal.18(4): 1711–1734 arXiv | DOI
2018
On the modified scattering of 3-d Hartree type fractional Schrödinger equations with Coulomb potential
Cho Y, Hwang G, Yang C (2018) Adv. Differ. Equ.23(9-10): 649–692 DOI
Distribution of complex algebraic numbers on the unit circle
Götze F, Gusakova A, Kabluchko Z, Zaporozhets D (2018) Zap. Nauchn. Semin. POMI474: 90–107 URL
A local sensitivity analysis for the kinetic Cucker–Smale equation with random inputs
Ha SY, Jin S, Jung J (2018) J. Differ. Equ.265(8): 3618–3649 DOI
Uniform stability and mean-field limit for the augmented Kuramoto model
Ha SY, Kim J, Park J, Zhang X (2018) Netw. Heterog. Media13(2): 297–322 DOI
A global existence of classical solutions to the hydrodynamic Cucker–Smale model in presence of a temperature field
Ha SY, Kim J., Min C, Ruggeri T., Zhang X (2018) Anal. Appl.16(6): 757–805 DOI
Critical well-posedness and scattering results for fractional Hartree-type equations
Herr S, Yang C (2018) Differ. Integral Equ.31(9-10): 701–714 DOI
Cucker–Smale model with a bonding force and a singular interaction kernel Kim J, Peszek J (2018) arXiv:1805.01994. arXiv
2017
On distribution of points with conjugate algebraic integer coordinates close to planar curves
Bernik V., Götze F., Gusakova A (2017) Analytic and probabilistic methods in number theory: 11–23 arXiv | DOI
Probabilistic characterizations of essential self-adjointness and removability of singularities
Hinz M, Kang S, Masamune J (2017) Mat. Fiz. Komp'yut. Model.20(3): 148–162 arXiv | DOI