Processing math: 100%

Table of Contents

Publications and Preprints of doctoral students

2025

2024

2023

  • Self-adjoint Laplacians and symmetric diffusions on hyperbolic attractors
    Alikhanloo S, Hinz M (2023)
    J. Lond. Math. Soc. 107(6): 1925–1958
    arXiv | DOI
  • Almost-Hermitian random matrices and bandlimited point processes
    Ameur Y, Byun SS (2023)
    Anal. Math. Phys. 13: Article No. 52, 57pp.
    arXiv | DOI
  • On symmetric div-quasiconvex hulls and divsym-free L-truncations
    Behn L, Gmeineder F, Schiffer S (2023)
    Annales de l'Institut Henri Poincaré C, Analyse non linéaire 40(6): 1267-1317.
    PUB | DOI | WoS
  • Universal scaling limits of the symplectic elliptic Ginibre ensemble
    Byun SS, Ebke M (2023)
    Random Matrices Theory Appl. 12(1): Paper No. 2250047, 33pp.
    arXiv | DOI
  • Wronskian structures of planar symplectic ensembles
    Byun SS, Ebke M, Seo SM (2023)
    Nonlinearity 36(2): 809–844
    arXiv | DOI
  • Real eigenvalues of elliptic random matrices
    Byun SS, Kang NG, Lee JO, Lee J (2023)
    Int. Math. Res. Not. 2023(3): 2243–2280
    arXiv | DOI
  • Conformal field theory for annulus SLE: partition functions and martingale-observables
    Byun SS, Kang NG, Tak HJ (2023)
    Anal. Math. Phys. 13: Article No. 1, 87pp.
    arXiv | DOI
  • Harnack inequality for nonlocal problems with non-standard growth
    Chaker J, Kim M, Weidner M (2023)
    Math. Ann. 386: 533–550
    DOI
  • The concentration-compactness principle for the nonlocal anisotropic p-Laplacian of mixed order
    Chaker J, Kim M, Weidner M (2023)
    Nonlinear Anal. 232: Article No. 113254, 18pp.
    arXiv | DOI
  • A remake on the Bourgain–Brezis–Mironescu characterization of Sobolev spaces
    Foghem Gonoue GF (2023)
    Partial Differ. Equ. Appl. 4: Article No. 16, 36pp.
    arXiv | DOI
  • Maximum principle for stable operators
    Grube F, Hensiek T (2023)
    Mathematische Nachrichten 296(12): 19.
    PUB | PDF | DOI | Download (ext.) | WoS
  • The Dirichlet Problem for Lévy-stable operators with L2-data
    Grube F, Hensiek T, Schefer W (2023)
    Calculus of Variations and Partial Differential Equations 63(3): 74.
    PUB | DOI | WoS | arXiv
  • Robust nonlocal trace and extension theorems
    Grube F, Kaßmann M (2023)
    arXiv:2305.05735.
    PUB | DOI | arXiv
  • Strong solutions to McKean–Vlasov SDEs with coefficients of Nemytskii-type
    Grube S (2023)
    Electron. Commun. Probab. 28: Article No. 11, 13pp.
    arXiv | DOI
  • Construction of blow-up manifolds to the equivariant self-dual Chern–Simons–Schrödinger Equation
    Kim K, Kwon S (2023)
    Ann. PDE 9: Article No. 6, 129pp.
    arXiv | DOI
  • On pseudoconformal blow-up solutions to the self-dual Chern-Simons-Schrödinger equation: existence, uniqueness, and instability
    Kim K, Kwon S (2023)
    Mem. Am. Math. Soc. 284(1409)
    arXiv | DOI
  • A tensor product approach to non-local differential complexes
    Kommer J (2023)
    Bielefeld: Universität Bielefeld.
    PUB | PDF | DOI
  • Linearization and a superposition principle for deterministic and stochastic nonlinear Fokker–Planck–Kolmogorov equations
    Rehmeier M (2023)
    Ann. Sc. Norm-Sci. XXIV(3)
    arXiv | DOI
  • Nonuniqueness in law for stochastic hypodissipative Navier–Stokes equations
    Rehmeier M, Schenke A (2023)
    Nonlinear Anal. 227, Article No. 113179, 37pp.
    arXiv | DOI

2022

  • Scaling limits of planar symplectic ensembles
    Akemann G, Byun SS, Kang NG (2022)
    Symmetry Integr. Geom. 18: Article No. 007, 40pp.
    arXiv | DOI
  • Skew-orthogonal polynomials in the complex plane and their Bergman-like kernels
    Akemann G, Ebke M, Parra I (2022)
    Commun. Math. Phys. 389: 621–659
    arXiv | DOI
  • Self-adjoint Laplacians and Symmetric Diffusions on Hyperbolic Attractors
    Alikhanloo S (2022)
    Bielefeld: Universität Bielefeld.
    PUB | PDF | DOI
  • Gradient estimates for Orlicz double phase problems with variable exponents
    Baasandorj S, Byun SS, Lee HS (2022)
    Nonlinear Anal. 221
    PUB | DOI
  • Global Maximal Regularity for Equations with Degenerate Weights
    Balci AK., Byun SS, Diening L, Lee HS (2022)
    arXiv:2201.03524.
    arXiv | DOI
  • Maximal differentiability for a general class of quasilinear elliptic equations with right-hand side measures
    Byun SS, Cho N, Lee HS (2022)
    Int. Math. Res. Not. 13: 9722–9754
    PUB | DOI
  • Zeros of random polynomials and their higher derivatives
    Byun SS, Lee J, Reddy TR (2022)
    Trans. Am. Math. Soc. 375(9): 6311–6335
    arXiv | DOI
  • Regularity for nonlocal problems with non-standard growth
    Chaker J, Kim M, Weidner M (2022)
    Calc. Var. Partial Differ. Equ. 61: Article No. 227, 31pp.
    arXiv | DOI
  • Universal Scaling Limits of the Symplectic Elliptic Ginibre Ensemble
    Ebke M (2022)
    Bielefeld: Universität Bielefeld.
    PUB | PDF | DOI
  • Approximation of partial differential equations on compact resistance spaces
    Hinz M, Meinert M (2022)
    Calc. Var. Partial Differ. Equ. 61: Article No. 19, 47pp.
    arXiv | DOI
  • Harnack inequality for nonlocal operators on manifolds with nonnegative curvature
    Kim J, Kim M, Lee KA (2022)
    Calc. Var. Partial Differ. Equ. 61: Article No. 22, 29pp.
    arXiv | DOI
  • Strong solutions of stochastic differential equations with coefficients in mixed-norm spaces
    Ling C, Xie L (2022)
    Potential Anal. 57: 227–241
    arXiv | DOI
  • Nonlocal elliptic equation in Hölder space and the martingale problem
    Ling C, Zhao G (2022)
    J. Differ. Equ. 314: 653–699
    arXiv | DOI
  • On the effective impedance of finite and infinite networks
    Muranova A (2022)
    Potential Anal. 56: 697–721
    arXiv | DOI
  • The effective impedances of infinite ladder networks and Dirichlet problem on graphs
    Muranova A (2022)
    Bulg. J. Phys. 49: 115–135
    arXiv | DOI
  • Energy methods for nonsymmetric nonlocal operators
    Weidner M (2022)
    Bielefeld: Universität Bielefeld.
    PUB | PDF | DOI
  • Central limit theorem and moderate deviation principle for stochastic scalar conservation laws
    Wu Z, Zhang R (2022)
    J. Math. Anal. Appl. 516(1): Paper No. 126445, 26pp.
    arXiv | DOI

2021

  • Territorial behaviour of buzzards versus random matrix spacing distributions
    Akemann G, Baake M, Chakarov N, Krüger O, Mielke A, Ottensmann M, Werdehausen R (2021)
    J. Theor. Biol. 509: Article No. 110475, 7pp.
    arXiv | DOI
  • A non-Hermitian generalisation of the Marchenko–Pastur distribution: from the circular law to multi-criticality
    Akemann G, Byun SS, Kang NG (2021)
    Ann. Henri Poincaré 22: 1035–1068
    arXiv | DOI
  • Self-adjoint Laplacians on partially and generalized hyperbolic attractors
    Alikhanloo S, Hinz M (2021)
    arXiv:2105.04470.
    arXiv | DOI
  • Global gradient estimates for a general class of quasilinear elliptic equations with Orlicz growth
    Baasandorj S, Byun SS, Lee HS (2021)
    Proc. Am. Math. Soc. 149(10): 4189–4206
    PUB | DOI
  • Calderón-Zygmund estimates for elliptic double phase problems with variable exponents
    Byun SS, Lee HS (2021)
    J. Math. Anal. Appl. 501(1), Article No. 124015, 31pp.
    PUB | DOI
  • Gradient estimates of ω-minimizers to double phase variational problems with variable exponents
    Byun SS, Lee HS (2021)
    Q. J. Math. 72(4): 1191–1221
    PUB | DOI
  • Lemniscate ensembles with spectral singularity
    Byun SS, Lee SY, Yang M (2021)
    arXiv:2107.07221.
    arXiv
  • Estimates on transition densities of subordinators with jumping density decaying in mixed polynomial orders
    Cho S, Kim P (2021)
    Stoch. Process. Appl. 139: 229–279
    arXiv | DOI
  • Low regularity solutions to the non-abelian Chern–Simons–Higgs system in the Lorenz gauge
    Cho Y, Hong S (2021)
    Nonlinear Differ. Equ. Appl. 28: Article No. 70, 25pp.
    DOI
  • Asymptotic analysis for a Vlasov–Fokker–Planck/Navier–Stokes system in a bounded domain
    Choi YP, Jung J (2021)
    Math. Models Methods Appl. Sci. 31(11): 2213–2295
    arXiv | DOI
  • Emergence of stochastic flocking for the discrete Cucker-Smale model with randomly switching topologies
    Dong JG, Ha SY, Jung J, Kim D (2021)
    Commun. Math. Sci. 19(1): 205–228
    arXiv | DOI
  • Rate of Convergence to the Circular Law via Smoothing Inequalities for Log-Potentials
    Götze F, Jalowy J (2021)
    Random Matrices Theory Appl. 10(3): Article No. 2150026, 25pp.
    arXiv | DOI
  • Collective stochastic dynamics of the Cucker–Smale ensemble under uncertain communications
    Ha SY, Jung J, Röckner M (2021)
    J. Differ. Equ. 284: 39–82
    arXiv | DOI
  • Capacities, removable sets and Lp-uniqueness on Wiener spaces
    Hinz M, Kang S (2021)
    Potential Anal. 54: 503–533
    arXiv | DOI
  • Rate of Convergence for products of independent non-Hermitian random matrices
    Jalowy J (2021)
    Electron. J. Probab. 26: 1–24
    arXiv | DOI
  • Low regularity well-posedness for generalized Benjamin–Ono equations on the circle
    Kim K, Schippa R (2021)
    J. Hyperbolic Differ. Equ. 18(4): 931–984
    arXiv | DOI
  • Generalized Evans–Krylov and Schauder type estimates for nonlocal fully nonlinear equations with rough kernels of variable orders
    Kim M, Lee KA (2021)
    J. Differ. Equ. 270: 883–915
    arXiv | DOI
  • Loomis–Whitney-type inequalities and low regularity well-posedness of the periodic Zakharov-Kuznetsov equation
    Kinoshita S, Schippa R (2021)
    J. Funct. Anal. 280(6): Article No. 108904, 53pp.
    arXiv | DOI
  • Effective Impedance over Ordered Fields
    Muranova A (2021)
    J. Math. Phys. 62(3): Article No. 033502pp.
    arXiv | DOI
  • Existence of flows for linear Fokker–Planck–Kolmogorov equations and its connection to well-posedness
    Rehmeier M (2021)
    J. Evol. Equ. 21: 17–31
    arXiv | DOI
  • Local well-posedness for the Zakharov system in dimension d3
    Sanwal A (2021)
    Discrete Contin. Dyn. Syst. 42(3): 1067–1103
    arXiv | DOI
  • The Tamed MHD Equations
    Schenke A (2021)
    J. Evol. Equ. 21: 969–1018
    arXiv | DOI
  • The Stochastic Tamed MHD Equations – Existence, Uniqueness and Invariant Measures
    Schenke A (2021)
    Stoch. Partial Differ. Equ. Anal. Comput. 10: 475–515
    arXiv | DOI
  • On a priori estimates and existence of periodic solutions to the modified Benjamin–Ono equation below H1/2(T)
    Schippa R (2021)
    J. Differ. Equ. 299: 111–153
    arXiv | DOI

2020

  • Estimates on the tail probabilities of subordinators and applications to general time fractional equations
    Cho S, Kim P (2020)
    Stoch. Process. Appl. 130(7): 4392–4443
    arXiv | DOI
  • Almost critical regularity of non-abelian Chern-Simons-Higgs system in the Lorenz gauge
    Cho Y, Hong S (2020)
    arXiv:2002.04154.
    arXiv
  • On the global well-posedness of focusing energy-critical inhomogeneous NLS
    Cho Y, Hong S, Lee K (2020)
    J. Evol. Equ. 20: 1349–1380
    arXiv | DOI
  • On the coupling of kinetic thermomechanical Cucker–Smale equation and compressible viscous fluid system
    Choi YP, Ha SY, Jung J, Kim J (2020)
    J. Math. Fluid Mech. 22: Article No. 4, 34pp.
    DOI
  • On the stochastic flocking of the Cucker-Smale flock with randomly switching topologies
    Dong JG, Ha SY, Jung J, Kim D (2020)
    SIAM J. Control Optim. 58(4): 2332–2353
    arXiv | DOI
  • Mosco convergence of nonlocal to local quadratic forms
    Foghem Gonoue GF, Kassmann M, Voigt P (2020)
    Nonlinear Anal. 193: Article No. 111504, 22pp.
    arXiv | DOI
  • Random attractors for locally monotone stochastic partial differential equations
    Gess B, Liu W, Schenke A (2020)
    J. Differ. Equ. 269(4): 3414–3455
    arXiv | DOI
  • On the distribution of Salem numbers
    Götze F, Gusakova A (2020)
    J. Number Theory 216: 192–215
    arXiv | DOI
  • Distribution of Complex Algebraic Numbers on the Unit Circle
    Götze F, Gusakova A, Kabluchko Z, Zaporozhets D (2020)
    J. Math. Sci. 251(1): 54–66
    DOI
  • Local sensitivity analysis for the Kuramoto–Daido model with random inputs in a large coupling regime
    Ha SY, Jin S, Jung J (2020)
    SIAM J. Math. Anal. 52(2): 2000–2040
    DOI
  • A local sensitivity analysis for the hydrodynamic Cucker-Smale model with random inputs
    Ha SY, Jin S, Jung J, Shim W (2020)
    J. Differ. Equ. 268: 636–679
    DOI
  • Sobolev Spaces and Calculus of Variations on Fractals
    Hinz M, Koch D, Meinert M (2020)
    in: Analysis, Probability and Mathematical Physics on Fractals. World Scientific, 419–450
    arXiv | DOI
  • On the viscous Burgers equation on metric graphs and fractals
    Hinz M, Meinert M (2020)
    J. Fractal Geom. 7(2): 137–182
    arXiv | DOI
  • Hydrodynamic limit of the kinetic thermomechanical Cucker–Smale model in a strong local alignment regime
    Kang MJ, Ha SY, Kim J, Shim W (2020)
    Commun. Pure Appl. Anal. 19(3): 1233–1256
    DOI
  • Universal distributions from non-Hermitian Perturbation of Zero-Modes
    Kieburg M, Mielke A, Rud M, Splittorff K (2020)
    Phys. Rev. E 101: Article No. 032117, 12pp.
    arXiv | DOI
  • Stochastic Lohe Matrix Model on the Lie Group and Mean-Field Limit
    Kim D, Kim J (2020)
    J. Stat. Phys 178: 1467–1514
    DOI
  • Blow-up dynamics for smooth finite energy radial data solutions to the self-dual Chern-Simons-Schrödinger equation
    Kim K, Kwon S, Oh SJ (2020)
    To appear in Ann. Sci. Éc. Norm. Supér
    arXiv:2010.03252.
    arXiv
  • Regularity for fully nonlinear integro-differential operators with kernels of variable orders
    Kim M, Lee KA (2020)
    Nonlinear Anal. 193: Article No. 111312, 27pp.
    arXiv | DOI
  • On the notion of effective impedance
    Muranova A (2020)
    Oper. Matrices 14(3): 723–741
    arXiv | DOI
  • On Cherny's results in infinite dimensions: A theorem dual to Yamada–Watanabe
    Rehmeier M (2020)
    Stochastics and Partial Differential Equations: Analysis and Computations 9: 33–70
    arXiv | DOI
  • On Strichartz estimates from 2-decoupling and applications
    Schippa R (2020)
    arXiv | DOI
  • Local and global well-posedness of dispersion generalized Benjamin–Ono equations on the circle
    Schippa R (2020)
    Nonlinear Anal. 196: Article No. 111777, 38pp.
    arXiv | DOI
  • On the Cauchy problem for higher dimensional Benjamin–Ono and Zakharov–Kuznetsov equations
    Schippa R (2020)
    Discrete Contin. Dyn. Syst. 40(9): 5189–5215
    arXiv | DOI
  • On short-time bilinear Strichartz estimates and applications to the Shrira equation
    Schippa R (2020)
    Nonlinear Anal. 198: Article No. 111910, 22pp.
    arXiv | DOI
  • On the existence of periodic solutions to the modified Korteweg–de Vries equation below H12(T)
    Schippa R (2020)
    J. Evol. Equ. 20: 725–776
    arXiv | DOI

2019

  • The high temperature crossover for general 2D Coulomb gases
    Akemann G, Byun SS (2019)
    J. Stat. Phys. 175: 1043–1065
    arXiv | DOI
  • Universal Signature from Integrability to Chaos in Dissipative Open Quantum Systems
    Akemann G, Kieburg M, Mielke A (2019)
    Phys. Rev. Lett. 123(25): Article No. 254101, 6pp.
    arXiv | DOI
  • Preserving Topology while Breaking Chirality: From Chiral Orthogonal to Anti-symmetric Hermitian Ensemble
    Akemann G, Kieburg M, Mielke A, Vidal P (2019)
    J. Stat. Mech.: Article No. 023102, 51pp.
    arXiv | DOI
  • Flocking behaviors of a Cucker–Smale ensemble in a cylindrical domain
    Bae H.-O., Ha SY, Kim J, Ko D., Son S. (2019)
    SIAM J. Math. Anal. 51(3): 2390–2424
    DOI
  • Robust Hölder Estimates for Parabolic Nonlocal Operators
    Chaker J, Kassmann M, Weidner M (2019)
    arXiv:1912.09919.
    arXiv
  • Well-posedness in a critical space of Chern-Simons-Dirac system in the Lorenz gauge
    Cho Y, Hong S (2019)
    arXiv:1912.06790.
    arXiv
  • Asymptotic analysis for Vlasov–Fokker–Planck/compressible Navier–Stokes equations with a density-dependent viscosity
    Choi YP, Jung J (2019)
    arXiv:1901.01221.
    arXiv | DOI
  • Time-delay effect on the flocking in an ensemble of thermomechanical Cucker–Smale particles
    Dong JG, Ha SY, Kim D, Kim J (2019)
    J. Differ. Equ. 266(5): 2373–2407
    DOI
  • Random affine simplexes
    Götze F, Gusakova A, Zaporozhets D (2019)
    J. Appl. Probab. 56(1): 39–51
    arXiv | DOI
  • A local sensitivity analysis for the kinetic Kuramoto equation with random inputs
    Ha SY, Jin S, Jung J (2019)
    Netw. Heterog. Media 14(2): 317–340
    DOI
  • Emergent behaviors of the swarmalator model for position-phase aggregation
    Ha SY, Jung J, Kim J, Park J, Zhang X (2019)
    Math. Models Methods Appl. Sci. 29(12): 2225–2269
    DOI
  • Emergence of anomalous flocking in the fractional Cucker–Smale model
    Ha SY, Jung J, Kuchling P (2019)
    Discrete Contin. Dyn. Syst. 39(9): 5465–5489
    DOI
  • Infinite particle systems with collective behaviour and related mesoscopic equations
    Ha SY, Kim J, Kuchling P, Kutoviy O (2019)
    J. Math. Phys. 60: Article No. 122704, 18pp.
    DOI
  • Uniform stability and mean-field limit of a thermodynamic Cucker–Smale model
    Ha SY, Kim J, Min CH, Ruggeri T, Zhang X (2019)
    Q. Appl. Math. 77: 113–176
    DOI
  • Complete cluster predictability of the Cucker–Smale flocking model on the real line
    Ha SY, Kim J, Park J, Zhang X (2019)
    Arch. Ration. Mech. Anal. 231: 319–365
    DOI
  • A probabilistic approach for the mean-field limit to the Cucker–Smale model with a singular communication
    Ha SY, Kim J, Pickl P, Zhang X (2019)
    Kinet. Relat. Models 12(5): 1045–1067
    DOI
  • Uniform Strichartz estimates on the lattice
    Hong Y, Yang C (2019)
    Discrete Contin. Dyn. Syst. 39(6): 3239–3264
    arXiv | DOI
  • Strong Convergence for Discrete Nonlinear Schrödinger equations in the Continuum Limit
    Hong Y, Yang C (2019)
    SIAM J. Math. Anal. 51(2): 1297–1320
    arXiv | DOI
  • Universal broadening of zero modes: A general framework and identification
    Kieburg M, Mielke A, Splittorff K. (2019)
    Phys. Rev. E 99: Article No. 052112pp.
    arXiv | DOI
  • Scattering for Defocusing generalized Benjamin–Ono Equation in the Energy Space
    Kim K, Kwon S (2019)
    Trans. Am. Math. Soc. 372(7): 5011–5067
    arXiv | DOI
  • Boundary regularity for nonlocal operators with kernels of variable orders
    Kim M, Kim P, Lee J, Lee KA (2019)
    J. Funct. Anal. 277(1): 279–332
    arXiv | DOI
  • Heat kernels of non-symmetric jump processes with exponentially decaying jumping kernel
    Kim P, Lee J (2019)
    Stoch. Process. Appl. 129(6): 2130–2173
    arXiv | DOI
  • SDEs with singular drifts and multiplicative noise on general space-time domains
    Ling C, Röckner M, Zhu X (2019)
    arXiv:1910.03989.
    arXiv
  • Small data scattering of semirelativistic Hartree equation
    Yang C (2019)
    Nonlinear Anal. 178: 41–55
    arXiv | DOI
  • Scattering results for Dirac Hartree-type equations with small initial data
    Yang C (2019)
    Commun. Pure Appl. Anal. 18(4): 1711–1734
    arXiv | DOI

2018

  • On the modified scattering of 3-d Hartree type fractional Schrödinger equations with Coulomb potential
    Cho Y, Hwang G, Yang C (2018)
    Adv. Differ. Equ. 23(9-10): 649–692
    DOI
  • Distribution of complex algebraic numbers on the unit circle
    Götze F, Gusakova A, Kabluchko Z, Zaporozhets D (2018)
    Zap. Nauchn. Semin. POMI 474: 90–107
    URL
  • A local sensitivity analysis for the kinetic Cucker–Smale equation with random inputs
    Ha SY, Jin S, Jung J (2018)
    J. Differ. Equ. 265(8): 3618–3649
    DOI
  • Uniform stability and mean-field limit for the augmented Kuramoto model
    Ha SY, Kim J, Park J, Zhang X (2018)
    Netw. Heterog. Media 13(2): 297–322
    DOI
  • A global existence of classical solutions to the hydrodynamic Cucker–Smale model in presence of a temperature field
    Ha SY, Kim J., Min C, Ruggeri T., Zhang X (2018)
    Anal. Appl. 16(6): 757–805
    DOI
  • Critical well-posedness and scattering results for fractional Hartree-type equations
    Herr S, Yang C (2018)
    Differ. Integral Equ. 31(9-10): 701–714
    DOI
  • Cucker–Smale model with a bonding force and a singular interaction kernel
    Kim J, Peszek J (2018)
    arXiv:1805.01994.
    arXiv

2017

  • On distribution of points with conjugate algebraic integer coordinates close to planar curves
    Bernik V., Götze F., Gusakova A (2017)
    Analytic and probabilistic methods in number theory: 11–23
    arXiv | DOI
  • Probabilistic characterizations of essential self-adjointness and removability of singularities
    Hinz M, Kang S, Masamune J (2017)
    Mat. Fiz. Komp'yut. Model. 20(3): 148–162
    arXiv | DOI